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Abstract—This work proposes a systematic two-degree freedom 
control scheme to improve the reference input tracking and load 
disturbance rejection for an unstable magnetic levitation system. 
The proposed control strategy is a two-step design process. 
Firstly, a proportional derivative controller is introduced 
purposely to get the desired set-point response of the magnetic 
levitation system and then, an integral square error (ISE) 
performance specification is used for designing a set-point 
tracking controller. Secondly, a disturbance estimator is designed 
using the desired closed loop complimentary sensitivity function 
for the rejection of load disturbances. This leads to the 
decoupling of the nominal set-point response from the load 
disturbance response similar to an open loop control manner. 
Thus, it is convenient to optimize both controllers simultaneously 
as well as separately. The effectiveness of the proposed control 
strategy is validated through simulation. 

 
Keywords—Maglev System; PID; Maclaurin Series; Disturbance 
Estimator 

I. INTRODUCTION  

 Magnetic levitation (maglev) systems have found wide 
applicability in various fields such as transportation (high 
speed maglev train), magnetic bearing system (contactless 
bearing), medical science (artificial heart pump), defense etc 
[1-8]. Magnetic levitation systems are nonlinear and unstable 
in nature. Designing a simple and efficient controller for a 
maglev system is a challenging task [9-31]. For stable and 
desired operation, various control strategies are reported in the 
literature. These controllers are generally applied either on the 
linearized model of magnetic levitation system or implemented 
in nonlinear environment [9-11]. In general, the Proportional 
Integral Derivative (PID) controller is the most common 
controller used in industrial applications and apart from this an 
extended version of PIDs, the Fractional Order Proportional 
Integral Derivative (FOPID) controller that provides more 
flexibility in design, has also been reported in [12-13]. The 
problem of disturbance and parameter uncertainty in 
conventional PID controllers has been tackled using expert 
knowledge based fuzzy PID control scheme [14]. The two 
degree freedom based PID control strategy using pole 
placement technique is discussed in [15] for the stabilization 

and improvement of the transient behavior of magnetic 
levitation systems. 

Apart from this, many nonlinear control algorithms [16-18] 
are also reported for the said system. A feedback linearization 
based control technique and differential geometry based 
control strategy is implemented in [16] and [17] respectively. 
A nonlinear control algorithm is successfully applied on a 
maglev train system in [18]. The problem of disturbance and 
parameter uncertainty associated with maglev system has also 
been addressed through various nonlinear control schemes as 
discussed in [19-29]. The classical and Sliding Mode Control 
(SMC) scheme for maglev system is reported in [19-20]. SMC 
based integral variable structure grey control has been 
implemented on maglev system to avoid the chattering effect 
associated in the scheme [21]. In [22], an SMC based fuzzy 
controller is described for reducing the effects of parameter 
uncertainty and disturbance in maglev system and a Recurrent 
Elman Neural Network (RENN) estimator based robust 
dynamic sliding mode control has been used to estimate the 
nonlinear term [23-24]. The problem of uncertainty for maglev 
system has been stated in [25] where integral backstepping 
sliding mode control strategy is used and in [26-27] an 
adaptive backstepping algorithm has also been reported. The 
problem of noise associated with sensor output is tackled using 
robust output feedback technique in [28]. An H-infinity based 
control scheme is highlighted in [29-30]. An intelligent based 
adaptive PID fuzzy compensation technique is successfully 
implemented for the stabilization of a maglev system in [31]. 

These control methods have the ability to overwhelm the 
uncertainties and external disturbance in the system and 
improve the characteristics such as disturbance rejection and 
robustness to some extent. But all these methods are very 
complex in structure and tedious in adjusting the controller 
parameters. To overcome all these problems, an internal model 
control (IMC) scheme is found to be effective especially if 
system has some disturbance such as internal change in system 
parameters or external disturbances on system. IMC was 
initially proposed in [32]. The parameters of IMC are directly 
related to system performance and are used for adjusting 
characteristics like tracking, disturbance rejection and 
robustness in a completely independent way. Recently, a few 
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publications [33-35] based on the IMC scheme have been 
reported for controlling magnetic levitation system. A feedback 
linearization based IMC technique is discussed in [33] and 
simulation based results are stated in [34] for controlling the 
speed of two mass maglev systems. A single degree of freedom 
IMC based PID control technique is applied in [35] for 
controlling the rotor of wind generator. The structure of IMC is 
very simple and easy to realize for stable systems but with the 
constraint that this scheme cannot be applied directly on 
unstable system due to the problem of internal instability [36]. 
Thus, some modification is needed for the control of unstable 
systems based on the two degrees of freedom IMC [37-40]. 
Smith predictor based 2-DOF control schemes are designed for 
unstable process for obtaining set-point response without 
overshoot [41-42]. But un-modeled dynamics uncertainty still 
raise problem in all existing 2-DOF control schemes and also 
failed online tuning of controller parameters in presence of 
process uncertainty.   

In the proposed work, an analytical two degree of freedom 
control methodology based on [43-44] of analytical virtue is 
proposed for tackling the reference input tracking and load 
disturbance/process uncertainty for maglev systems. The 
proposed control strategy is a two-step design process. Firstly, 
a proportional derivative controller is introduced purposely to 
get the desired set-point response of the magnetic levitation 
system and then, for designing set-point tracking controller, an 
integral square error (ISE) performance specification is used. 
Secondly, a disturbance estimator is designed using the desired 
closed loop complimentary sensitivity function for the rejection 
of load disturbances.  

II. MATHEMATICAL MODELING OF MAGLEV SYSTEMS 

The electrical equivalent circuit and schematic block 
diagram of a magnetic levitation system is shown in Figure 
1(a) and Figure 1(b). This experimental setup is developed by 
feedback instrument Ltd [45]. 
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Fig. 1. (a) Electrical Circuit Model of Maglev System  (b) Schematic Block 
Diagram of Maglev System. 

TABLE I.  PARAMETERS OF PHYSICAL MAGLEV SYSTEM [15, 45] 

Description Parameters Value Unit 
mass of the steel ball m 0.02 kg 

Acceleration due to   gravity g 9.81 m/s2 

Equilibrium value of current 0i  0.8 A 

Equilibrium value of position h0 0.009 m 

Control voltage to coil current 
gain 

C1 
0.95-
1.05 

A/V 

IR sensor gain C2 143.48 V/m 
Offset  2.8  V 

Control input voltage level v -5 to 5 V 

Sensor output voltage level hv 
-3.75 

to 1.25 
V 

 
The major components of maglev system are suspended 

steel ball, position Infra-Red (IR) sensors, actuator (including 
electro magnet and power amplifier). The steel ball is 
controlled through current i, as seen in Figure 1(a). The 
magnetic force acting on the steel ball depends on two 
parameters, firstly, the current i flowing in the coil and the 
second one is the distance h between coil and the steel ball. 
The non-linear model of magnetic levitation system [15, 45] 
which relates to the current i flowing in the coil and the 
position h  of the steel ball is expressed as 

                              

2

2

( )

i
mh mg C

h
mg f i,h

 

 


                  (1) 

where 
2

2
( )

Ci
f i,h

h
 , C  is a constant value which depends 

on the parameters of coil, m is mass of the steel ball and g is 
acceleration due to gravity.   

The magnetic levitation system expressed by (1) is 
nonlinear. For easy analysis and design of controller, the 
system is linearized about the equilibrium point 
( 0 0.8 Ai   & 0h 0.009 m ). At the equilibrium point, the 

dynamical equation is taken as 0h   and at this point the 
simplified expression is obtained as 

                      
2
0

2
0

mgh
C=

i
                                      (2) 

The linearization is carried out with the following 
assumptions that position of ball is considered as 0h=h + h  

and current in the coil is taken as 0i=i + i , where h  is small 
deviation in position of ball with equilibrium position and i is 
the deviation in coil current from equilibrium current 0i . 

By calculating the partial derivative of (1), the linearized 
model of maglev system is obtained as 

0 , 0 0 , 0

( , ) ( , )
(3)
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Taking Laplace transform on both sides of (3), we get the 
transfer function as 

                                        
2

i

h

Ch

i s C


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 
                                (4) 

where                                           0

0

2

2g

i

h

g
C

i

C
h

 




                          (5) 

In the electrical equivalent circuit of maglev system given 
in Figure 1(b), the current i flows in the coil and is 
proportional to the control voltage v, expressed as  

                                                     1i C v                               (6) 

Using (4) and (6), the transfer function of maglev system is 
obtained as 

                                             

1
2

i

h

C Ch

v s C




 
                           (7) 

where v is small incremental control voltage around its 
mean value. 

 By considering 2C , the gain of IR sensor, (7) is written as 

                                        

1 2
2

v i

h

h C C C

v s C

 


 
                             (8) 

Using values of Table I in (8), the transfer function of the 
linearized model of magnetic levitation system (plant) can be 
expressed as 

                                          
P 2

3518.85
( )

2180
G s

s





                       (9) 

Further, the generalized form of transfer function of P ( )G s  
is given by  

                                        

1
P

1 2

( )
( 1)( 1)

k
G s

τ s τ s


 
              (10) 

where 1 1.6142k     and 1 2 0.0214τ τ   

 The maglev system (10) has two poles at  46.69 and it 
could be seen that it is unstable as one of its pole lies in right 
half of complex s-plane. Hence, the main objective is to design 
a suitable controller that stabilizes this unstable magnetic 
levitation system. 

III. PROPOSED CONTROL STRATEGY  

The proposed 2-DOF control strategies consist of three 
major control components, stabilizing controller GC(s), set-
point tracking controller C(s) and disturbance estimator F for 
magnetic levitation system as shown in Figure 2. In the above 
suggested control scheme as given in Figure 2, the GP is the 
unstable maglev system and Gm is the minimum phase part of 
GP. The two main controllers are C(s), the set point controller 

which is responsible for set-point tracking and GC(s), the 
stabilizing controller which ensures the closed loop stability of 
magnetic levitation system. The parameters of stabilizing 
controller and set-point tracking controller and their bounds are 
calculated using Routh’s stability criterion. The disturbance 
estimator F [44] is designed using the desired closed loop 
complimentary sensitivity function for rejection of load 
disturbances. Maclaurin series expansion method is used for 
calculation of PID structure of disturbance estimator F.  

 

 
Fig. 2. Block diagram of 2-DOF control strategy 

The design steps of all the three controllers GC(s), C(s) and 
F(s) are described in Section III from A to C. The control 
efforts of GC(s), C(s) and F are specified as us, ut and f 
respectively.   

A. Stabilizing Controller  

From Figure 2, using stabilizing controller (GC) the 
minimum phase model (Gm) of maglev plant (GP) is augmented 
as 

                               * m
m

C m

( )
( )

1 ( ) ( )

G s
G s

G s G s



              (11) 

The set-point transfer function of the overall system is 
obtained as 

                  

P m

C m P

( ) ( ) 1 ( ) ( )
( ) .

1 ( ) ( ) 1 ( ) ( )

C s G s F s G s
H s

G s G s F s G s




 
             (12) 

In special case when, m ( )G s  is the perfect model of P ( )G s  
then the set-point transfer function is written as 

                             

P

C m

( ) ( )
( )

1 ( ) ( )

C s G s
H s

G s G s



                          (13) 

From (13), it is clear that, if uncertainty like dead time or 
any parametric variation is present in the magnetic levitation 
system, the set point transfer function will definitely achieve 
smooth set-point response. To avoid stability problem for the 
unstable magnetic levitation system (10), a proportional 
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derivative (PD) form of stabilizing controller C ( )G s is proposed 
and for simplicity it can be chosen as 

                                              C ( ) c dG s k k s                      (14) 

Now, the characteristic equation of set-point transfer 
function (13) is written as    

                     
2

1 2 1 1 2 1( ) 1 0d cτ τ s k k τ τ s k k                  (15) 

With the help of Routh’s stability criterion, the tuning 
parameters of stabilizing controller GC(s) is computed as  

                                         

1 2 1

1

( ) /

1/
d

c

k τ τ k

k k

  
 

                      (16) 

For satisfying (16), when 1 1.6142 k (for maglev system 
(10)), the bounds on parameters of GC(s) are obtained as 

                                                  
0

0.62

 
 

d

c

k

k                           (17) 

From (17), an effective GC(s) can be chosen as 

                                     C ( ) 0.2 4G s s                            (18a) 

 As C ( )G s is not physically realizable, therefore a low pass 
filter is added, given by 

                                            
1

( )
( 1)




J s
λs

                       (18b) 

 where  is time constant and could be chosen 
between  0.01 0.1 dk . 

The final realizable form of C ( )G s  with low pass filter of 
time constant 0.01  , and is given as 

                                       
C

0.2 4
( )

(0.01 1)

s
G s

s

 



                       (19) 

B. Set-point Tracking Controller  

The set-point tracking controller is designed with the help 
of ISE performance minimization. The main objective of 
proposed set-point of tracking controller C(s) is to improve the 
system performance satisfying the criteria of norm bound as  

                            
2

2
min ( )(1 ( ))W s H s                              (20) 

whereW is the set-point weight function and could be taken 
as 1/ s  for the strict step change of the set point input and the 
load disturbance. The set-point tracking controller C(s) is 
obtained analytically by substituting (10) and (13) into (20) as 

            

2

2

2

1
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1 2 1 1 2 1 2
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Using orthogonality property of 2H norm, (21) is further 
simplified as 

2

2

22 2
1 2 1 1 2 1 1

2
2 1 2 1 1 2 1 2
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     (22) 

The optimal set-point tracking controller C(s) is obtained 
by minimizing the right hand side of (22). The simplified 
expression of C(s) is obtained by considering the second term 
zero as 

               

2
1 2 1 1 2 1

1

( ) 1
( ) d cτ τ s k k τ τ s k k

C s
k

    
            (23a) 

Again, C(s) given by (23a) is not proper and realizable in 
practice. Therefore, a second order low pass filter is added as 

                                          
C 2

C

1
( )

( 1)
J s

λ s



                   (23b) 

where Cλ is time constant. The filter (23b) is added with 
(23a) for practically realizable form.  The time constant of 
second order low pass filter can be chosen 
between (0.01 0.1) dk . Hence, C(s) can be written as 

                

2
1 2 1 1 2 1

2
1 C

s ( ) 1
( )

( 1)
d cτ τ k k τ τ s k k

C s
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It can be seen from (19), 0.2 and 4   d Ck   k using (17), 

considering the same of values as in (19) and for C 0.01λ , the 
set-point tracking controller C(s) for system (10) is obtained as 

        

-4 2

-4 2

4.579 10 0.322 5.456
( )

1.6142 10 0.0323 1.6142

s s
C s
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           (25) 

C. Disturbance Estimator  

The disturbance estimator is basically designed for 
improving the system performance when disturbance is 
encountered in the system in the form of internal parameter 
variation or external load disturbances. With the proposed 
disturbance estimator as shown in Figure 2, the load 
disturbance transfer functions are realized as   
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                      (26) 

The complementary sensitivity function of the closed loop 
between the system input and output for the load disturbance 
rejection is derived as  

                                

P

P

( ) ( )

1 ( ) ( )d
i

F s G sf
T

d F s G s
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
                      (27) 
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The desired complementary sensitivity function should be 
equal to unity in an ideal case. The disturbance estimator F(s) 
should detect the resultant system output whenever the input 
disturbance id  enters into the system input and then it should 
obtain an inversely equivalent signal f to counteract it (Figure 
2). However, the actual asymptotic tracking constraints are as 
follows 

                        
lim ( ) 0, 1,2,...,

o
k

ds p
H s  k m


                        (28) 

                         0
lim ( ) 0

ods
H s


                                             (29) 

where kp is the process model right hand side pole (RHP) 
and m is the number of these RHP poles. To ensure the internal 
stability of closed loop system for the load disturbance 
rejection, the constraints (28) and (29) are required to be 
fulfilled. Hence based on the H2 optimal performance objective 
of the IMC theory [36], the practically desired closed loop 
complementary sensitivity function is formulated as 

                                       

=1
+

s +1
( ) =

( +1)

m
k

k
k

d m
f

a
T s

λ s


                      (30) 

 where fλ is the adjustable parameter,   is the relative 

degree of the maglev model, m is the number of RHP poles in 
the maglev model and ka is calculated by the asymptotic 
constraints of (28)-(29). 

Hence the desired disturbance estimator can be inversely 
calculated by (27), as 

                                    P

( ) 1
( ) .

1 ( ) ( )
d

d

T s
F s

T s G s



                   (31) 

For the system (10), closed loop complementary sensitivity 
function (30) for the load disturbance rejection is written as  

                                       

1
3

1
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( 1)d
f

a s
T s

λ s





                 (32) 

Now, substituting (10) and (32) in (31), the desired 
disturbance estimator is realized as 
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where 
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                 (34) 

However it is not difficult to find out that there exist a RHP 
zero-pole cancelling at 11/s τ  in (32), which tends the 
desired disturbance estimator to work unstably.  The Maclaurin 
series expansion is used to calculate the disturbance estimator 
of (33).  

Let,  

                                               F(s)=M(s)/s                           (35) 

Using the Maclaurin series expansion, we get 

( )
21 ( )

( ) (0) (0) ... ...
2! !

k
kM s M

F s M M s s s
s k

 
      

 
  (36) 

On application of Maclaurin series expansion on (33), the 
first three terms can be used to constitute a standard PID 
controller structure as 

                                
PID

1
( )

sP D
I

F s K T s
T

 
   
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                 (37) 

where  (0), 1/ (0), (0) / 2P I DK M T M  Τ M     
Remark: It should be noted that the pure derivative term in 

(37) can be physically realizable by cascading it with a first 
order low-pass filter whose time constant can be chosen 
between D(0.01 0.1) T .   

As for the design aspects of the disturbance estimator for 
magnetic levitation system (10), disturbance terms such as 

input disturbance 
1

( ) 
idH s

s  
 is applied at 3 second and output 

disturbance 
0.5

( )
odH s

s
  is applied at t 20 second.  

Taking the above disturbances condition ( )
idH s  and 

( )
odH s  on maglev system (10), the disturbance estimator (33) 

is obtained in PID structure whose parameters are obtained 
using (36) and (37) as 

                           

(0) 38.23

(0) 2.47

(0) 0.0307

M

M

M

  
   
   

                                   (38) 

For the practical realization of PID controller, a low pass 
filter whose time constant FT is chosen between  0.01- 0.1 DT  . 

By incorporating the parameters of PID obtained in (38) 
and low pass filter with time constant 0.005FT   second, the 
disturbance estimator for maglev system (10) is calculated as 

             

20.0307 2.47 38.23
( )

(0.005 1)

s s
F s

s s

  
    

                     (39) 

The final control effort applied to maglev system (10) is 
sum of responses of all three control efforts us,   ut and f 
obtained for (19), (25) and (39) respectively and is expressed 
as 

                                         t su u u f                               (40) 

The detailed discussion of simulation results of proposed 
control strategy is presented below in Section IV. 
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IV. SIMULATION RESULTS AND DISCUSSION 

The simulation result is carried out for the unstable 
magnetic levitation system (10) and various results are plotted 
to show the effectiveness of proposed control strategy. Figure 3 
gives the tracking response when system is associated with 
external disturbance. The external disturbances are given at 3 
second and 20 second.  
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Fig. 3. Desired & Ball Position (with proposed)  

From the simulation results shown in Figure 3, it is clear 
that the proposed control scheme could stabilize the maglev 
system (10) and track the desired reference trajectory (square 
wave). It is also seen that when the system is subjected to input 
and output disturbances at 3 second and 20 second, the 
designed controller forces the disturbed plant to track the 
desired reference input trajectory and eliminate the effect of 
disturbances. 

The control parameters such as stabilizing controller GC(s), 
set-point tracking controller C(s) disturbance estimator F(s) 
and final control effort as us,  ut ,f and u  respectively are plotted 
in Figure 4. 
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 From Figure 4, it is clearly noticed that the designed 

control scheme has ability to track the desired set-point input 
reference trajectory and remove the effect of external 
disturbances. The disturbance estimator works only when the 
system is subjected to external disturbances, as clearly seen at 
time 3 second and 20 second. The overall control effort is 

always maintained in a desirable voltage range ( 5  volt) as 
necessary for stable operation. 

To show the effectiveness of the proposed scheme, it has 
been compared with conventional PID control [45] and their 
comparative results are plotted in Figure 5 for similar condition 
as considered in Figure 3.  
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 Figure 5 depicts that the designed control strategy has 
better adaptability to avoid the effect of disturbance compared 
to conventional PID control. The conventional PID control has 
spikes and shows poor tracking for the set-point reference 
trajectory when the system is subjected to external 
disturbance/parameter uncertainty whereas the proposed two 
DOF control strategy stabilizes the maglev system and tracks 
the reference trajectory even if the system is subjected to 
external disturbance and also shows remarkable improvement 
in system performances (settling time and peak overshoot) over 
conventional PID control.  

V. CONCLUSION  

     In this work a systematic DOF control scheme is 
presented to improve the reference input tracking and load 
disturbance rejection for an unstable magnetic levitation 
system. Here, both set-point tracking response and load 
disturbance response can be tuned separately using the 
proposed scheme. The stabilizing and tracking controller are 
applied in such a way that the unstable magnetic levitation 
system gets stabilized and at the same time the set-point 
tracking controller also forces the system to track the desired 
trajectory. The disturbance estimator is designed using the 
desired closed loop complimentary sensitivity function for 
rejection of load disturbances and it is realized in PID form 
using Maclaurin series expansion. The disturbance estimator 
comes into existence only when the system is subjected to 
internal/external disturbances. This technique leads to a 
remarkable improvement of regulatory capacity for reference 
input tracking as well as load disturbance rejection. The 
effectiveness of designed control strategy is shown by 
comparing it with conventional PID controller.  
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