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Abstract—Non-Alcoholic Fatty Liver Disease (NAFLD) is a 

common syndrome that mainly leads to fat accumulation in liver 

and steatohepatitis. It is targeted as a severe medical condition 

ranging from 20% to 40% in adult populations of the Western 

World. Its effect is identified through insulin resistance, which 

places patients at high mortality rates. An increased fat 

aggregation rate, can dramatically increase the development of 

liver steatosis, which in later stages may advance into fibrosis and 

cirrhosis. During recent years, new studies have focused on 

building new methodologies capable of detecting fat cells, based 

on the histology method with digital image processing techniques. 

The current study, expands previous work on the detection of 

fatty liver, by identifying once more a number of diverse 

histological findings. It is a combined study of both image 

analysis and supervised learning of fat droplet features, with a 

specific goal to exclude other findings from fat ratio calculation. 

The method is evaluated in a total set of 40 liver biopsy images 

with different magnification capabilities, performing satisfyingly 

(1.95% absolute error). 

Keywords-liver biopsy; steatohepatitis; fatty liver; machine 

learning; image analysis   

I. INTRODUCTION  

Fatty liver develops in 90% of the population, with an 
alcohol consumption of over 60g on a daily basis. However, a 
fatty liver may be further classified as non-alcoholic (NAFL) 
[1], by the presence of hepatic steatosis without indicating any 
hepatocellular damage, but by swollen hepatocytes and circular 
fat cells. NAFLD has been targeted as a massive disease, 
particularly in Western country’s adults, due to the expanding 
predominance of obesity and insulin resistance. The latter has 
the effect on patients with NAFLD developing hepatitis C at 
high risk, which may lead to cirrhosis, a reduced hepatocyte 
activity due to a large number of histological scar tissues. HVC 
(Hepatic Virus C) has been documented to be the leading cause 
of deaths from 2003 to 2012 in USA [2]. In particular, hepatitis 
C is capable of extending the incidence of liver cancer by 50%, 
indicating an irreversible pathological condition, as opposed to 
hepatitis B (15%). Diagnosis of NAFLD requires a liver 
biopsy, which is obtained by needle insertion. Each biopsy 
specimen is followed by histology for precise steatosis 
evaluation. In most cases, a single or even a two-part tissue 

sample is divided into formalin-fixed and Hematoxylin-Eosin 
(H&E) stained sections (Figure 1). A biopsy slide is then 
scanned through microscopy and a digitized image is extracted 
by the software. Through this technique, each digitized sample 
can reveal several liver structures, including a) fat cells, b) 
ballooned cells, as swollen fat wrapped hepatocytes c) central 
veins, and d) sinusoids, being responsible for mixing nutrient-
rich blood from the portal vein and with corresponding oxygen-
rich blood from the hepatic artery.  

Traditional NAFLD examination by a pathologist, involves 
in most cases a lengthy and highly subjective visual 
interpretation of the biopsy slides through a microscope. As a 
result, “intra-observer” and “inter-observer” variability, can 
cause a critical degree of inaccuracy during the quantification 
of steatosis, among several clinicians. Due to these limitations, 
researchers have undertaken the task of developing reliable 
automated software for the accurate assessment of steatosis 
prevalence, with widespread and also cutting-edge methods, 
based on the digital biopsy image processing. In earliest years, 
simple stereological and morphometric techniques, for steatosis 
microvesicular and macrovesicular quantification have been 
introduced [3]. Consequently, some studies that identified 
significant quantitative deviations in the fat ratio, between a 
computerized method and a pathologist’s manual scaling have 
been presented [4]. Earliest image analysis methods composed 
a 2-class detection problem, to isolated tissue and fat pixels 
according to their intensity values [5]. A combination of fat cell 
separation with Body Mass Index (BMI) and its insulin 
resistance prevalence degree has also been presented [6].  

Some studies used diverse color spaces either by replacing 
H&E dye with toluidine-blue (TB-PAS) tissue coloring [7], or 
by utilizing different color spaces of the processed image [8]. 
In recent years, the conversion of an RGB image to grayscale, 
in order to indicate the bright white objects of interest, has been 
attempted [9]. Another work focuses on the detection of large 
droplet macrovesicular steatosis (ld-MaS), using the radial 
hepatic nucleus displacement calculation [10]. One of the most 
extensive works, identifies various histological findings using 
Machine Learning techniques [11], where a series of annotated 
histological features is included for non-fat shapes exclusion. 
Finally, two recent studies are based on the parameters of 
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solidity, roughness, elongation [12] and the circular shape of 
fat cell [13], in order to separate them from other regions of 
interest. 

 

 

Fig. 1.  H&E stained image including 4-class liver structures. 

The current work introduces a complete methodology for 
image analysis of liver biopsies, aiming to steatosis assessment. 
The proposed method is based on image processing techniques, 
which are combined with clustering and classification 
algorithms. Apart from classic segmentation of the image to 
provide histological findings detection, the method proposes a 
pre-trained classification step for their identification. The 
identification of four different findings and the accurate 
isolation of fat droplets, leads to the elimination of many false 
positive outcomes. Specifically, the method defines a 4-class 
classification problem, focusing on the separation between four 
categories of findings (classes), which are: a) fat cells, b) 
ballooning degeneration, c) sinusoids and d) veins. The 
proposed method improves the concept of histological finding 
classification and characterization, including ballooning 
degeneration as an alternative finding class, in contrast with the 
method proposed in [11]. Ballooned cells, which in various 
cases appear as circular formed structures comparable to fat 
droplets, are now an interesting field of research according to 
pathologists. The classification stage could be incorporated into 
already developed fat detection methodologies, as the last 
identification stage before fat ratio extraction. 

II. METHODS 

The classification method consists of four essential steps:  

• the implementation of a clustering-based algorithm to 
separate tissue from the background,  

• an iterative morphological opening for circular structure 
detection and irregular object elimination,  

• feature extraction of an annotated set of objects,  

• training of a classifier, employing the extracted histological 
features driven by the annotated ones.  

The trained system will have the ability to separate each 
region of interest into fat droplets, ballooned cells, sinusoids, or 
veins and lead to the calculation of fat ratio with respect to the 
isolation of identified fat cells. Figure 2 presents a flowchart of 
the proposed method, enclosed into a general fat identification 
methodology and fat ratio quantification. 

 

 

Fig. 2.  Flowchart of the classification procedure. 

A. Histological Image Segmentation 

After a biopsy slide scanning, usually a large part of the 

digital image represents a white background, therefore it 

contains high intensity values on the RGB color channels. In 

contrast, the histological H&E staining sample consists of low 

intensity pixel values. Thus, by applying clustering techniques, 

such as the K-means algorithm, hepatic tissue pixels could be 

separated from other background pixels, using only their color 

values as features. More specifically, during this step, K-

means divides the image elements into two clusters (K=2), 

providing a segmented binary image: 1) white pixels will be 

the background and 2) black pixels will be the tissue. At the 

algorithm convergence, the outer tissue boundaries are 

determined by the most remote cluster data points, whereas at 

each iteration the pixel segmentation is achieved according to 

the lowest square error criterion and expressed as: 

���� � ������	
 � �

�
��

	��

��

���

�

���
 (1) 

where ��  and ��  denote the number of image rows and 
columns, respectively. At the same time, ��	  indicates the 
feature vector of each pixel with the following relation: 
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the two clusters (k=1, 2) centroid calculation is updated in 
every current iteration until the convergence of K-means. This 
action is performed according to the already stored pixel 
intensities at each segmentation step. As a result, the centroid 
with the highest intensities sum characterizes the background 
pixel cluster, while the other the tissue cluster, respectively. By 
default, Euclidean metric is applied to the cluster data point 
distance calculation. 
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B. Object of Interest Detection 

The next stage attempts an object of interest detection to the 
previous segmented color image. The algorithm aims to include 
circular white regions of interest with various sizes. A recurrent 
morphological opening method is applied to detect circular 
structures, which are probably fat droplets. Although 
morphological operators have the ability to locate objects of a 
particular structure, the size of fat droplets in the biopsy tends 
to vary (Figure 3). As a starting point, a circular mask with a 
minimum radius of 5 pixels is defined as the initial structural 
element. Then, morphological opening procedure increases the 
mask radius (2 pixels) after each subsequent loop. As a result 
of the morphological opening between the binary image and 
the circular mask, the binary image Imorph is produced as: 

�&'�() � �*�+ ∘ -�� � .�*�+⊝-��0 ⊕-�� , (4) 

where ⊖ and ⊕ are the morphological operators of erosion 
and deletion, respectively [14]. Ibin denotes the original binary 
image and Mci the circular mask of the i

th
 iteration. The Mci 

radius tends to increase by 2 pixels in each iteration, to allow 
larger circular structures to be detected. Next, the current Imorph 
image produced by the i

th
 iteration, is placed as an input to a 

logical OR. Through this control step, the loop process 
terminates, if no further changes are detected between the last 
two consecutive Imorph images. 

 

 

Fig. 3.  Binary tissue conversion and circular objects detection. 

Based on the above methodology, each region is filtered 
according to the size, so that very small circular structures 
along with the correspondingly large ones, are eventually 
discarded from upcoming calculations. Specifically, small 
regions (<5 pixels) are considered as noise, due to resulting 
errors in the image capture process. Whereas, large regions 
(>1000 pixels) are associated with other large histological 
structures, such as central veins, portal veins and arteries, 
sinusoids and bile ducts. 

C. Features Selection 

To develop the pretrained system, a set of 13 biopsy 
samples, with the standard H&E histological staining derived 
from NAFLD patients, has been annotated. The concept is to 
make use of knowledge extracted by the annotation in order to 
train a classification based system. Thus, several features have 
been extracted from the annotated regions. One part of this 
subset presents a high steatosis prevalence, while in several 
cases a high rate of hepatocyte ballooning degeneration is 
observed. The entire number of findings in all 13 liver images 
is 7305. This dataset is collected from patient cases within St. 
Mary Hospital - Imperial College Healthcare NHS Trust of 

London, UK. They were digitized with a Hamamatsu 
microscope, providing a magnification of ×40. Each one of 
these contains hundred regions of interest, most of which are 
fat droplets and ballooned cells. Taking under consideration 
this particular advantage of clinical specimens, an adequate set 
of training instances becomes available for annotation, which at 
a later stage can be fed into supervised machine learning 
classifiers. 

As shown in Figure 4, fat areas, as well as ballooning 
degeneration, sinusoids and veins, have been manually labeled 
by specialist pathologists, through Hamamatsu’s NDP.View 2 
annotation tool. For each of the annotated structures, an XML 
structured file is exported directly. Each record includes a 
unique ID and title as a description. In addition, x and y points  
which correspond to the exact location of the freehand tool 
area, in the original ×40 liver color image. To deal with the 
above information, a parsing function for retrieving different 
annotated findings from XML files has been developed, by 
recognizing IDs, coordinates and color of the freehand contour 
(ex. ff0000- red, ffff00-yellow, etc.) of all regions. According 
to the calculation of the histological features in Table I, an 
identification label is given in each region of the 4-class 
objects: a) fat → 1, b) ballooning → 2, c) sinusoid → 3 and d) 
vein → 4. A visualization of the manual region selection is 
achieved, using a grayscale image with the same size as the 
initial RGB color tissue sample. The four varied findings are 
remarked with different gray levels, along with colorful sign 
dots. Figure 5 presents the demonstration of the annotated 
regions as described above. 

As a final step of the annotation extraction, a list of features 
for each distinct liver image is computed, while at the same 
time, a corresponding set of class objects from the entire subset 
of 13 biopsy images, is gathered as the main training set of 
data. Thus, a large number of regions from all 13 annotation 
images has been extracted. It is noted that a total count of a) 
4023 fat droplets, b) 3064 cases of ballooning, c) 165 sinusoids 
and d) 53 hepatic veins, was initially obtained providing a 
sufficient training set. The created dataset is unbalanced, due to 
the various existing anatomical features. Hence, the clinical 
classification problem becomes harder to solve. Thereby, only 
a few hundred fat and balloon cells are included, randomly 
selected from all the 13 annotated images. Aiming the training 
of a supervised algorithm, an informative feature set is 
extracted for each annotated region of interest. Details for the 
annotation and the dataset, which have been employed to 
provide knowledge, are presented in the next subsection. Each 
feature is selected in accordance with the characteristics of 
histopathological findings. The features are grouped into five 
feature categories, to highlight the differences between the four 
classes (Table I). The shape is characterized as a key 
calculation feature, providing valuable information about 
biopsy structures. Histological objects also tend to carry 
various peculiarities resulting in one of the four detection 
classes (fat droplets, balloon cells, sinusoids, veins), including 
the size, texture and set of pixel intensity. For instance, lipid 
droplets of fat have a circular shape, with an increased 
brightness intensity, and smoothed texture. In the case of 
ballooning degeneration, there is a significant distinction in the 
region texture, due to the interference of fat-swollen 
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hepatocytes. On the other hand, sinusoids are described as non-
circular and irregular shaped objects. Finally, veins are 
distinguished by their large size with a slight deviation of the 
mean pixel intensity, due to the occurrence of a number of red 
blood cells. 

 

 
Fig. 4.  NDP.View 2 freehand annotation tool. 

 

 
Fig. 5.  Visualization of annotated regions 

TABLE I.  EXTRACTED FEATURES 

 Feature Category Description 

1 Shape-based 
Eccentricity, Major/Minor axis length, 

Extent 

2 Intensity-based Mean intensity 

3 Texture-based Intensity standard deviation, Solidity  

4 Position-based x, y coordinates 

5 Magnitude Diameter, Perimeter, Area 

D. Classification Training 

The training set is employed in algorithm learning, where 
the computed features set provide the input of several 
supervised classifiers, including: Naive Bayes classifier, k 
Nearest Neighbors, Decision Tree using (C4.5 algorithm) and 
Support Vector Machines. Naive Bayes (NB) algorithm [15], is 
part of a probabilistic classifiers’ family based on the Bayes 

theorem. Its assignment is to associate an unknown liver 
sample, to a class that carries the greater posterior probability. 
Here, each one of the above extracted histological features is 
considered as independent [16]. In k Nearest Neighbors (k-NN) 
algorithm [17], the classification model decides about the class 
of a new sample taking into account the majority of its k 
nearest neighbors. Thus, its Euclidean distance is estimated in 
order to find out the members of its neighborhood. Employing 
the C4.5 decision tree induction algorithm, a histological object 
is identified through a repetitive branching process [15]. Given 
an unknown input sample, the process starts from the tree root 
and runs repeatedly on the internal nodes, until a terminal leaf 
yields a decision value. As a conclusion, when a branching 
presents high homogeneity, a leaf node is added to the 
corresponding class. In Support Vector Machines (SVM) [18] 
the overall process involves the optimal determination of 
hyperplanes, whereby a histological sample is classified with a 
maximum margin value, in case it carries the same predictive 
value with an annotation label. 

III. RESULTS AND DISCUSSION 

For the evaluation of the proposed method, a second subset 
of 27 H&E images is employed, this time carrying a smaller 
magnification of ×20 for testing-diagnostic purposes. 
Pathologists have provided the fat ratio for these biopsies. For 
all magnification settings in this study, the captured biopsy 
images originally consisted of sizes exceeding 10,000×10,000 
pixels. At first, the visualization results for the efficiency of the 
method are examined. In Figure 6 the detected circular 
structures are marked with a green contour after the biopsy 
image processing.  

 

 

Fig. 6.  Visualization results of the proposed method 

As found in the histological sample MS12-23945, all cases 
of hepatocyte ballooning along with other structures, such as 
the long-length liver vein (pointing arrow), have been 
successfully excluded during the initial segmentation stage. 
However, a weakness of the method is observed, in the MS14-
9711 sample, in which the high steatosis prevalence (29.8%) in 
combination with the lower magnification ×20, results in an 
agglomeration of some adjacent circular regions (red area). 
This type of regions exhibit a feature set that does not match 
the size, circularity and eccentricity of a typical fat droplet, so 
they are excluded from the classification stage, resulting in an 
underestimation of the total fat ratio. However, it should be 
noted that as the magnification of an image increases, this 
phenomenon is eliminated, as the computer vision algorithm 
tends to present a greater discrimination capability among the 
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densely occurring droplets of fat. That means that the outer 
steatosis structure boundaries become more evident, causing in 
that way fewer agglomeration regions to be formed. 

After the exclusion of non-fat objects, for each of the 27 
testing images, the fat ratio is computed dividing the 
cumulative area of fat structures and the whole tissue area. This 
value is derived both from the segmentation method and a 
semi-quantitative annotation procedure by St. Mary’s 
pathologists. Therefore, the difference between these 
percentages presents the absolute error for each biopsy image 
and each classification algorithm, as follows: 

34��'�.�0 � |67++'8 � 6�97::|100%, (5) 

where Sannot indicates the estimated fat ratio from the St. Mary’s 
pathologists’ annotations, while Sclass is equivalent to the 
percentage of liver fat, based on the automated detection 
including the classification stage. In addition, it is feasible to 

compare the absolute error with and without expanding our 
methodology with the classification stage, and measure the 
improvement in fat quantitation by providing a second value of 
absolute error: 

34��'�.�0 � |67++'8 � 6=>?|100%, (6) 

where 6=>?  is the fat ratio after the 2 stages of image 
segmentation, without performing the classification. In Table 
II, it is perceived that in all 27 histological samples, the 
classification stage computes lower values of fat ratio than that 
of the segmentation. It is emphasized that the four classifiers 
have reduced the mean fat ratio up to 1.5%, in comparison with 
the 17.3%. This is because the false positive ballooning, 
sinusoid and vein findings were excluded from all steatosis 
calculations. The results of the third main column, show all fat 
percentage values, according to semi-quantitative estimates of 
specialist pathologists. 

TABLE II.  ACCURACY RESULTS 

Testing  

Image 

Classification Results 

Fat Ratio after Regions 

Classification (%) 

Fat Ratio w/o 

Classification 

(%) 

Fat Ratio 

from 

Annotation 

(%) 

34��'�.�0  
 

(%) 

34��'�.�0  
 

(%) 

NB k-NN C4.5 SVM - - NB k-NN C4.5 SVM - 

MS12-23945 9.3 9.1 9.4 9.3 9.9 7.6 1.7 1.4 1.8 1.7 2.2 

MS13-11663 5.0 5.0 5.1 5.0 5.4 3.5 1.5 1.5 1.7 1.5 2.0 

MS13-12414 15.4 14.0 15.6 15.3 16.3 14.1 1.3 0.0 1.6 1.3 2.3 

MS13-18536 11.3 11.0 11.4 11.3 11.8 10.6 0.6 0.4 0.8 0.7 1.1 

MS13-9453 25.8 25.7 25.7 26.0 27.4 24.1 1.6 1.5 1.5 1.8 3.3 

MS13-9925 25.0 24.5 25.5 25.1 25.9 24.0 1.0 0.6 1.6 1.1 1.9 

MS14-10783 14.8 14.6 15.1 14.9 15.8 16.1 1.4 1.5 1.0 1.2 0.3 

MS14-10801 9.0 9.3 9.7 9.0 10.0 9.8 0.8 0.5 0.1 0.8 0.2 

MS14-11933 6.7 6.8 6.9 6.7 7.2 3.8 3.0 3.0 3.1 2.9 3.5 

MS14-13040 12.3 12.1 12.4 12.3 12.8 12.6 0.4 0.5 0.2 0.3 0.2 

MS14-1559 23.3 22.6 23.4 23.4 24.3 26.9 3.5 4.2 3.5 3.4 2.5 

MS14-2449 12.0 11.3 12.4 12.2 13.0 14.7 2.7 3.4 0.2 2.5 1.7 

MS14-2451 14.9 14.3 15.0 14.9 15.2 14.0 0.9 0.3 3.5 0.9 1.2 

MS14-3215 12.6 11.5 13.5 12.4 14.3 10.8 1.7 0.7 0.2 1.6 3.5 

MS14-3686 4.4 4.4 4.4 4.4 4.6 2.3 2.1 2.1 3.5 2.2 2.3 

MS14-3854 23.6 22.6 25.1 24.0 27.2 24.3 0.7 1.7 0.2 0.3 2.9 

MS14-5561 5.9 5.8 6.3 6.0 6.8 4.5 1.4 1.3 3.5 1.5 2.3 

MS14-6402 14.6 14.2 14.8 14.7 15.2 13.4 1.2 3.4 1.4 1.3 1.8 

MS14-786 28.0 27.6 28.5 28.3 29.3 32.5 4.5 0.3 4.0 4.2 3.2 

MS14-8355 41.1 39.5 40.7 40.9 42.3 44.5 3.4 0.8 3.8 3.6 2.2 

MS14-9198 11.8 11.8 12.0 11.8 12.2 7.1 4.7 4.9 4.9 4.7 5.1 

MS14-9711 29.1 28.3 30.1 29.4 32.2 29.8 0.7 5.0 0.3 0.4 2.4 

MS15-1128 15.6 15.7 16.1 15.8 16.5 19.3 3.7 4.7 3.2 3.5 2.8 

MS15-2103 4.8 4.4 4.9 4.7 5.1 2.8 2.0 1.5 2.1 2.0 2.3 

MS15-2670 29.5 28.7 29.7 29.6 31.0 29.6 0.1 3.6 0.1 0.0 1.4 

MS15-805 11.8 11.6 11.9 11.6 12.3 9.1 2.7 1.6 2.8 2.5 3.2 

MS15-991 18.7 18.8 20.4 19.3 22.7 15.6 3.1 0.9 4.8 3.7 7.1 

Mean Value: 16.2 15.8 16.5 16.2 17.3 15.8 1.9 2.0 2.0 1.9 2.4 

StD: 9.17 8.91 9.22 9.22 9.69 10.57 1.25 1.51 1.37 1.29 1.45 

 

It is important to emphasize the improvement of diagnostic 
accuracy of the method, initially with the mean absolute error 
between the doctors and the diagnosis coming from each 
trained classifier (Aerror(1)), and then to compare it with the 
mean absolute error originating from the doctors’ estimation 
and the segmentation method without the classification stage 
(Aerror(2)). According to the results, it is noted that the trained 

classifiers present a diagnostic reliability in the majority of ×20 
testing samples reducing the absolute error rate up to 0.5%, as 
opposed to the one of segmentation and equal to 2.4%. 
Specifically, a total mean value of the absolute error of 1.95% 
is performed, using the pre-trained classification step 
algorithms. The percentage error results are also presented in 
Figure 7, using bars, emphasizing to the reliability of the 
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proposed for the methodology classifiers, compared to the 
segmentation stage prior to the hepatic structures identification. 
Due to the above agglomeration phenomenon and based on 
Table II, the method shows a reduction in performance in 6 
images (MS14-10783, MS14-1559, MS14-2449, MS14-786, 
MS14-8355 and MS15-1128). However, in most of the cases 
(21 biopsies) it achieves an optimal performance. Through this 
observation, current outcomes are sufficient for pathologists, in 
comparison to semi-quantitative methods and tend to keep up 
with similar fat region classification performances in a previous 
study [19]. 

 

 

Fig. 7.  Graphical represenation of methodology’s classification error  

IV. CONCLUSSIONS 

In this study, a pretrained method for various annotated 
liver tissue findings is presented, employing image processing 
and machine learning techniques. According to the overall 
performance, it is concluded that the classification stage 
improves the reliability of the results, for a number of biopsies. 
The main advantage of the method lies in the fact that the 
biopsy structures are discerned by a series of histological 
features including shape, magnitude, pixel intensity and 
texture. Based on this inclusion, it is shown that the trained 
classifiers can detect main differences between circular balloon 
cells and fat droplets in NAFLD patients. At the present time, 
ballooning degeneration is at the heart of the clinical interest 
among research pathologists, as its assessment emerges as a 
critical factor in chronic liver diseases. Thus, the proposed 
work could be also considered as a follow-up of a previous 
study [20] for ballooned cell identification and ballooning 
degeneration quantification. 
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