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Abstract-Indexing of Electron Backscatter Diffraction (EBSD) is 

a well-established method of crystalline material characterization 
that provides phase and orientation information about the 

crystals on the material surface. A deep learning Convolutional 

Neural Network was trained to predict crystal orientation from 

the EBSD patterns based on the mean disorientation error 

between the predicted crystal orientation and the ground truth. 

The CNN is trained using EBSD images for different deformation 

conditions of AA5083. 
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I. INTRODUCTION  

Material science has resulted from the establishment of the 
new field of material informatics. Image data is one of the most 
prevalent forms of data in material research, given to 
advancements in numerous material imaging techniques. Deep 
Learning (DL) has lately resulted in ground-breaking 
improvements in a variety of domains, including the prediction 
of material characteristics. Experiments and simulations are 
used by materials science and engineering researchers to try to 
comprehend the Processing–Structure–Property–Performance 
(PSPP) interactions, which are far from completely understood. 
In fact, practically everything in materials science is dependent 
on these PSPP interactions. There is a need to better 
comprehend this complicated system of PSPP connections to 
identify and build new improved materials with desired 
qualities [1, 2]. DL has emerged as a useful method for big data 
analysis. It employs complicated algorithms and Artificial 
Neural Networks (ANNs) to teach computers to learn, 
categorize, and identify data/images in the same way with the 
human brain [3]. The Convolutional Neural Network (CNN) is 
a type of ANN frequently used in DL for image/object 
detection and categorization [4]. CNNs are important in a 
variety of activities/functions such as image processing, 
computer vision tasks such as localization and segmentation, 
and predicting cracks on materials using microscope techniques 
by identifying grains and boundaries. CNNs are particularly 
popular in DL because they play a vital role in these rapidly 
increasing and new domains [5]. In addition, one of the most 
advanced techniques in material creation and investigation is 
Electron Backscatter Diffraction (EBSD). The most prevalent 

method for EBSD indexing is the Hough transform-based 
method, which is based on computing angles between linear 
features derived from the direction pattern. The fundamental 
issue with this approach is that its performance degrades fast in 
the presence of noise [1]. 

In this paper, a DL ANN is utilized to train a model that can 
predict the grain orientation due to different deformation 
conditions, i.e. temperature and train rate. The novelty of this 
work lies within the developed model which can predict the 
material crystallography without the need to do the time-
consuming EBSD characterization. The work shows the pattern 
changes due to the deformation which can be used to tailor the 
process in order to achieve the desired grain orientations.  

II. ELECTRON BACKSCATTER DIFFRACTION 

There are many examples of CNN applications in DL 
regarding material images. The most familiar CNN training 
technique is the EBSD which is a technique that uses a 
Scanning Electron Microscope (SEM) to provide 
crystallographic information on a sample's microstructure. A 
stationary electron beam interacts with a tilted crystalline 
sample in EBSD, and the diffracted electrons generate a pattern 
that a fluorescent screen can detect. The diffraction pattern 
reflects the crystal structure and orientation in the sample 
region where it was created. As a result, the diffraction pattern 
may be utilized to detect crystal orientation, distinguish 
crystallographically distinct phases, characterize grain 
boundaries, and offer information regarding local crystalline 
perfection [6-8]. EBSD has become a well-known accessory 
for SEM, which is commonly employed to give 
crystallographic information. As a result, EBSD is currently 
being used in a variety of diverse applications on material 
characterization [9-11]. 

Authors in [12] provided the first DL solution for the use of 
EBSD indexing. The aim was to provide an end-to-end solution 
that does not require specific expertise or image processing 
computing. The system is based on entering the raw EBSD 
patterns to predict the 3 numerical ones using CNNs designed 
to learn the spatial dependencies among pixels and extract 
relevant features. The network consists of many layers, 
including pooling, and a fully connected layer for the output 
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regression. Historically, the focus of material research was to 
optimize the composition and process in order to provide target 
materials with optimum microstructure and performance 
matching. However, this strategy is inefficient since it relies on 
a lot of experimentation and trial-and-error experience. As a 
result, the Material Genome Project has been suggested to 
accelerate material research and development and aimed to 
develop internal links between processes, composition, 
microstructures, and properties to design microstructures with 
the required performance. According to this connection, the 
material's composition and procedure are developed and 
optimized. As a result, the key challenge of developing and 
optimizing materials is defining the quantitative relation 
between material composition/process, organizational structure, 
and performance [13-15]. 

Authors in [16] studied the material characteristics 
prediction using EBSD, which not only contains structural 
information, but it is also easier for computers to grasp. They 
built an EBSD-based digital knowledge graph representation 
and subsequently designed a representation learning network to 
integrate graph features. Finally, using graph embedding, they 
employed an ANN to predict material performance. They 
tested their approach on magnesium and compared it to 
existing machine learning and computer vision methods. The 
findings demonstrated the scientific validity of the suggested 
approach, as well as the practicality of property calculation. 
They made a representation method of the EBSD grain 
knowledge graph and used it for the prediction of 
organizational performance. Resulting from the application of 
the node and edge representations, they built a graph feature 
convolution network to incorporate the grain knowledge graph 
and achieve graph feature extraction. Then, using the graph 
feature, a feature mapping network based on an ANN was 
developed to predict material properties. They compared the 
proposed approach with two other classic statistics-based 
machine learning approaches and visual feature extraction 
methods. To get the material properties, they used traditional 
machine learning methods to directly calculate the attribute 
features of all grains. Furthermore, they utilized the CNN 
model to predict visual features from the microstructure map 
and predict performance. They demonstrated that the CNN 
technique is better than the other methods [16]. 

III. EXPERIMENTAL WORK 

The chemical composition of the received materials is 
analyzed below. The specimens were machined in a rod shape 
with a diameter of 5mm and a length of 10mm. The rods were 
heat treated for 1h at 500°C for homogenization. The rod shape 
is shown in Figure 1(a). In order to guarantee consistency, 
different locations were tested for the microstructure of the 
material before and after heat treatment as shown in Figure 
1(b). Table I shows the chemical composition for aluminum 
alloy 5083. Figures 2-4 depict the microstructure at different 
scales, exhibiting the grain uniformity and distribution. 

TABLE I.  AA5083 CHEMICAL COMPOSITION 

Element Si Fe Cu Mn Mg Zn Ti Cr Al 

Al% 0.4 0.4 0.1 0.4-1.0 4.0-9.0 0.25 0.15 0.05-0.25 balance 
 

 
 

 

 

 

(a) 
 

(b) 

Fig. 1.  Specimen specifications. (a) Sample dimensions, sample locations. 

(a) 

 

(b) 

 

Fig. 2.  AA5083 homogenization. (a) As received, (b) after 
homogenization. 

 
Fig. 3.  AA5083 EBSD of the homogenized material. 

 
(a) 

 
(b) 

Fig. 4.  AA5083 homogenization. (a) Edge, (b) middle. 

 

 

 

10 mm
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TABLE II.  EXPERIMENTAL TEST PROCEDURE 

Sample Initial Size (mm) Post-deformation size (mm) Notes 

350°C / 0.001s
-1
 

Diameter (D): 5 

Length (L): 10 

D=5.05, L=9.83 n/a 

350°C / 0.1s
-1
 D=5.03, L=9.93 n/a 

350°C / 1s
-1
 D=5.08, L=9.79 100µm deformation during compression stage 

375°C / 0.001s-1 D=5.04, L=9.79 100µm deformation during compression stage 

375°C / 0.1s-1 D=5.10, L=9.67 200µm deformation during compression stage 

375°C / 1s-1 D=5.04, L=9.83 150µm deformation during compression stage 

400°C / 0.001s-1 D=5.04, L=9.91 n/a 

400°C / 0.1s-1 D=5.08, L=9.73 200µm deformation during compression stage 

400°C / 1s
-1
 D=5.07, L=9.77 150µm deformation during compression stage 

 

The experimental results show the effect of the stain rate 
and temperature of the stress which in turn have an effect on 
the kinetics of static recrystallisation and the stored energy 
distribution in the microstructure. After deformation, the 
specimens were water-quenched and cut into 8 pieces in order 
to construct a full recrystallisation curve. The specimens were 
then mechanically polished and electro-etched in 10% oxalic 
acid. The recrystallized grains were easily recognized by their 
smaller size and strain-free microstructure. The results of 
deforming AA5083 at different strain rates and temperatures 
(Table II) are shown in Figure 5.  

 

(a) 

 

(b) 

 

(c) 

 

Fig. 5.  AA5083 strain/stress results. (a) 350
o
C, (b) 375

o
C, (c) 400

o
C. 

According to the calculations, a final length of 9.8mm is 
expected for every sample (with the initial length of 10mm). 
All dilatometry work to date has been done on AA5083 alloy 

samples. The initial and the post-deformation size of the tested 
specimens were measured and recorded. All Al samples were 
prepared for the EBSD map. The deformed materials, after 
being recrystallized, are shown in Figures 6–14 for different 
polishing and EBSD deformation conditions. 

 

 
Fig. 6.  350

o
C, 0.001/s. 

 

Fig. 7.  350
o
C, 0.01/s. 

 
Fig. 8.  350

o
C, 0.1/s. 

 
Fig. 9.  375oC, 0.001/s. 
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Fig. 10.  375oC, 0.01/s. 

 
Fig. 11.  375

o
C, 0.1/s. 

 
Fig. 12.  400oC, 0.001/s. 

 
Fig. 13.  400

o
C, 0.01/s. 

 

Fig. 14.  400oC, 0.1/s. 

IV. MACHINE LEARNING 

DL is a division of machine learning, which is effectively a 
three or more-layered neural network. These neural networks 
imitate the activity of the human brain, although with limited 
success, having the capacity to "learn" from vast volumes of 
data. While a single-layer neural network may still produce 

approximate predictions, more hidden layers can optimize and 
tune for accuracy [17]. Many Artificial Intelligence (AI) 
applications and services are relying on DL to boost 
automation by executing analytical and physical activities 
without human interaction [18]. Authors in [1], said that DL is 
the rediscovery of neural networks, which were algorithmically 
conceived in the '80s. During the recent years, the availability 
of big data and more capable computers has allowed these 
networks to become deeper. DL has enabled revolutionary 
advancements in a variety of domains, including computer 
vision and speech recognition [19]. Authors in [20] also said 
that the feedforward deep network, also known as the 
Multilayer Perceptron (MLP), is the archetypal DL model. An 
MLP is just a mathematical function that converts a set of input 
values to output values. Many smaller functions are combined 
to make the function. Each application of a distinct 
mathematical function may be thought of as presenting a new 
representation of the input. One viewpoint on DL is provided 
by the concept of finding the best representation for the data. 
Another viewpoint on DL is that it enables a machine to learn a 
multi-step computer program. Each layer of the image 
represents the state of the computer's memory following the 
execution of another set of instructions in parallel. Deeper 
networks can execute more instructions simultaneously [21]. 
To summarize, DL is an approach related to the AI technology. 
It is a form of machine learning technology, which allows 
computer systems to develop with experience and data. There 
are various types of DL models that are both accurate and 
successful at dealing with issues that are too intricate for the 
human brain, but the CNN technique has been applied in this 
research. 

A. Convolutional Neural Networks 

CNNs are a type of neural networks that is used to process 
input using a predefined, grid-like topology. Time-series data, 
which can be thought of as a 1D grid with samples at regular 
time intervals, and picture data, which can be thought of as a 
2D grid of pixels, are two examples. CNNs have had a 
remarkable amount of success in practical applications. The 
term "convolutional neural network" refers to the network's use 
of a mathematical procedure known as convolution. 
Convolution is a subset of linear operations. Convolutional 
networks are basically neural networks with at least one layer 
that uses convolution instead of basic matrix multiplication, 
[20, 21]. 

B. Structure of CNN 

There are three main layers in a CNN structure, which are 
the convolutional layer, the pooling layer, and the archetypal 
fully connected layer. 

1) The Convolutional Layer 

This is the CNNs core layer. Its parameters are made up of 
a series of filters. Although these filters are small, they cover 
the entire depth of the input volume. The fundamental job of 
the convolutional layer is to extract high-level information. The 
first one is in charge of extracting low-level characteristics 
such as color, edges, and so on. Following convolutional layers 
remove the high-level characteristics, resulting in a 
comprehensive knowledge of the image. 
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2) The Pooling Layer 

The function of this layer is to minimize the spatial size of 
the picture representation. As a result, it also helps to minimize 
the amount of computing and processing in the neural network. 
Furthermore, it extracts positionally and rotationally invariant 
dominant features. The Max operator is used to perform one 
type of pooling. This procedure selects the highest value from 
each neuron cluster in the previous layer. The other type of 
pooling is Average pooling, which yields the cluster's average 
value. Max pooling exceeds average pooling since it also 
works as a noise suppressor. In addition to convolutional 
layers, there are several pooling layers. The more of these 
layers there are, the more low-level features will be retrieved. 
However, the processing power required will increase as well. 
After the picture has been processed through all the present 
convolutional and pooling layers, feature extraction is 
complete. 

3) The Fully Connected Layers 

The fully connected layer, as the last layer, is a feed-
forward neural network. The flattened output of the prior 
pooling/convolutional layer is used as the input to the fully 
connected layer. To flatten is to unroll a three-dimensional 
matrix or array into a vector. A unique mathematical 
computation is performed for each FC layer. The SoftMax 
activation function is used over the last layer after the vector 
has passed through all of the fully linked layers. This is used to 
compute the probability that the input belongs to a specific job. 
Consequently, the final output is the various probabilities of the 

input picture belonging to distinct classes. The procedure is 
repeated for several image types and individual images within 
those types. This trains the network to distinguish between 
different images [23]. DL techniques are one of the superior 
future tools to materials developments and analysis, data-driven 
approaches in computer science are increasingly being used 
with great success on a wide range of material data. More data 
repositories are providing images and raw data to analyze. In 
addition, the advances in data science provide new algorithms 
and tools to analyze the data, holding much promise for 
successfully realizing the materials prediction goals and 
assisting in the discovery, design, and deployment of next 
generation materials [24, 25]. 

V. DEEP LEARNING 

A. CNN Training 

The collected EBSD data are used for training and testing 
of the machine learning networks, EBSD pictures of the 
microstructure along the rolling direction of the thickness of 
the alumina sheet are obtained using electron microscopy. 
Machine learning requires a large amount of input data, the 
scanned EBSD images are digitized using 1332×417 image 
size, and the length is in the same direction of rolling (Figure 
3). There are slightly more than 2000 grains captured form 
each EBSD obtained from the different deformation conditions. 
Roughly, a total of 20000 grins are used in the training and 
testing procedure. The gain orientations are used as an input to 
train the machine learning algorithm. Due to size limitations, 
each image was subdivided into sub images in order to 
minimize the size of the input rather than descaling the image 

which would reduce resolution. Each EBSD image was divided 
to 8 images of 100×100 size. Some parts of the images were 
eliminated, such as low brightness edges and drawing scale. 
For the implementation of the DL algorithm, two schemes were 
used, the first network is a classifier of the deformation 
conditions, while the second is a predictor of the grain 
orientations after deformation. MATLAB DL algorithm was 
used to train the first network based on CNN, while the second 
network was based on the LSTM network for predicting the 
grain orientation. ReLU activation function was used for the 
input side (unsupervised learning) and Sigmoid function was 
used for the fully connected supervised learning output side. 
The algorithms were implemented in MATLAB and executed 
on an i5 computer. In order to obtain the best model, multiple 
runs were executed such that the best run was used to obtain 
the best network. Figure 15 shows the flowchart of the training 
and testing procedure as well as the selection of the best trained 
network. 

 

 
Fig. 15.  CNN training, validation error, and loss function. 

Figure 16 shows the CNN network topology. This system 
has a single-colored image input, which is indicated as three 
colors (RGB), and an output channel which is divided into 10 
bins to indicate the orientation of the grains. Initially, the input 
is processed by the multi-color convolution system, followed 
by the merging layer, and a down pooling layer. There are 3 
stages of CNN, the 1st consists of 8 filters, the 2nd consists of 16 
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filters, and the last of 32 filters. Each filter has 3×3 size. 
Finally, the last layer is the fully connected layer which 
contains 10 classes, presenting each deformation condition. 
The training algorithm is set to train the network using the non-
deformed image only. Then transfer learning is used (purple 
box in Figure 15) with the initial system trained with the non-
deformed EBSD on how the grins are misoriented due to the 
deformation conditions. The learning is done in batches using 
the contrastive divergence search algorithm. In this procedure, 
the training data set is randomized and then split into subsets. 
The algorithm processes the data in mini batches and evaluates 
the cost function. Subsequently, the network weights are 
updated accordingly. This is done consecutively over all the 
training batches. The complete process is known as an epoch. 
For the training process a batch size of 10 is used [20]. The 
data are randomized and divided into 80% training and 20 
testing sets. The training was validated every 10 epochs in 

order to avoid over fitting. A total of 100 epochs were used for 
the training process. After the training of all the different CNNs 
for the multiple parameter sets is complete, the best fit is 
selected after being tested. Figure 17 shows the training and 
validation process with the error and the loss function for 
training and validation data. The training accuracy reported in 
this process is 88.33%, while the testing is 81.2%. 

 

 
Fig. 16.  CNN topology. 

 

 
Fig. 17.  CNN training, validation error, and loss function. 

B. Grain Orientation Modeling 

The grain orientation prediction is based on the grain 
distribution and the number of grains at each direction. Figure 
18 shows the grain orientation map as a function of color. Red 
grains are oriented at the 001 direction, green grains are 
oriented at the 111 direction, and blue grains are oriented at the 
101 direction [26]. The orientation can be correlated to the 
color in the RGB color map. The color map ranges from 0 for 
black to 256 for white. Red color is 76, blue is 30 and green is 
150. Hence, 001 grain will be at the 76 scale, 111 grain will be 
at the 150 scale, and 101 at the 30 scale. Each EBSD map is 
converted into a histogram of the grain colors as shown in 
Figure 19. Each Figure shows the as received orientations, and 
the three strain rates deformation as specific temperature, i.e. 
350

o
C, 375

o
C and 400

o
C. The orientation data obtained from 

the EBSD figures are collated together and randomized then 
divided into 70% training, 15% validation, and 15% testing 
subsets. The network used to train the data is an LSTM with 3 
layers of 100, 50, and 20 nodes, followed by a fully connected 
layer and a regression layer. The network parameters set are: 

• MaxEpochs 500 

• GradientThreshold 1 

• InitialLearnRate 0.005 

• LearnRateSchedule piecewise 

• LearnRateDropPeriod 125 

• LearnRateDropFactor 0.2 
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Fig. 18.  Grain orientation color map. 

(a) 

 

(b) 

 

(c) 

 

Fig. 19.  EBSD grain orientation histogram of the deformed materials. 

After the NN training is completed, the best network with 
the least error is selected with the comparison of the best fit at 
epoch 100. The fitting and testing results are shown at Figure 
20. The reported results are: Training performance = 0.7808, 
Validation performance = 0.8446, and Testing performance = 
0.6843. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 20.  Grain orientation modeling. a) training, b) validation, c) testing. 
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VI. DISCUSSION 

In this study, AA5058 is the investigated material with 
regard to its microstructure. Machine learning networks were 
developed to predict the output based on all the 
interdependencies. The results proved that machine learning 
has learned the distribution functions of the singular parameters 
accurately. The generated output resembled the grain 
distribution accurately. The machine learning algorithm was 
trained on a relatively small sample size, due to the limited 
number of experimental tests that were conducted. Everyday 
research has limitations on the amount of deformation and the 
creation of the of EBSD pictures. The results from this study 
proved the concept on small sample sizes. Bigger sample size 
can improve the accuracy and generalize the system. 

It is monitored that the microstructure changes due to 
deformation do impose changes in the grain orientation but in 
different magnitudes. In general, most of the grains have a shift 
in the orientation form 111 toward 101 and 001 orientation, and 
this is explainable due to the rolling. However, at low 
temperatures (350oC), the effect of the strain rate seems to be 
minimal, but at higher temperatures, the grains seem to be 
retaining their original orientation at high strain rate, while at 
lower strain rate, the changes are maintained, due to the lower 
working rate. This could be explained as no change at high 
strain rate, or the material has memory such that the grains will 
move back into their initial conditions after deformation. This 
is a phenomenon that needs to be investigated experimentally 
by freezing the deformation at different stages. 

VII. CONCLUSION 

This study presented a methodology for predicting the grain 
orientation for AA5058 after hot deformation at different 
conditions. Most studies use singular distribution functions to 
describe the input for the microstructure model. However, this 
study showed that machine learning approach can be used to 
describe any given microstructure changes due to deformation. 
The manufacturing process incorporates multiple steps, like 
homogenization, hot rolling, cold rolling, and tempering. They 
often show a complex microstructure where grains need to be 
considered accurately as this effects the materials properties 
and manufacturing. The aim of this study was to investigate the 
effect of deformation on the grains’ formation and orientation 
due to the deformation conditions and predict the orientation of 
the grains after deformation. For future work, other materials 
such as steel and copper alloys will be investigated. Steel alloys 
in particular, have many stages (martensite and austinite), 
having an influence on the grain orientation and material 
characteristics. The model needs to be extended to 
accommodate the different behaviors by including the phase 
information. 
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