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Abstract-An Artificial Neural Network (ANN) is one of the most 

powerful tools to predict the behavior of a system with 

unforeseen data. The feedforward neural network is the simplest, 

yet most efficient topology that is widely used in computer 

industries. Training of feedforward ANNs is an integral part of 

an ANN-based system. Typically an ANN system has inherent 

non-linearity with multiple parameters like weights and biases 

that must be optimized simultaneously. To solve such a complex 

optimization problem, this paper proposes the Levy Enhanced 

Cross Entropy (LE-CE) method. It is a population-based meta-

heuristic method. In each iteration, this method produces a 

"distribution" of prospective solutions and updates it by 

updating the parameters of the distribution to obtain the optimal 

solutions, unlike traditional meta-heuristic methods. As a result, 

it reduces the chances of getting trapped into local minima, which 

is the typical drawback of any AI method. To further improve 

the global exploration capability of the CE method, it is subjected 

to the Levy flight which consists of a large step length during 

intermediate iterations. The performance of the LE-CE method is 

compared with state-of-the-art optimization methods. The result 

shows the superiority of LE-CE. The statistical ANOVA test 

confirms that the proposed LE-CE is statistically superior to 

other algorithms. 

Keywords-artificial neural networks; cross entropy method; 

feedforward neural networks; Levy step; training 

I. INTRODUCTION  

The Artificial Neural Network (ANN) [1] is the one of the 
most popular Artificial Intelligence methods. It is inspired from 
the communication and computation abilities of the human 
brain and it mimics the learning techniques of human brain to 
find out relationships between the input and the output (target) 
variables of a test system. The human brain consists of millions 
of neurons which are interconnected in a complex network 
which takes input signal to perform voice recognition, image 

classifications, etc. at remarkable speed and accuracy. Similarly, 
an ANN may consist of many neurons which are subjected to 
input signals through the connection links. Every connection 
link has an associated weight, which is multiplied with the 
signal. Weights are the control variables which are used to 
solve the optimization problem. Weights and biases are 
updated in every iteration to finally obtain their optimal values 
which will minimize the Mean Square Error (MSE) function. 
This procedure is known as the training (learning) of an ANN. 

A. Related Work 

Feedforward Neural Networks (FNNs) with two layers are 
a widely used ANN topology [2]. It has been proved that two-
layer FNNs can approximate any nonlinear or linear function 
with a good accuracy [3]. Training is an integral part of FNNs. 
Various optimization methods have been suggested in the 
literature to train FNN. Back Propagation (BP) is a popular 
gradient-based classical optimization method to train FNNs. 
But it is susceptible to slow convergence [4] and may get 
trapped into local minima [5]. Newton’s method [6] is another 
classical method which has quadratic convergence that largely 
depends upon the choice of initial starting point (guess). A 
wrong initial guess will lead to a local optima of the problem 
under consideration. The last two decades, population-based 
meta-heuristic methods that solve the FNN training problem 
effectively have emerged. Authors in [7] proposed the use of 
ANNs to detect the vibration of the rotor shaft of a gas turbine. 
Authors in [8] suggested the use of Genetic Algorithm (GA) to 
precisely recognize sign gesture using feature extraction, but 
mutation strategy makes GA very time consuming and it is 
preferred for binary solution sets. Also, it is vulnerable to 
premature convergence. Authors in [9] proposed a new 
approach to address the optimal design of a FNN using self-
adaptive penalty functions. Authors in [10] proposed a Particle 
Swarm Optimization (PSO)-based neuro-fuzzy model to 
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enhance dynamic voltage stability of a wind connected grid. 
Authors in [11] proposed a PSO-powered back-propagation 
neural network load-shedding strategy in the post-fault 
condition in a microgrid. Another AI method is Gravitational 
Search Algorithm (GSA) [12], which has been inspired from 
the law of gravity and mass interactions. Even though it is a 
simple method, the unbalance between the application of 
gravitational law and mass interactions may create premature 
convergence. Differential Evolutionary (DE) method [13] is 
another powerful method which uses mutation, crossover, and 
selection operators on various vectors to get optimal solutions, 
but the selection of crossover rate greatly affects its 
convergence. PSO [14] is one of the most popular meta-
heuristic methods, as it is easily implementable and it has less 
parameters to be tuned. 

B. Aims and Objectives 

The related work (literature survey) reveals that many 
classical optimization methods suffer from premature 
convergence, whereas artificial intelligence methods are 
population-based with generated randomly initial solutions, and 
as a result, in each simulation run it gives different optimal 
solutions. So, the aim and objective of this research is to 
suggest a proper solution methodology which trains an ANN 
more effectively and with better accuracy. This paper proposes 
the Levy Enhanced Cross Entropy (LE-CE) optimization 
method, which is an extension of the Cross Entropy (CE) 
method. The contributions of this paper are summarized below. 

C. Research Outline 

• The LE-CE method is proposed for the optimization of the 
weights and biases of the ANN with the aim to minimize 
the MSE function. 

• The incorporation of Levy flight increases the global 
exploration capability of the CE method, which improves 
the quality of the solution.  

• The LE-CE method has fewer parameters to be tuned, so it 
is a fast method.  

• The practical Iris classification system is used to check the 
effectiveness of the LE-CE method.  

• The performance of the LE-CE method is compared with 
the WCCI 2018 award winning EVDEPSO [15] and 
GECCO 2019 award winning HL_PS_VNSO [16] 
computational intelligence methods. 

• The LE-CE method outperformed the compared methods in 
terms of optimal solutions.   

• ANOVA statistical test and Tukey’s HSD test also proved 
that the proposed method is statistically different from the 
other compared methods.  

II. LEVY ENHANCED CROSS ENTROPY METHOD FOR 

TRAINING FNNs AND ENCODING STRATEGY 

CE method was proposed by Rubinstein [17]. It is a 
population-based meta-heuristic optimization method similar to 
the Differential Evolutionary method. However, unlike 
traditional meta-heuristic methods which directly update 

prospective solutions (particles) to obtain sub-optimal solutions, 
this method produces a distribution of prospective solutions 
and updates it by updating the parameters like mean and 
standard deviation of each dimension to obtain sub-optimal 
solutions. As a result, it decreases the probability of getting 
stuck into local minima. It has a very few parameters to be 
tuned and it can be easily executed. The basics of LE-CE 
method are explained below. 

The population of particles is randomly generated and they 
obey the probability distribution function (pdf) f (.;Φ), where Φ 
is the vector of parameters which are to be optimized. 
Generally, f(.;Φ) is the Gaussian distribution parameterized by 

its mean m and variance σ
2
, i.e. ( )2,m σΦ = . Secondly, a 

threshold value (χ) of the fitness function is selected and only 
those particles whose fitness values are less than the set 
threshold value, i.e. f(x)<χ are considered in the subsequent 
iterations. Such particles are known as elite particles μe. Then, 

the new parameterized distribution function ( ).; n
f φ with elite 

particles is updated in such a way that it coincides the target 

distribution function ( ).;f φ ∗  by minimizing the Kullback-

Leibler (KL) divergence. This procedure finishes one iteration. 
In the subsequent iterations, a family of distribution functions

( )( ) ( )1 *.; ... .;f fφ φ are produced in accordance with χ
(1)

....χ
(*)

 to 

reach the sub-optimal distribution function f(.;φ
*
). The 

following section shows the step-by-step implementation of 
LE-CE. 

1) Step 1: Initialization of Mean and Standard Deviation for 

Each Dimension 

Assume iteration iter=0, Total no. of iterations 

500
max

iter = , No. of particles N, Dimension (control variables) 

of the problem D, elite particles μe (20% of N), smoothing 

parameters s
α and 

s
β , ( )iter D

e
m ∈R is the mean value of the 

search distribution for each dimension at iteration iter, 
( )iterσ +∈R is the standard deviation at iteration iter. 

min
x and 

max
x are the minimum and maximum limits of the D

th
 

dimension particle. Mean and standard deviation of population 
are initialized as:  

( )(0) 0.5*e min maxm x + x=     (1) 

( ) ( )0
0.25*

max min
x - xσ =     (2) 

2) Step 2: Generate the Population of Particles 

The generation of the population of particles from the 

sampling distribution ( ) ( )( )2Normal ,
iter iter

em σ  occurs as: 

��
(������)

= ��
(����)

+ 
(����)randn()  for � = 1, . . . . . , �    (3) 

where N is the population size, 
( 1)iter D

ix
+ ∈R is the i

th
 particle 

obtained at iteration ( )1iter + , 
( )iter D

e
m ∈R  is the mean value 

of the search distribution for each dimension at iteration iter,
( )gσ +∈R  is step-size (standard deviation) at iteration iter, 
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randn() is a normally distributed random variable with 
parameters Normal(0,1). 

3) Step 3: Fitness Function Evaluations  

The fitness values of the whole population are determined 
as follows: 

The FNN consists of 
i

n  input nodes, 
i

h  hidden nodes, and 

t
o  output nodes. In each iteration of learning, the output of 

each hidden nodes is calculated using (4): 

( )
1

1 / 1 ex p * ,

1, 2 .....

in

k jk j k

j

i

f y w x

k h

θ
=

   
= + − −        

=

     (4) 

where 
1

in

k jk j k

j

y w x θ
=

= − , 
jkw  is the connection weight from 

the j
th
 node from the input layer to the k

th
 node in the hidden 

layer, θk is the bias of the k
th
 hidden node, and xj is the j

th
 input. 

The final output is calculated following the output of 
hidden nodes as given by (5): 

( ) ,

1

* 1,2,....,
ih

t lk k l t

j

o w f y l oθ
=

= − =     (5) 

where 
lk

w  is the connection weight between the k
th
 hidden 

node to the l
th
 output node and θl  is the bias of the l

th
 output 

node.  

Eventually, the mean square error (el) is calculated from: 

( )
1

ih

l l

l tj j

j

e o d
=

= −     (6) 

1

t
l

l

e
e

t=

=     (7) 

where t represents the training samples and 
l

jd  is the desired 

output of the j
th
 input when the l

th
 training sample is considered. 

So, the fitness function of the j
th
 training sample can be 

defined as follows: 

Fitness(xj) = e(xj)    (8) 

4) Step 4: Ranking of Fitness Functions 

Sort (rank) all fitness function values in ascending order as 
given in (9): 

( ) ( )1 2
... ( )f x f x f N< < <     (9) 

where ( )
j

f x is the fitness of the th
j particle and 

1
x is a Global 

Best ( )Best
G particle having the best (minimum) fitness among 

all particles. Consider the top best 20%-30% of the particles as 
elite particles. 

 

5) Step 5: Updating Mean and Standard Deviation of the 

Elite Particles 

The mean ( )( )1iter

tm µ

+
of the selected elite particles is found 

by: 

( ) ( )1 1

:

1

1 e
iter iter

t j N

je

m x
µ

µ
µ

+ +

=

=      (10) 

where
( )1

:

iter

j N
x

+
 is the th

j best particle among the whole 

population at iter+1iteration. The index j:N denotes the index 

of the th
j rank particle. Standard deviation ( )( )1iter

tµσ +
(step-length) 

of elite particles is found by (11): 

( ) ( ) ( )( )
2

1 1 1

:

1

1

1

e
iter iter iter

t j N e

je

x m
µ

µσ
µ

+ + +

=

= −
−
     (11) 

6) Step 6: Apply Smoothing of Mean and Standard Deviation 

of the Whole Population 

As elite particles are in the vicinity of optimal solutions, 
more smoothing (weightage) is applied to their mean value as 
compared to mean of whole population as per (12): 

( ) ( ) ( ) ( )1 1 1
1

iter iter iter

e t e
m m mµα α+ + +

= + −     (12) 

where 0.9, 0.1α β= =  are the smoothing parameters. 

Similarly, the standard deviation of the elite particles 
should be updated to a very small extent as they lie near the 
optimal solutions. So, less smoothing is applied to them as 
compared to the standard deviation of all particles which 
requires more exploration of the search space and thus more 
smoothing as given in (13): 

( ) ( ) ( ) ( )1 1 1
1

iter iter iter

t tuµσ βσ β σ+ + +
= + −     (13) 

7) Step 7: Apply Levy Flight for Global Exploration  

Levy flight [18-19] is a random walk whose length is 
derived from the Levy distribution as described in (14), where 
u and v are obtained from the normal distribution. Many 
species (e.g. swordfish and silky sharks) use Levy flights to 
search for food. The function of Levy step is to efficiently 
explore the search space by taking a large step size during the 
intermediate iterations to obtain the global optimum solution.  

1/
Levy-step

u

v
β

=     (14) 

where: 

u = rand(0,1)*Sigma    (15) 

v = rand(0,1)    (16) 

1/

( 3)

(1 ) * sin( * )
Sigma

[(1 ) / 2] * * 2

β

β

β β

β β −

 Γ + Π
=  

Γ + 
    (17) 

where (=3/2) is a Levy coefficient and: β
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( ) ( )1 1iter iter

e e
m m Levy step

+ +
= + −     (18) 

8) Step 8: Increment of Iteration Count  

Set : 1iter iter= +  and go to Step 2 until the maximum 

number of iterations is reached. 

The detail flowchart of the LE-CE method to train FNNs is 
shown in Figure 1. 

 

 

Fig. 1.  Flowchart of the LE-CE method for training FNNs. 

III. ANN ENCODING STRATEGY 

Figure 2 shows the typical structure of an ANN. It consists 
of 2 input nodes, 3 hidden nodes, and 1 output node. For the 
training of ANN, the most popular matrix encoding method is 
used in this paper as follows: 

(:, ) , ,
1, 1 2 2

T
particle i w B w B =

  
    (20) 

13 23 361

, , ,
1 14 24 1 2 2 46 2 4

15 25 3 56

w w w

Tw w w B w w B

w w w

θ

θ θ

θ

    
    

     = = = =      
         

    (21) 

where w1 is the weight matrix of the hidden layer, B1 is the bias 
matrix of the hidden layer, w2 is the weight matrix of the output 
layer, w2

T
 is the transpose of the w2 matrix, and B2 is the bias 

matrix of the hidden layer. 

 

Fig. 2.  ANN typical structure. 

IV. SIMULATION RESULTS AND DISCUSSION 

The performance of the proposed LE-CE algorithm is not 
tested on a small system because, as per the no-free lunch 
theorem [20], the average performance of all the optimization 
methods remains the same for small test systems which consist 
of a small number of control variables. So, in order to check the 
effectiveness of the proposed LE-CE algorithm, it is tested on 
the practical Iris classification [21] problem and its output 
results, convergence, and statistical results are compared with 
WCCI 2018 international award winning EVDEPSO [15] and 
GECCO 2019 international award winning HL_PS_VNSO [16] 
computational intelligence methods. Both these methods had 
secured 2

nd
 ranks in the aforementioned conference 

competitions.  

EVDEPSO (Enhanced Velocity Differential Evolution 
Particle Swarm Optimization), is a meta-heuristic iterative 
method which has been inspired from the behavior of bird 
flocking and fish schooling. Mathematically, each bird 
represents the prospective solution of the optimization problem 
and its position is adjusted depending upon the position of the 
best bird and their past best positions in every iteration to 
obtain optimal solutions. The process is continued until no 
significant improvement in the optimal solutions is observed. 
The detail theory of EVDEPSO is available in [15]. 
HL_PS_VNSO (Hybrid Levy Particle Swarm Variable 
Neighbourhood Search Optimization) algorithm is a 
hybridization of PSO and variable neighborhood search 
algorithm. Its key elements are Perception, Cooperation, and 
the Levy step. It consists of a Perception term for the local 
exploitation of search space in which a particle follows its 
personal best position, a Cooperation term in which the particle 
follows the global best particle with mutated weights, and the 
Levy step to globally explore the search space. Its detail theory 
is given in [16]. 

A. Practical Iris Classification Problem 

The Iris classification problem was used in [21]. The Iris 
dataset contains 4 features (length and width of sepals and 
petals) of 3 species of Iris (Iris setosa, Iris virginica, and Iris 
versicolor) as shown in [22, 23]. The data contains 150 
samples. These measures were used initially to create a linear 
model to classify the species in machine learning. Different 
hidden nodes such as H=4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 
15 were set to test the performance of the algorithms. The 
simulation results have been performed on Matlab 2017a 
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environment, Intel CORE i5 with 16 GB RAM. All tested 
methods find the optimal combinations of the weights and 
biases which results into minimum error of the FNN. A total of 
20 trials were executed as the LE-CE is a meta-heuristic 
method and as a result in every simulation run it yields 
different optimal solutions. Finally, the mean recognition rate 
was obtained from the results of the 20 trials. Table I shows 
that the proposed LE-CE outperforms the other methods in 
recognizing the output correctly with different hidden nodes in 
all cases, due to fact that LE-CE method’s mean and standard 
deviation updating using smoothing parameters yield better 
solutions as the elite particles are in the vicinity of the optimal 
solution (as per (12) and (13)). Also, CE is powered by Levy 
flight, which has the ability to take larger step size during 
optimization. As a result, the search space is being explored 
more efficiently. So, LE-CE yields better solutions as 
compared to original CE method and other tested algorithms. 

TABLE I.  MEAN RECOGNITION RATE WITH DIFFERENT HIDDEN 

NODES 

Hidden 

nodes (H) 

LE-CE 

(%) 

CE 

(%) 

EVDEPSO 

(%) 

HL_PS_VNSO 

(%) 

4 99.92 98.32 90.12 89.14 

5 100 97.25 91.18 87.17 

6 99.45 95.36 92.78 89.35 

7 100 96.65 90.07 90.14 

8 99.32 93.45 91.95 87.88 

9 100 92.32 90.45 83.41 

10 99.12 93.85 88.35 87.12 

11 99.85 92.65 91.98 83.45 

12 100 96.36 89.45 76.3 

13 99.85 94.36 90.42 86.32 

14 100 93.95 88.01 83.25 

15 99.36 94.15 91.05 87.05 

 
It is cleared from Table II that the proposed LE-CE 

outperforms the other methods in all 12 cases for average MSE, 
std. dev MSE, and best MSE. Hidden nodes are increased from 
4 to 15 in each case. As a result, the complexity of the ANN 
increases as more mathematical equations have to be solved by 
the algorithm. Also, the convergence characteristics of LE-CE 
for different hidden nodes are better than the compared 
algorithms' as shown in Figures 3-5, because, unlike other 
meta-heuristic methods, the LE-CE method is a tuning free 
algorithm and its adaptive mean and standard deviation 
updating strategy makes it quite suitable to obtain optimal 
solutions. Traditional CE has not a Levy flight step, so its 
performance remains inferior to LE-CE. EVDEPSO's and 
HLPSVNSO’s performance is worse that LE-CE's because 
both these methods have a large number of parameters to be 
tuned which affects convergence, whereas LE-CE has a very 
small number of parameters to be tuned and it searches 
solutions by updating the mean and standard deviation of elite 
particles. As a result, it can achieve better solutions as 
compared to the other tested algorithms.  

Figures 3-5 clearly show that the LE-CE has better 
convergence characteristics as compared to the other methods 
for the set termination criteria. The other methods have many 
step length updating operators, which increase the 
computational burden on the algorithm.  

TABLE II.  AVERAGE, STANDARD DEVIATION, AND BEST MSE IN 20 

INDEPENDENT RUNS WITH DIFFERENT HIDDEN NODES 

Hidden 

nodes (H) 
Algorithm Average MSE Std dev MSE Best MSE 

4 

LE-CE 1.9021e—02 1.1905e—03 1.3538e—02 

CE 2.1926e—02 2.0907e—03 1.4538e—02 

EVDEPSO 2.7048e—02 2.0825e—02 7.0291e—03 

HL_PS_VN

SO 
4.1936e—02 1.0413e—02 4.0013e—02 

5 

LE-CE 1.8127e—02 1.6252e—03 1.3085e—02 

CE 1.9457e—02 1.7267e—03 1.6525e—02 

EVDEPSO 2.4756e—02 1.7638e—02 1.3629e—02 

HL_PS_VN

SO 
4.4355e—02 1.1071e—02 4.0770e—02 

6 

LE-CE 1.3593e—02 2.2182e—03 1.2013e—02 

CE 1.6932e—02 2.0082e—03 1.5113e—02 

EVDEPSO 1.8453e—02 7.2653e—03 1.6253e—02 

HL_PS_VN

SO 
1.0441e—01 1.0374e—01 4.4510e—02 

7 

LE-CE 1.3682e—02 1.2446e—03 1.2128e—02 

CE 2.6122e—02 1.0746e—03 2.4358e—02 

EVDEPSO 1.7691e—02 4.0023e—03 1.4523e—02 

HL_PS_VN

SO 
5.5226e—02 6.6222e—03 5.0238e—02 

8 

LE-CE 1.7042e—02 3.2045e—03 1.2511e—02 

CE 1.8142e—02 6.2545e—03 1.3011e—02 

EVDEPSO 2.1454e—02 6.0198e—03 2.0378e—02 

HL_PS_VN

SO 
4.7541e—02 7.2863e—03 3.8607e—02 

9 

LE-CE 1.3294e—02 3.2993e—03 1.0070e—02 

CE 1.6302e—02 6.5093e—03 1.0670e—02 

EVDEPSO 5.0615e—02 1.2549e—02 5.0301e—02 

HL_PS_VN

SO 
3.8314e—02 1.3757e—02 3.0293e—02 

10 

LE-CE 1.2521e—02 1.0021e—03 1.1021e—02 

CE 1.8221e—02 1.1821e—03 1.4321e—02 

EVDEPSO 3.9265e—02 1.3342e—02 3.0427e—02 

HL_PS_VN

SO 
4.4245e—02 1.3204e—02 4.3230e—02 

11 

LE-CE 1.2646e—02 1.8009e—03 1.0840e—02 

CE 1.5246e—02 2.1709e—03 1.0880e—02 

EVDEPSO 1.4203e—02 1.2120e—02 1.0393e—03 

HL_PS_VN

SO 
4.1536e—02 6.7323e—03 3.7538e—02 

12 

LE-CE 1.2006e—02 2.2091e—03 1.0049e—02 

CE 1.6806e—02 2.9391e—03 1.3849e—02 

EVDEPSO 1.7889e—02 6.9515e—03 1.3409e—02 

HL_PS_VN

SO 
1.2098e—01 1.3702e—01 1.0316e—02 

13 

LE-CE 1.1753e—02 1.3090e—03 1.0021e—02 

CE 2.3453e—02 1.8740e—03 2.2422e—02 

EVDEPSO 1.8013e—02 5.0128e—03 1.5113e—02 

HL_PS_VN

SO 
3.1724e—01 1.3744e—01 3.0250e—02 

14 

LE-CE 1.1270e—02 1.0086e—03 1.0592e—02 

CE 2.6250e—02 1.0186e—03 2.3592e—02 

EVDEPSO 1.5241e—02 1.0171e—03 1.1297e—02 

HL_PS_VN

SO 
4.3257e—02 1.0214e—02 4.1200e—02 

15 

LE-CE 1.2189e—02 1.3530e—03 1.1509e—02 

CE 3.3589e—02 2.7530e—03 3.1725e—02 

EVDEPSO 2.145e—02 2.5846e—03 2.1153e—02 

HL_PS_VN

SO 
5.3539e—02 6.2441e—02 5.2546e—02 
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Fig. 3.  Convergence curve with 5 hidden nodes. 

 

Fig. 4.  Convergence curve with 11 hidden nodes. 

 

Fig. 5.  Convergence curve with 15 hidden nodes. 

V. STATISTICAL ANALYSIS 

A. One-Way ANOVA Statistical Test 

The ANOVA statistical test [24] is used to verify whether 
the MSE of all algorithms evaluated for each simulation run 
shows any significant difference. In this test, the degree of 
significance is set to 0.05 to check the statistical difference 
between the tested algorithms. During the comparison, if it is 
found that the P-value is less than 0.05, then it inferred that all 
tested algorithms are substantially different from one another. 
From Table III, it is seen that the F-ratio value is 6.75541. The 
P-value is 0.000758. So, the result is significant at p<0.05. This 
implies that at least one of the means of the groups is 
significantly different from the others. However, it is not 
known which group(s) contribute to this difference, hence 
Tukey’s Honestly Significant Difference (HSD) test was 
carried out. 

B. Tukey's Hones Honestly Significant Difference Test 

To further check the statistical difference between two 
algorithms, the pairwise comparison test entitled Tukey's HSD 

test [25] was carried out. In this test, the first step is to find the 
critical value (Qcrit) from the studentized range distribution 
table [26] based on the a=4 treatments (algorithms) and DF=44 
Degrees of Freedom. The critical value obtained from the 
studentized range distribution table is 3.777. Then, the Qi,j is 
calculated as per (22) for all the pairwise comparisons with the 
proposed algorithm. The result values are given in Table IV. 

,
( )

i j

i j

Runs

y y
Q

MS

N

−
=     (22) 

where i, j = 1,..a, i ≠ j. is the difference between the optimal 
fitness values of the compared pair of algorithms. 

TABLE III.  RESULTS OF THE ONE-WAY ANOVA STATISTICAL TEST 

Variation 

Sum of 

square 

due to 

source 

(SS) 

DF 

Mean 

sum of 

square 

due to 

source 

(MS) 

F ratio 

value 
P-value F crit 

Between 

algorithms 
0.03278 3 0.0109 6.7554 0.00075 2.816 

Within 

algorithms 
0.07117 44 0.0016 

 

Total 0.10395 47  

TABLE IV.  TUKEY HSD TEST RESULTS 

Pairwise comparisons Q (Statistic) 

LE-CE and CE 0.61 

LE-CE and EVDEPSO 0.85 

LE-CE and HL_PS_VNSO 5.64 

 

Table IV reveals that for all pairwise treatments, the 
proposed algorithm is substantially statistically different from 
the other algorithms. 

The algorithm has been developed in Matlab environment 
and the source codes can be provided to the enthusiastic learner 
by the main author upon request. 

VI. CONLCUSION 

The Levy Enhanced Cross Entropy method to train 
feedforward neural network has been proposed in this paper. 
The LE-CE method has less parameters to be tuned and its 
adaptive updating for mean and standard deviation of the 
solutions make it quite powerful in terms of local exploitation 
and global exploration of the solution space. To further 
improve its global search exploration, the CE method is 
powered by the Levy flight. The simulation on the practical Iris 
test system reveals that the proposed LE-CE method 
outperforms the contemporary optimization methods in terms 
of solution quality, iterations, average MSE, standard deviation 
MSE, and best MSE. The proposed method is confirmed to be 
statistically different from the other compared optimization 
methods. The proposed method can be used in highly complex 
nonlinear ANN systems. In the future, the same algorithm will 
be applied to train more realistic training sets of neural 
networks with hundreds of variables and constraints.  
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