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Abstract

The study of the structure of the covariance matrix when the dimension
of the data is much greater than the sample size (high dimensional data) is a
complicated problem, since we have many unknown parameters and few data.
Several hypothesis tests for the covariance matrix, in the high dimensional
context and in the classical case (where the dimension of the data is less than
the sample size), can be found in the literature. It has been of interest to
test the null hypothesis that either the covariance matrix of Gaussian data
is equal to the identity matrix or proportional to it, considering the classical
case as well as the high dimensional context. Since it is important to have
a wide comparison between these tests found in the literature, and for some
of them it is di�cult to have theoretical results about their powers, in this
work we compare several tests by simulations, in terms of the size and power
of the test. We also present some examples of application with real high
dimensional data found in the literature.

Key words: Covariance matrix; High dimensional data; Hypothesis test;
Multivariate Gaussian data; Tracy-Widom law.

Resumen

El estudio de la matriz de covarianza cuando la dimensión de los datos es
mucho más grande que el tamaño de la muestra (datos de dimensión alta) es
un problema complicado, ya que se tiene una gran cantidad de parámetros
desconocidos y pocos datos. Se pueden encontrar en la literatura varias
pruebas de hipótesis para la matriz de covarianza, en el contexto de datos
de dimensión alta y en el caso clásico (donde la dimensión de los datos es
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menor que el tamaño de la muestra). Ha sido de interés probar la hipótesis
nula de que la matriz de covarianza de datos Gaussianos es igual a la matriz
identidad o proporcional a ella, considerando el contexto clásico así como el
de dimensión alta. Ya que es importante tener una amplia comparación entre
estas pruebas encontradas en la literatura, y para algunas de ellas es difícil
tener resultados teóricos acerca de sus potencias, en este trabajo comparamos
varias pruebas mediante simulaciones, en términos del tamaño y la potencia
de la prueba. También presentamos algunos ejemplos de aplicación con datos
de dimensión alta reales encontrados en la literatura.

Palabras clave: Datos de dimensión alta; Datos Gaussianos multivariados;
Ley Tracy-Widom; Matriz de covarianza; Prueba de hipótesis.

1. Introduction

Data with dimension much greater than the sample size (high dimensional
data) arise in many �elds, such as genomics, document classi�cation, climatology,
�nance, functional data analysis, among others (see, Hastie et al., 2009; Johnstone,
2001). In the context of high dimensional data, the estimation of the covariance
matrix is a di�cult problem because we need to estimate many parameters with
few data, for that reason the estimation of the covariance matrix and hypothesis
tests about it sometimes require statistical techniques di�erent from those of the
classical case, where the sample size is greater than the dimension of the data.

It is worth mentioning that hypothesis tests for the covariance matrix are
of interest because several multivariate statistical methodologies strongly depend
on the structure of the covariance matrix of the data, for example, principal
component analysis, classi�cation, comparison of means, etc. Therefore, it is
important to check the structure of the covariance matrix by appropriate statistical
tests.

Let X1, X2, . . . , XN be independent random vectors of the multivariate normal
distributionNp(µ,Σ), where the mean µ and the covariance matrix Σ are unknown,
and suppose that we are interested in testing

H0 : Σ = Ip vs H1 : Σ ̸= Ip, (1)

or

H0 : Σ = λIp vs H1 : Σ ̸= λIp, (2)

where λ is unknown and Ip denotes the identity matrix of size p × p. The null

hypothesis H0 in (2) is called hypothesis of sphericity. Let Sn =
∑N

i=1(Xi −
X)(Xi − X)′/n, with n = N − 1, be the sample covariance matrix of the data,

where X =
∑N

i=1 Xi/N is the sample mean.

In Anderson (1984) and Muirhead (2005) it is showed that the likelihood ratio
test for (1) is based on the statistic

Λ =
( e

N

)pN/2

etr(−A/2)(detA)N/2,
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with A = nSn, where etr(A) := exp(tr(A)) (the exponential of the trace of the
matrix A); and the likelihood ratio test for (2) is based on the ellipticity statistic
given by

V =
det(Sn)

[tr(Sn)/p]p
.

For the case p ≥ N , with probability one, Sn is not of full rank, therefore
det(Sn) = 0. Thus, the likelihood ratio tests for (1) and (2) only exist for the
case p < N . Hence, it has been of interest to propose and analyze tests for (1)
and (2) in the context of high dimensional Gaussian data.

Some tests for (1) were proposed by Johnstone (2001), based on the Tracy-
Widom distribution; Ledoit & Wolf (2002); Srivastava (2005); Bai et al. (2009);
Cai & Ma (2013) and Srivastava et al. (2014). These tests can be applied in the
high dimensional and classical contexts, except the test of Bai et al. (2009) which
is only for the classical case. Whereas, for (2) some tests were proposed by John
(1971); Srivastava (2005); Zou et al. (2014); Srivastava et al. (2014) and Li &
Yao (2016). The last tests can be applied in the high dimensional and classical
contexts, except the tests of Li & Yao (2016) which is only for the high dimensional
case. In the references provided above there are some comparisons by simulations
of some tests, however a broader comparison considering those tests is needed.
Furthermore, there is very little about the comparison of the power of the tests.

This work is the result of the master's thesis Cortez-Elizalde (2020). In the
present manuscript, we describe brie�y several tests found in the literature for (1)
and (2) considering Gaussian data, in the high dimensional and classical contexts,
being the �rst one our greatest interest. The tests are compared by simulations in
terms of the size and power of the test. The purpose of this analysis is to provide
a wide comparison between several tests found in the literature for the covariance
matrix of Gaussian data. For many tests it is di�cult to provide theoretical results
about the power of the test, therefore it is important to carry out simulation studies
to compare simultaneously the power of several tests, at least in some cases.

This manuscript is divided as follows, in sections 2 and 3 we present some
tests found in the literature for (1) and (2), respectively; in section 4 we present
a simulation study for the comparison of the tests; in section 5 we show examples
of applications with real high dimensional data found in the literature; in section
6 we provide some conclusions. We also include an appendix with some technical
results and details of the simulations.

It is well known, that if we have a random sample X1, X2, . . . , XN from the
Np(µ,Σ), we can obtain from it a random sample Z1, Z2, . . . , Zn, with n = N − 1,
from the Np(0,Σ). Furthermore, the sample covariance matrix of the Xi's, Sn,
satis�es, nSn =

∑n
i=1 ZiZ

′
i; see Appendix A for details. For this reason, some

authors of the tests for (1) and (2) give their results considering a random sample

Z1, Z2, . . . , Zn from the Np(0,Σ), and taking S̃n =
∑n

i=1 ZiZ
′
i/n as the sample

covariance matrix. In the tests presented in this work we consider a random sample
X1, X2, . . . , XN from the Np(µ,Σ), unless otherwise speci�ed, and X and Sn, with
n = N − 1, are its sample mean and sample covariance matrix, respectively. We
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try to respect, as much as possible, the notation of the original sources to avoid
confusion in the description of their results.

2. Tests for H0 : Σ = Ip

Suppose that we are interested in testing (1). Note that if we want to test H0 :
Σ = Σ0 vs H1 : Σ ̸= Σ0, where Σ0 is a speci�c known positive de�nite covariance
matrix, this is equivalent to testing (1), since we can transform Xi to Yi =

Σ
−1/2
0 Xi, i = 1, 2, . . . , N , which are independent random vectors with distribution

Np(Σ
−1/2
0 µ,Σ

−1/2
0 ΣΣ

−1/2
0 ), and we observe that under the null hypothesis the Yi's

are independent random vectors with distribution Np(Σ
−1/2
0 µ, Ip). Thus, we can

test (1) based on the transformed data.

2.1. Likelihood ratio test (LRT1)

Here we suppose N > p. As we can see in Muirhead (2005), the level α
likelihood ratio test for (1) rejects H0 if Λ ⩽ cα, where

Λ =
( e

N

)pN/2

etr(−A/2)(detA)N/2,

A = nSn, n = N − 1 and cα is the lower α × 100% point of the distribution
of Λ. This test is biased, however, doing the following slight modi�cation to the
likelihood ratio statistic we obtain an unbiased test

Λ∗ =
( e
n

)pn/2
etr(−A/2)(detA)n/2.

Observe that this statistic is obtained from Λ by replacing the sample size N by
the degrees of freedom n. Therefore, the likelihood ratio test rejects H0 : Σ = Ip
for small enough values of Λ∗, or equivalently, of

V ∗ = etr(−A/2)(detA)n/2.

When the hypothesis H0 : Σ = Ip is true and n is large, the distribution of
−2ρlogΛ∗, where ρ = 1 − (2p2 + 3p − 1)/(6n(p + 1)), follows approximately a
chi-square distribution with f = p(p+ 1)/2 degrees of freedom, that is,

P(−2ρlogΛ∗ ≤ x) ≈ P(χ2
f ⩽ x), ∀x ∈ R. (3)

Using this approximation, a level α test for (1) rejects H0 if −2ρ log Λ∗ > χ2
f (α),

where χ2
f (α) is the upper α × 100% point of the chi-square distribution with f

degrees of freedom. This test will be called the level α likelihood ratio test (LRT1)
for (1).
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2.2. Corrected Likelihood Ratio Test (CLRT)

As it is observed in Bai et al. (2009), the likelihood ratio test has a size much
higher than the nominal level in the case when the dimension of the data is very
large. For that reason Bai et al. (2009) proposed a correction to the likelihood
ratio test statistic using some results of Random Matrix Theory.

Suppose n > p. Let

L∗ = trSn − log(detSn)− p. (4)

From (3) we have that
Tn = nL∗ = −2 log Λ∗,

converges to the chi-square distribution with p(p+ 1)/2 degrees of freedom under
H0 : Σ = Ip, when p is �xed and n → ∞. In Bai et al. (2009) it is proved the
following result.

Theorem 1. Suppose yn := p/n → y ∈ (0, 1) when n, p → ∞. Let L∗ be as in
equation (4) and g(x) = x− logx− 1. Then, under H0 and when n → ∞

T̃n = v(g)−1/2[L∗ − p · F yn(g)−m(g)]
d−→ N(0, 1), (5)

where

m(g) = − log(1− y)

2
,

v(g) = −2log(1− y)− 2y,

F yn(g) = 1− yn − 1

yn
log(1− yn),

and �
d−→� denotes convergence in distribution. The expressions m(g) and v(g) are

the asymptotic mean and variance, respectively, of Gn(g) = L∗ − p · F yn(g) when

n → ∞. The statistic T̃n will be called the corrected likelihood ratio statistic.

A level α test for (1) based on the statistic (5) rejects H0 if T̃n > zα, where
zα is the upper α× 100% point of the standard normal distribution N(0, 1). This
test will be called the level α corrected likelihood ratio test (CLRT) for (1).

2.3. Ledoit and Wolf (LW) Test

For the testing problem (1) the likelihood ratio test statistic is degenerate when
p is greater than n. Nagao (1973) proposed the test statistic V = tr[(Sn− Ip)

2]/p,
which does not degenerate in that case. This test statistic for the testing problem
(1) is the equivalent of the test statistic U proposed by John (1971) for the testing
problem (2) (see section 3.2). In Ledoit & Wolf (2002) it is shown that the power
and size of the sphericity test based on U is robust against p large, and even
large than n. However, the test of (1) based on V is not consistent against every
alternative when p goes to in�nity with n. For that reason in Ledoit & Wolf (2002)
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it is proposed the following test statistic for (1)

W =
1

p
tr[(Sn − Ip)

2]− p

n

[
1

p
trSn

]2
+

p

n
,

which will be called the Ledoit & Wolf statistic. Contrary to V , the power and the
size of the test based on W are robust against p large, and even larger than n.

In Ledoit & Wolf (2002) is proved that under H0 : Σ = Ip, when n → ∞ and
p is �xed,

nW − p
d−→ 2

p
χ2
p(p+1)/2 − p.

They also proved the following result.

Theorem 2. Suppose that p/n → y ∈ (0,∞) as n, p → ∞, then under H0

nW − p
d−→ N(1, 4).

By the last theorem, a level α test for (1) based on the Ledoit & Wolf statistic,
rejects H0 if (nW − p − 1)/2 > zα, where zα is the upper α × 100% point of the
standard normal distribution. We called this test the level α Ledoit and Wolf (LW)
test for (1).

2.4. Tracy-Widom (TW) Test

In Johnstone (2001) the case when n and p are large, with n = n(p) and
n/p → γ > 0 as p → ∞, is considered. Based on Random Matrix Theory, in
that work it is obtained the asymptotic distribution of the largest eigenvalue of
the sample covariance matrix of Gaussian data, which can be used to give a test
for (1).

We denote by Wp(n,Σ) the Wishart distribution with n degrees of freedom
and covariance matrix Σ of size p× p. The next theorem proposed by Johnstone
(2001), gives the asymptotic distribution of the largest eigenvalue of a random
matrix with Wishart distribution.

Theorem 3. Let A with distribution Wp(n, Ip) and let l1 be the largest eigenvalue
of A. If n/p → γ ≥ 1 as p → ∞, then

l1 − µnp

σnp

d−→ F1,

where the center and scaling constants are

µnp =
(√

n− 1 +
√
p
)2

, (6)

σnp =
(√

n− 1 +
√
p
)( 1√

n− 1
+

1
√
p

)1/3

, (7)

and F1 is the distribution function of the Tracy-Widom law of order 1.
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The last theorem is stated for the case when n ≥ p. However, as mentioned
in Johnstone (2001), it applies equally well if n < p are both large, simply by
reversing the roles of n and p in (6) and (7). Therefore, if we have a random
sample of size N from the multivariate normal distribution Np(µ,Σ) and l1 is the
largest eigenvalue of the sample covariance matrix Sn, with distribution Wp(n,Σ),
a level α test for (1) rejects H0 if

nl1 − µnp

σnp

is greater than the upper α × 100% point of the Tracy-Widom distribution F1,
denoted by F1(α), where µnp and σnp are the center and scaling constants of
Theorem 3. We called this test the level α Tracy-Widom (TW) test for (1).

2.5. Cai and Ma (CM) Test

Motivated by a test of Chen et al. (2010), Cai & Ma (2013) proposed a test for
(1). The original proposal in Chen et al. (2010) involves higher order symmetric
functions of the Xi's than the proposal of Cai & Ma (2013). The test is established
in the setting where the dimension p = pn → ∞ as the sample size n → ∞,
and there is no restriction on the limit of p/n. Cai & Ma (2013) proved that
the asymptotic power of their proposed test, in a subset of covariance matrices,
uniformly dominates that of the CLRT given in section 2.2, when p < n and
p/n → y ∈ (0, 1).

Let X1, . . . , Xn be independent random vectors from the normal distribution
Np(0,Σ). Cai & Ma (2013) consider to test the hypothesis H0 : Σ = Ip versus the
alternative hypothesis

H1 : Σ ∈ Θ, Θ = {Σ :∥ Σ− Ip ∥F⩾ ϵn}, (8)

where ϵn > 0 and

∥ A ∥F=

√√√√√
∑

i,j

a2ij

 =
√
tr(AAH),

is the Frobenius norm of the matrix A = (aij), where A
H is the conjugate transpose

of A. The di�culty of testing between H0 and H1 depends on the value of ϵn; the
smaller ϵn is, the harder it is to distinguish between the two hypotheses.

De�ne the statistic

Tn =
2

n(n− 1)

∑
1⩽i<j⩽n

h(Xi, Xj),

where

h(Xi, Xj) = (X ′
iXj)

2 − (X ′
iXi +X ′

jXj) + p.

It is important to mention that Tn is an estimator of ∥ Σ−Ip ∥2F= tr[(Σ−Ip)
2].

The next result given in Cai & Ma (2013) provides the asymptotic distribution of
Tn.
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Theorem 4. Suppose that p → ∞ as n → ∞. If the succession of covariance
matrices satis�es

tr(Σ2) −→ ∞ and tr(Σ4)/tr2(Σ2) −→ 0

as n → ∞, then

Tn − µn(Σ)

σn(Σ)

d−→ N(0, 1),

where

µn(Σ) = EΣ(Tn) = tr(Σ− Ip)
2,

σ2
n(Σ) = varΣ(Tn) =

4

n(n− 1)
(tr2(Σ2) + tr(Σ4)) +

8

n
tr(Σ2(Σ− Ip)

2).

Note that the succession of identity matrices {Ip}∞p=1 satis�es the assumptions
of the last theorem, furthermore µn(Ip) = 0 and σ2

n(Ip) = 4p(p + 1)/n(n − 1).
Theorem 4 provides the asymptotic behavior of Tn under H0. Thus, a level α test

for (1) based on the statistic Tn rejects H0 if Tn > zα2
√

p(p+1)
n(n−1) , where zα is the

upper α× 100% point of the standard normal distribution. We called this test the
level α Cai and Ma (CM) test for (1).

2.6. Srivastava's Tests (T2s, T2)

The tests for (1) presented in this section were proposed by Srivastava (2005)
and Srivastava et al. (2014). They considered a distance function between the null
hypothesis and the alternative hypothesis, and proposed tests based on consistent
estimators of this parametric function of the covariance matrix Σ for testing (1).
Speci�cally, they considered estimators of the squared Frobenius norm (divided
by p)

1

p
tr[(Σ− Ip)

2] =
1

p
[tr(Σ2)− 2tr(Σ) + p] = a2 − 2a1 + 1, (9)

where

ai =
trΣi

p
, i = 1, 2, . . . . (10)

Observe that under the null hypothesis H0 : Σ = Ip we have that (9) is equal to
zero. Therefore, a test for (1) can be based on an estimator of (9), where the null
hypothesis should be rejected if the observed value of the estimator is greater than
some speci�c amount.

Consider the following assumptions

a) If p → ∞, then ai → a0i , 0 < a0i < ∞, i = 1, . . . , 8.

b) n = O(pδ), 0 < δ ⩽ 1,
(11)
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where n = O(pδ) denotes that n/pδ remains bounded as n and p go to in�nity,
this includes the case when (n/p) → 0. The following results can be found in
Srivastava (2005).

Lemma 1. Under assumption a), and when n → ∞, unbiased and consistent
estimators of a1 and a2 are given, respectively, by

â1 =
trSn

p
, â2s =

n2

(n− 1)(n+ 2)p

[
trS2

n − 1

n
(trSn)

2

]
.

Theorem 5. Consider the assumptions (11). Under H0 : Σ = Ip, when n, p → ∞,
we have

T2s =
n

2
(â2s − 2â1 + 1)

d−→ N(0, 1).

Thus, a level α test for (1) based on T2s rejects H0 if T2s > zα, where zα is the
upper α× 100% point of the normal standard distribution. We called this test the
level α Srivastava's test T2s for (1).

Srivastava et al. (2014) proposed a di�erent test, but now based on a new
unbiased estimator of a2, given by

â2 =
1

f

[
(N − 2)ntr(M2)−Nntr(D2) + (trD)2

]
, (12)

where f = pN(N − 1)(N − 2)(N − 3), M = Y′Y, Y = (Y1, . . . , YN ), D =
diag(Y ′

1Y1, . . . , Y
′
NYN ), with Yi = Xi −X. In Srivastava et al. (2014) it is proved

the following result.

Theorem 6. Consider the assumption N = O(pδ), 1/2 < δ < 1. Under
H0 : Σ = Ip, when n, p → ∞, we have

T2 =
n

2
(â2 − 2â1 + 1)

d−→ N(0, 1).

Therefore, a level α test for (1) based on T2 rejects H0 if T2 > zα, where zα is
the upper α× 100% point of the standard normal distribution. We called this test
the level α Srivastava's test T2 for (1).

3. Tests for H0 : Σ = λIp

In this section we describe brie�y some tests for sphericity, that is, tests for
(2), where the null hypothesis a�rms that the covariance matrix is proportional
to the identity matrix.

Note that if we want to test H0 : Σ = λΣ0 vs H1 : Σ ̸= λΣ0, where Σ0

is a speci�c known positive de�nite covariance matrix and λ is unknown, this is

equivalent to test (2), by transforming the data to Yi = Σ
−1/2
0 Xi, i = 1, 2, . . . , N ,

and testing (2) based on the transformed data.
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3.1. Likelihood Ratio Test (LRT2)

In Muirhead (2005) it is shown that the level α likelihood ratio test for (2)
rejects H0 if

V ≡ detA

(tr(A)/p)
p =

detSn

(tr(Sn)/p)
p ⩽ kα, (13)

where A = nSn and kα is the lower α× 100% point of the distribution of V . The
statistic V is called ellipticity statistic.

When the hypothesis H0 : Σ = λIp is true, the distribution of −nρlogV ,
where ρ = 1− (2p2+ p+2)/6np, has approximately a chi-square distribution with
f = (p+ 2)(p− 1)/2 degrees of freedom when n is large, that is,

P(−nρlogV ⩽ x) ≈ P(χ2
f ⩽ x), ∀x ∈ R. (14)

By this approximation, a level α test for (2) rejects H0 if −nρ log V > χ2
f (α),

where χ2
f (α) is the upper α × 100% point of the chi-square distribution with f

degrees of freedom. We called this test the level α likelihood ratio test (LRT2) for
(2).

3.2. John's (J) Test

For the testing problem (2) the likelihood ratio test is degenerate when p is
greater than n. John (1971) proposed to test (2) using the following test statistic,
which does not degenerate,

U =
1

p
tr

[(
Sn

(1/p)tr(Sn)
− Ip

)2
]
=

(1/p)tr(S2
n)

[(1/p)tr(Sn)]2
− 1. (15)

We called this statistic the John's statistic. John (1972) proved that, when n → ∞
and p is �xed, under H0

nU − p
d−→ 2

p
χ2
p(p+1)/2−1 − p.

In Ledoit & Wolf (2002) it is shown that the power and size of the sphericity
test based on U is robust against p large, and even larger than n. They proved
the following result.

Theorem 7. Suppose that p/n → y ∈ (0,∞) as n, p → ∞, then under
H0 : Σ = λIp

nU − p
d−→ N(1, 4).

Then, a level α test for (2) based on the John's statistic rejects H0 if
(nU − p − 1)/2 > zα, where zα is the upper α × 100% point of the standard
normal distribution. This test will be called the level α John's (J) test for (2).
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3.3. Quasi-Likelihood Ratio Test (QLRT)

Let X1, X2, . . . , Xn be independent random vectors of the multivariate normal
distribution Np(0,Σ), and let X = (X1, . . . , Xn) be the matrix of size p×n whose
columns are the vectors Xi, i = 1, 2, . . . , n. The likelihood ratio test for (2),
denoted by LRT2 and described in section 3.1, requires p ⩽ n because when
p > n, p−n eigenvalues of the sample covariance matrix Sn are zero and therefore
V in (13) is equal to zero. Li & Yao (2016) proposed an extension of the LRT2 for
the case when p > n, by considering the matrix X′X/p which has exactly the same
n non-zero eigenvalues with the matrix Sn = XX′/n (up to some scaling). Their
results are in the ultra-dimensional asymptotic setting p ≫ n, where p/n → ∞
and n → ∞.

The quantity −n log V that appears in the left side of (14) can be expressed as

n log


(
1

p

∑p
i=1 ℓi

)p

∏p
i=1 ℓi

 ,

where ℓi, i = 1, 2, . . . , p, are the eigenvalues of the matrix Sn. Based on the last
expression, Li & Yao (2016) proposed the quasi-likelihood ratio statistic given by

Ln =
p

n
log


(
1

n

∑n
i=1 λ̃i

)n

∏n
i=1 λ̃i

 ,

where λ̃i, i = 1, 2, . . . , n, are the eigenvalues of the matrix X′X/p. They presented
the next theorem.

Theorem 8. Suppose that p/n → ∞ and n → ∞, then under H0

Ln − n

2
− n2

6p
− v4 − 2

2

d−→ N(0, 1),

where v4 is the fourth moment of the standard normal distribution.

Thus, a level α test for (2) based on the statistic Ln rejects H0 if Ln − n

2
−

n2

6p
− v4 − 2

2
> zα, where zα is the upper α× 100% point of the standard normal

distribution. We called this test the level α quasi-likelihood ratio test (QLRT) for
(2).

3.4. Srivastava's Tests (T1s, T1)

The next tests for (2) were proposed by Srivastava (2005) and Srivastava et al.
(2014). Let ai, for i = 1, 2, . . . , given by (10). Srivastava (2005) showed, using the
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Cauchy-Schwarz inequality, that

a2
a21

=

∑p
i=1 λ

2
i /p

(
∑p

i=1 λi/p)2
≥ 1,

with equality holding if and only if λi = λ, for i = 1, 2, . . . , p and some constant
λ; where the λi's are the eigenvalues of Σ. Thus, a measure of sphericity is given
by

a2
a21

− 1, (16)

which is equal to zero if and only if λi = λ, for i = 1, 2, . . . , p. Therefore, a test
for (2) can be based on an estimator of (16), where the null hypothesis should
be rejected if the observed value of the estimator is greater than some speci�c
amount.

Consider the unbiased estimators of a1 and a2 of lemma 1. De�ne

T1s =
n

2

(
â2s
â21

− 1

)
.

We have the following result given by Srivastava (2005).

Theorem 9. Consider the assumptions (11). Under H0 : Σ = λIp, when
n, p → ∞, we have

T1s
d−→ N(0, 1).

Thus, a level α test for (2) based on T1s rejects H0 if T1s > zα, where zα the
upper α×100% point of the standard normal distribution. This test will be called
the level α Srivastava's test T1s for (2).

Consider â2 given by (12). Substituting â2 by â2s in T1s we get

T1 =
n

2

(
â2
â21

− 1

)
.

The next result is provided by Srivastava et al. (2014).

Theorem 10. Consider N = O(pδ), 1/2 < δ < 1. Under H0 : Σ = λIp, when
n, p → ∞, we have

T1
d−→ N(0, 1).

Therefore, a level α test for (2) based on T1 rejects H0 if T1 > zα, where zα is
the upper α× 100% point of the standard normal distribution. We called this test
the level α Srivastava's test T1 for (2).
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3.5. Zou's (Z) Test

The next test was proposed by Zou et al. (2014). They proposed a test for (2)
considering a random sample from a p-variate elliptical distribution, in the high
dimensional context. Their proposal is a modi�cation of the sign test statistic
(Hallin & Paindaveine (2006)), which is de�ned by mimicking John's test statistic
given by (15), considering the multivariate sign function.

Let X1, . . . , Xn be random vectors from a p-variate elliptical distribution with
density function of the form

det(Σp)
−1/2gp(∥Σ−1/2

p (X − θp)∥),

where ∥X∥ = (X ′X)1/2 is the Euclidean norm of the vector X, θp is the symmetry
centre, Σp is a positive-de�nite symmetric p × p scatter matrix, and gp is a non-
negative function of a real variable. The matrix Σp that describes the covariances
between the p variables can be expressed as Σp = σpΛp, where σp = σ(Σp) is a scale
parameter and Λp = σ−1

p Σp is a shape matrix. The scale parameter is assumed to
satisfy σ(Ip) = 1 and σ(aΣp) = aσ(Σp) for all a > 0. We are interested in testing
H0 : Σp = λIp, which is equivalent to Λp = Ip.

The multivariate sign function is de�ned as

U(X) = ∥X∥−1X, for all X ̸= 0.

The observed signs for Xi, i = 1, 2, . . . , n, are

Ui = U(Xi − θp).

Let X1, . . . , Xn be random vectors from the multivariate normal distribution
Np(µ,Σ). The multivariate normal distribution is an elliptical distribution, for

which θp = µ and its estimator is given by θ̂n,p = X. Consider the statistic

Q̃ =
p

n(n− 1)

∑
i ̸=j

(Û ′
i Û

′
j)

2 − 1,

where Ûi = U(Xi − X). This statistic is a modi�ed version of the sign test
statistic given in Hallin & Paindaveine (2006). Let Ri =∥ Xi − µ ∥ and consider
the following assumption.

Assumption 1. The moments E(R−k
i ) for k = 1, 2, . . . , 4 exist for large enough p;

and E(R−k
i )/E(R−1

i )k → dk ∈ [1,∞) as p → ∞, where the dk are constants, for
k = 2, 3, 4.

In the supplementary material of Zou et al. (2014) is veri�ed Assumption 1 for
the multivariate normal distribution, the multivariate t distribution, and mixtures
of multivariate normal distributions. The following result of Zou et al. (2014) gives
the asymptotic distribution of Q̃.

Theorem 11. Under H0 : Σ = λIp and Assumption 1, if p = O(n2), then

Q̃− pδn,p
σ̃0

d−→ N(0, 1)
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as n, p → ∞, where σ̃2
0 = 4(p− 1)/[n(n− 1)(p+ 2)] and

δn,p =
1

n2

(
2− 2E(R−2

i )

E(R−1
i )2

+

[
E(R−2

i )

E(R−1
i )2

]2)

+
1

n3

[
8E(R−2

i )

E(R−1
i )2

− 6

(
E(R−2

i )

E(R−1
i )2

)2

+
2E(R−2

i )E(R−3
i )

E(R−1
i )5

− E(2R−3
i )

E(R−1
i )3

]
.

(17)

The unknown quantities in δn,p are E(R−2
i )/E(R−1

i )2 and E(R−3
i )/E(R−1

i )3,
which can be estimated as follows. Let

R̂i = ∥Xi − θ̂n,p∥, R̂i∗ = R̂i + θ̂′n,pÛi − 2−1R̂−1
i ∥θ̂n,p∥2.

Thus, substituting
E(R−k

i )/E(R−1
i )k

by

nk−1
∑n

i=1 R̂
−k
i∗

(
∑n

i=1 R̂
−1
i∗ )k

in (17) we obtain an estimator of δn,p, denoted by δ̂n,p.

Therefore, a level α test for (2) based on the statistic Q̃ rejects H0 if

(Q̃ − pδ̂n,p)/σ̃0 > zα, where zα is the upper α × 100% point of the standard
normal distribution. We called this test the level α Zou's (Z) test for (2).

4. Simulation Study

In this section we present a simulation study to compare the tests presented
before, in terms of the size and power of the test. For both hypothesis testing
problems (1) and (2), we consideredM = 10, 000 random samples of size N = n+1
from the p-variate standard normal distribution. We considered several values of
n and p. For the case n > p, we �xed n = 500 and took �ve values of p less than
n; and for the case p ⩾ n, we �xed p = 500 and took �ve values of n less than p.
We considered the signi�cance level α = 0.05 for all the tests, and we calculated
the empirical size of each test, given by the proportion of rejections of H0 with
the test. If a test is good in terms of the size of the test, its empirical size should
be very close to the signi�cance level.

To evaluate the power of the tests, for some values of p and n, we compute
the empirical power of each test, given by the proportion of rejections of H0

under H1 with the test, considering random samples from the multivariate normal
distribution with zero mean and covariance matrix in a subset of matrices satisfying
the alternative hypothesisH1. The covariance matrices of this subset have the form

Σ = Ip + hvv′,

where h is a positive scalar and v is a unit vector. Observe that this covariance
matrix is a slightly deviation from the identity matrix when h is very small, and
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it becomes very di�erent from the identity when h increases. The vector v was
randomly generated in the following way: we �rst generated a random vector from
the p-variate standard normal distribution, then we divided each entry by the
norm of the random vector in order to obtain a unit vector. The scalar h varied
in a range of adequate values. This range is chosen in such a way that we can
observe how the values of the empirical powers are close to one when h increases.
Since the empirical powers may change for di�erent values of p and n, the range
of values of h may also vary.

For the tests that consider a random sample from the Np(µ,Σ), we compute the
test statistics with the original data. For the tests that consider a random sample
from the Np(0,Σ), which are the CM test and the QLRT, we �rst transform
the data to a random sample of size n = N − 1 from the Np(0,Σ), using the
transformation of multivariate normal data given in the Appendix A. We also
present in Appendix A the general ideas of the algorithms used in the simulations
to compute the empirical sizes and empirical powers of the tests. We used the
software R (https://www.r-project.org) to perform the simulation study.

4.1. Simulations for H0 : Σ = Ip

The considered tests for (1) are: LRT1, TW, LW, CLRT, CM, T2s, T2. For the
classical case (p < n) all the tests can be applied, and for the high dimensional
case (p ≥ n) all the tests, except LRT1 and CLRT, can be applied.

4.1.1. Empirical Sizes of the Tests

The results of the empirical sizes of the tests are shown in tables 1 and 2. In
these tables we observe the following:

1. The empirical sizes of TW, LW, CM, T2s and T2 are very close to the
signi�cance level, for the cases p < n and p ≥ n, this means that these
tests are good in terms of the size of the test.

2. On the other hand, LRT1 is not good, since its empirical sizes are far from
the considered signi�cance level. When p approaches to n the empirical size
approaches to 1, however this test can be good if n is large enough with
respect to p.

3. CLRT corrects the problem of LRT1, since its empirical sizes are very close
to the considered signi�cance level, actually when p approaches to n the
behavior of the empirical size of CLRT is better.

4.1.2. Empirical powers of the tests

The results of the empirical powers of the tests by varying h, are presented in
the tables 3 and 4. The �gures 1 and 2 illustrate the behavior of the empirical
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Table 1: Empirical sizes of the tests for H0 : Σ = Ip, case p < n.

n, p LRT1 TW CLRT LW CM T2s T2

500,25 0.0740 0.0498 0.0555 0.0541 0.0526 0.0546 0.0552

500,50 0.2240 0.0480 0.0526 0.0538 0.0519 0.0541 0.0535

500,100 0.9753 0.0520 0.0526 0.0539 0.0527 0.0525 0.0531

500,200 1 0.0517 0.0513 0.0493 0.0500 0.0491 0.0500

500,400 1 0.0536 0.0509 0.0492 0.0487 0.0495 0.0503

Table 2: Empirical sizes of the tests for H0 : Σ = Ip, case p ⩾ n.

n, p TW LW CM T2s T2

25,500 0.0503 0.055 0.0537 0.0541 0.0591

50,500 0.0494 0.0504 0.0509 0.0491 0.0514

100,500 0.0526 0.0527 0.0483 0.0485 0.0491

200,500 0.051 0.0549 0.0547 0.0546 0.0546

400,500 0.0528 0.0501 0.0516 0.0498 0.0508

powers of the tests for the classical case (p < n) and the high dimensional case
(p ⩾ n), respectively. We observe the following:

1. For p < n and p ≥ n, the empirical powers of the tests are good when h
increases, since they are equal to or approximately one.

2. For p < n the empirical power of the TW test is bigger than the
corresponding to the rest of the tests, except LRT1. For p ≥ n the empirical
power of the TW test has the best behavior.

3. Despite that the empirical power of LRT1 is one for all values of h when
n = 500 and p = 200, this test is bad in terms of the size (see Table 1),
therefore it is not recommended in this case.

4. Even when the empirical power of CLRT is the smallest, it has an acceptable
behavior.

5. The empirical powers of LW, CM, T2s and T2 are very close between them
that their graphs are almost indistinguishable for both cases, p < n and
p ≥ n. This may be due to the fact that the test statistics of these tests are
based on estimators of the squared Frobenius norm ∥ Σ−Ip ∥2F= tr[(Σ−Ip)

2].

4.2. Simulations for H0 : Σ = λIp

The considered tests for (2) are: LRT2, J, QLRT, T1s, T1 and Z. For the case
n > p all the tests, except QLRT, can be applied; whereas for the case p ≥ n all
the test, except LRT2, can be applied.
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Table 3: Empirical powers of the tests for H0 : Σ = Ip, case p < n.

n = 500, p = 50

h LRT1 TW CLRT LW CM T2s T2

0.3 0.3494 0.1884 0.104 0.1266 0.1215 0.1255 0.1263

0.6 0.6777 0.9047 0.3514 0.5456 0.5373 0.5413 0.5425

0.9 0.9405 0.9997 0.7731 0.9543 0.9514 0.9524 0.9526

1.2 0.9964 1 0.9729 0.9994 0.9992 0.9993 0.9993

1.5 1 1 0.9986 1 1 1 1

n = 500, p = 200

h LRT1 TW CLRT LW CM T2s T2

0.5 1 0.1172 0.0751 0.095 0.0948 0.0945 0.0955

1 1 0.8746 0.1596 0.3575 0.3535 0.3538 0.3554

1.5 1 0.9998 0.3455 0.8389 0.8363 0.8361 0.8371

2 1 1 0.6014 0.9945 0.9943 0.9944 0.9943

2.5 1 1 0.8295 0.9999 0.9999 0.9999 0.9999

Table 4: Empirical powers of the tests for H0 : Σ = Ip, case p ⩾ n.

p = 500, n = 50

h TW LW CM T2s T2

1.9 0.0911 0.077 0.0739 0.0732 0.0763

3.8 0.3753 0.196 0.1881 0.1877 0.1935

5.7 0.7866 0.4707 0.4638 0.4686 0.4716

7.6 0.9577 0.7576 0.745 0.7551 .7514

9.5 0.9932 0.9139 0.9096 0.916 0.9148

p = 500, n = 200

h TW LW CM T2s T2

1.2 0.1086 0.0943 0.0935 0.0945 0.0945

2.4 0.796 0.3261 0.3241 0.322 0.3211

3.6 0.9985 0.7751 0.7703 0.7735 0.7726

4.8 1 0.9788 0.9771 0.979 0.9784

6 1 0.9994 0.9993 0.9994 0.9994

4.2.1. Empirical Sizes of the Tests

The results of the empirical sizes of the tests are in the tables 5 and 6. We
observe the following:

1. The empirical sizes of J, T1s, T1 y Z are very close to the signi�cance level,
for p < n and p ⩾ n, therefore they have a good behavior in terms of the
size of the test.

2. On the other hand, for p < n, LRT2 has empirical size close to the
signi�cance level when n is large enough with respect to p, but it has a
bad behavior when p is close to n.
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(a) p = 50, n = 500 (b) p = 200, n = 500

Figure 1: Empirical powers of the tests for H0 : Σ = Ip, case p < n.

(a) p = 500, n = 50 (b) p = 500, n = 200

Figure 2: Empirical powers of the tests for H0 : Σ = Ip, case p ⩾ n.

3. For p ⩾ n, QLRT has good behavior of the empirical size only when p is
large enough with respect to n. When n approaches to p the empirical size
approaches to one.

Table 5: Empirical sizes of the tests for H0 : Σ = λIp, case p < n.

n, p LRT2 J T1s T1 Z

500,25 0.0475 0.0493 0.0492 0.0497 0.052

500,50 0.0505 0.0515 0.052 0.0519 0.0534

500,100 0.0676 0.0526 0.0515 0.0522 0.0501

500,200 0.3673 0.0488 0.0493 0.049 0.0491

500,400 1 0.0497 0.0491 0.0496 0.0502
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Table 6: Empirical sizes of the tests for H0 : Σ = λIp, case p ⩾ n.

n, p J QLRT T1s T1 Z

25,500 0.054 0.0615 0.0537 0.0586 0.0604

50,500 0.0498 0.0629 0.049 0.051 0.0519

100,500 0.0519 0.1313 0.0481 0.0489 0.0511

200,500 0.0545 0.9593 0.0546 0.0543 0.0536

400,500 0.0499 1 0.0497 0.0504 0.052

4.2.2. Empirical Powers of the Tests

The results of the empirical powers of the tests by varying h, are presented in
the tables 7 and 8. The �gures 3 and 4 illustrate the behavior of the empirical
powers of the tests for the cases p < n and p ⩾ n. We observe the following:

1. For p < n and p ≥ n, the empirical powers of the tests are good when h
increases, since they are equal or approximately one.

2. For the cases p < n and p ≥ n, the empirical powers of J, T1s, T1 and Z
are very close between them that their graphs are almost indistinguishable.
This may be due to the fact that the test statistics of J, T1s and T1 are
based on estimators of the measure of sphericity a2/a

2
1 − 1, with ai given by

expression (10), and the test statistic of the Z test is similar to the statistic
of the J test.

3. For the case n = 500 and p = 50, the empirical powers of J, T1s, T1 and Z
are bigger than the corresponding to LRT2, however the empirical power of
the last one is good when h increases.

4. When n = 500, p = 200 and h = 0.5, 1, LRT2 has bigger empirical power
than J, T1s, T2 and Z, however LRT2 has a bad behavior in terms of the size
of the test (see Table 5), hence it is not recommendable in this case.

5. When p = 500, n = 50 and h ≥ 3.8, the empirical powers of J, T1s, T1 and
Z are bigger than the corresponding to QLRT.

6. When p = 500 and n = 200, for all the considered values of h, QLRT has
the biggest empirical power, however the size of this test is bad (see Table
6), therefore this test is not recommendable in this case.

5. Examples of Application

In this section we apply the tests for (1) and (2) in the high dimensional context
(p ⩾ n) to two sets of DNA microarray data found in the literature. It is worth to
mention that, in real applications with DNA microarray data, where there is an
expert of the dataset that can suggest a form for the covariance matrix, frequently
it is of interest to test H0 : Σ = Σ0 vs H1 : Σ ̸= Σ0, for some speci�c covariance
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Table 7: Empirical powers of the tests for H0 : Σ = λId, case p < n.

n = 500, p = 50

h LRT2 J T1s T1 Z

0.3 0.0987 0.1161 0.1159 0.1158 0.1108

0.6 0.3323 0.5133 0.5133 0.5115 0.4691

0.9 0.7453 0.9423 0.9427 0.9423 0.9139

1.2 0.9649 0.9989 0.999 0.9989 0.9978

1.5 0.998 1 1 1 1

n = 500, p = 200

h LRT2 J T1s T1 Z

0.5 0.4466 0.0921 0.0927 0.0931 0.0924

1 0.6174 0.3445 0.3441 0.3443 0.3309

1.5 0.8065 0.8287 0.8286 0.8287 0.8052

2 0.9349 0.9935 0.9934 0.9936 0.9905

2.5 0.9849 0.9999 0.9999 0.9999 0.9999

Table 8: Empirical powers of the tests for H0 : Σ = λIp, case p ⩾ n.

p = 500, n = 50

h J QLRT T1s T1 Z

1.9 0.0745 0.0841 0.0699 0.0744 0.0722

3.8 0.1865 0.1672 0.1813 0.1863 0.1716

5.7 0.4546 0.3466 0.4573 0.4582 0.4249

7.6 0.7424 0.5834 0.7436 0.7401 0.7031

9.5 0.908 0.782 0.9106 0.91 0.8834

p = 500, n = 200

h J QLRT T1s T1 Z

1.2 0.0929 0.9714 0.092 0.0925 0.0923

2.4 0.319 0.9902 0.3151 0.3156 0.3083

3.6 0.7653 0.9979 0.7656 0.7653 0.7434

4.8 0.9768 0.9995 .9775 0.9767 0.9695

6 0.9992 1 0.9993 0.9994 0.999

matrix Σ0 �xed by the expert. As mentioned in previous sections, to test the last
null hypothesis we can transform the data and test (1) based on the transformed
dataset. Since the objective of this work is not the study of some speci�c datasets,
and we do not have an expert of the considered data found in the literature, we
only consider the null hypotheses in (1) and (2) to illustrate the implementation
of the tests and to observe their behavior.

For the high dimensional context we considered the following tests: TW, J,
LW, QLRT, CM, T1s, T2s, T1, T2 and Z. The p-value of each test was calculated.
We took the signi�cance level α = 0.05.

Since all of the considered tests for the high dimensional context take a random
sample from the Np(µ,Σ), except QLRT that consider a random sample from the
Np(0,Σ), for the last test we applied the transformation of multivariate normal
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(a) p = 50, n = 500 (b) p = 200, n = 500

Figure 3: Empirical powers of the tests for H0 : Σ = λIp, case p < n.

(c) p = 500, n = 50 (d) p = 500, n = 200

Figure 4: Empirical powers of the tests for H0 : Σ = λIp, case p ⩾ n.

data given in Appendix A before the application of this test. Because the real
datasets might not be scaled to have covariance matrix equal to the identity matrix,
the datasets are scaled by λ̂−1/2, where λ̂ = tr(Sn)/p, before the application of
the tests for (1), as suggested in Ma (2012).

5.1. DLBCL Data

We consider the DNA microarray data of Rosenwald et al. (2002), which
correspond to patients with di�use large B-cell lymphoma (DLBCL). This dataset
considers 7399 genes and 240 patients. The values of the test statistics for
the hypothesis testing problems (1) and (2) are shown in the tables 9 and 10,
respectively.
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For each test in the tables 9 and 10 the value of the statistic was very large,
and then the p-value was approximately zero. Due to the p-values of all the tests
are approximately zero, we are strongly rejecting both null hypotheses. Therefore,
considering, say, the signi�cance level α = 0.05, we have statistical evidence to
reject H0 : Σ = Ip and H0 : Σ = λIp with all the considered tests.

Since the hypotheses H0 : Σ = Ip and H0 : Σ = λIp were rejected, we conclude
that the population covariance matrix of the data has not these structures. This
was expected, because it is known that there exists correlation between the genes
of the same individual.

Table 9: Values of the test statistics for H0 : Σ = Ip considering the DLBCL data.

Test Value of the test statistic

LW 80.19308

TW 2035.514

T2s 5859.268

T2 5820.955

CM 361737.7

Table 10: Values of the test statistics for H0 : Σ = λIp considering the DLBCL data.

Test Value of the test statistic

J 231.2596

QLRT 5263.1241

T1s 23836.63

T1 23679.95

Z 181.0721

5.2. NCI60 Data

We now consider the NCI microarray data of Ross et al. (2000). The data
contains expression levels on 6830 genes from 64 cancer cell lines. The values
of the tests statistics for testing (1) and (2) are shown in the tables 11 and 12,
respectively.

For each test in the tables 11 and 12 the value of the statistic was very large,
and then the p-value was approximately zero. Due to the p-values of all the tests
are approximately zero, we are strongly rejecting both null hypotheses. Therefore,
considering, say, the signi�cance level α = 0.05, we have statistical evidence to
reject H0 : Σ = Ip and H0 : Σ = λIp with all the considered tests.

Therefore, we conclude that the population covariance matrix of the data has
not these structures. As in the last example, this conclusion was expected, because
it is known that there exists correlation between the genes of the same individual.
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Table 11: Values of the test statistics for H0 : Σ = Ip considering the NCI60 data.

Test Value of the test statistic

LW 188.7283

TW 676.3819

T2s 2491.531

T2 2459.416

CM 514277.4

Table 12: Values of the test statistics for H0 : Σ = λIp considering the NCI60 data.

Test Value of the test statistic

J 315.2971

QLRT 2988.593

T1s 6417.741

T1 6334.869

Z 176.9723

6. Conclusions

In this work we studied tests for the covariance matrix of multivariate Gaussian
data. Our main interest was the case when the dimension of the data is greater
than or equal to the sample size (high dimensional case), however we also studied
tests for the case when the sample size is greater than the dimension of the data
(classical case). We considered the null hypotheses H0 : Σ = Ip and H0 : Σ = λIp.

The simulation study of this work to analyze the behavior of the tests for
H0 : Σ = Ip, indicates that in the considered settings, for the classical case (p < n)
and the high dimensional case (p ≥ n), the tests TW, CLRT, LW, CM, T2s and
T2 have a good behavior in terms of the size of the test, since the empirical sizes
were very close to the considered signi�cance level. For the case p < n, LRT1

had empirical sizes far away from the considered signi�cance level when p was
close to n, and the empirical sizes of CLRT have a better behavior than those
of LRT1. In terms of the power of the test, the TW test was superior to the
other considered tests. Despite the empirical powers of the tests CLRT, LW, CM,
T2s and T2 are smaller than that of TW, these tests are good alternatives for the
considered settings. It is important to mention that although in some cases LRT1

had empirical power bigger than the corresponding to the TW test, this test is
not recommendable in those cases, since it has a bad behavior in terms of the size
of the test. Therefore, for the considered settings, the TW test is a very good
alternative for testing H0 : Σ = Ip, in both cases, p < n and p ≥ n, since it had
good results in terms of size and power of the test.

The simulations to evaluate the tests for H0 : Σ = λIp, indicated that in
the considered settings, for the classical and the high dimensional cases, the tests
J, T1s, T1 and Z have a good behavior in terms of the size of the test, since
the empirical sizes were very close to the considered signi�cance level. Whereas,
LRT2 and QLRT in some cases had empirical sizes far away from the considered
signi�cance level. LRT2 had a good behavior only when n is large enough with
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respect to p, and QLRT had a good behavior only when p is large enough with
respect to n. The empirical powers of the tests J, T1s, T1 and Z had a good
behavior for both cases, p < n and p ≥ n. The empirical powers of LRT1 and
QLRT in some cases were bigger than the corresponding to the other considered
tests, however they had a bad behavior in terms of the size of the test, thus they
are not recommendable in those cases. Therefore, for the considered settings, the
tests J, T1s, T1 and Z are very good alternatives for testing H0 : Σ = λIp in both
cases, p < n and p ≥ n, since they had good results in terms of size and power of
the test.

The results obtained in this work are useful to have a better knowledge of the
behavior of several tests of the literature for the covariance matrix of multivariate
Gaussian data, by comparing the tests simultaneously in terms of size and power
of the test.

On the other hand, we applied the tests to real data found in the literature.
For the examples of application we considered two sets of DNA microarray data,
and with all the tests we rejected the two null hypotheses H0 : Σ = Ip and
H0 : Σ = λIp, considering the signi�cance level α = 0.05. Therefore, we concluded
that the covariance matrices of these datasets are not equal nor proportional to
the identity matrix. This conclusion was expected, since it is well known that
there exist high correlations between the genes of the same individual. These
examples show the usefulness of the considered tests to analyze the structure of
the covariance matrix of DNA microarray data.
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Appendix A. Details of the Simulations

Transformation of Multivariate Normal Data

By Anderson (1984, pp. 76), if X1, X2, . . . , XN is a random sample from the
Np(µ,Σ), we can obtain from it a random sample Z1, Z2, . . . , Zn, with n = N − 1,
from the Np(0,Σ), such that the sample covariance matrix of the Xi's, Sn, satis�es
nSn =

∑n
i=1 ZiZ

′
i. The procedure to obtain the new random sample is the

following:

1. Take an N × N orthogonal matrix B = (bi,j) with the last row equal to

A′ = (1/
√
N, 1/

√
N, . . . , 1/

√
N)′. To do this, let C = [e1 e2 · · · eN−1]

be the matrix whose j-th column is the p-dimensional unit vector ej , with
one in the j-th entry and zeros in the rest, for j = 1, 2, . . . , N − 1. De�ne
D = C−AA′C and E = OΛ−1/2, where O is an (N−1)×(N−1) orthogonal
matrix and Λ is a (N−1)×(N−1) diagonal matrix such that D′D = OΛO′.

De�ne B̃ = DE. Then the matrix

B =

[
B̃′

A′

]

is an N ×N orthogonal matrix with the last row equal to A′.

2. De�ne Zi =
∑N

j=1 bi,jXj , for j = 1, 2, . . . , N . Then the Zi's are
independent, Z1, Z1, . . . , ZN−1 have distribution Np(0,Σ) and ZN has

distribution Np(
√
Nµ,Σ). Furthermore, nSn =

∑n
i=1 ZiZ

′
i.

Algorithms for the Simulations

Now we present the general ideas of the algorithms used on the simulations to
compute the empirical sizes and empirical powers of the tests.

Consider the tests for the hypothesis testing problem (1) (or (2)). For speci�c
values of n and p, the following algorithm was used to compute the empirical sizes
of the tests.

Algorithm 1. (Empirical sizes of the tests)

1. Generate a random sample of size N = n + 1 from the p-variate standard
normal distribution.

2. For the tests that consider random samples from the Np(µ,Σ), compute the
test statistics with the original data. For the tests that consider random
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samples from the Np(0,Σ), transform the original data to a random sample
of size n = N − 1 from the Np(0,Σ), as described in the previous section,
then compute the test statistics with the new random sample.

3. Taking the signi�cance level α = 0.05, record for each test whether the null
hypothesis was rejected.

4. Repeat the last steps M = 10, 000 times, and take the proportion of times
that each test was rejected. These proportions are the empirical sizes of the
tests.

As mentioned before, to evaluate the power of the tests we considered
covariance matrices of the form

Σ = Ip + hvv′, (18)

where h is a positive scalar and v is a unit vector. The vector v is randomly
generated and the scalar h varies in a range of values, say, in the interval [0, r], for
some r > 0. For speci�c values of n, p and r, the following algorithm was used to
compute the empirical powers of the tests.

Algorithm 2. (Empirical powers of the tests)

1. Generate a random vector from the p-variate standard normal distribution,
then compute its norm and divide by it each entry of the vector. Call the
resulting unit vector ṽ.

2. Let h = (h1, h2, . . . , h5)
′, where hi = i ∗ r/5, for i = 1, 2, . . . , 5.

3. For i = 1, generate a random sample of size N = n + 1 from the p-variate
normal distribution with zero mean and covariance matrix (18), with v = ṽ
and h = hi.

4. For the tests that consider random samples from the Np(µ,Σ), compute the
test statistics with the original data. For the tests that consider random
samples from the Np(0,Σ), transform the original data to a random sample
of size n = N − 1 from the Np(0,Σ), as described in the previous section,
then compute the test statistics with the new random sample.

5. Taking the signi�cance level α = 0.05, record for each test whether the null
hypothesis was rejected.

6. Repeat M = 10, 000 times the steps 3�5, and take the proportion of times
that each test was rejected. These proportions are the empirical powers of
the tests for the covariance matrix (18), with v = ṽ and h = hi.

7. For i = 2, 3, 4, 5, repeat the steps 3�6 to obtain the empirical powers of the
tests for the covariance matrix (18), with v = ṽ and h = hi, for i = 2, 3, 4, 5.
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