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Abstract

At the entropy measures and their generalization path, in the direction
of statistics and information science, recently, Sunoj & Linu (2012) proposed
the cumulative residual Renyi's entropy of order α and its dynamic version
and studied its main properties. In this paper, we introduce an alternative
measure of cumulative residual Renyi's entropy (CRRE) of order α which,
unlike the mentioned one, is positive for all distributions and all values of α.
We also consider its dynamic version and study their main properties in the
context of reliability theory and stochastic orders. We give an estimator of
the proposed CRRE and investigate its exact and asymptotic distribution.
Numerous examples illustrating the theory are also given.

Key words: Aging classes; Cumulative residual entropy, Mean residual
lifetime, Stochastic orders, Shannon entropy, Tsallis entropy.

Resumen

En las medidas de entropía y su camino de generalización, en la dirección
de las estadísticas y la ciencia de la información, recientemente, Sunoj &
Linu (2012) propuso el residual acumulativo la entropía de Renyi de orden
α y su versión dinámica y se estudiaron sus principales propiedades. En
este artículo presentamos una medida alternativa de la entropía residual
acumulada de Renyi (CRRE) de orden α que, a diferencia de la mencionada,
es positiva para todas las distribuciones y todos los valores de α. También
consideramos su versión dinámica y estudiamos sus principales propiedades
en el contexto de la teoría de la con�abilidad y los órdenes estocásticos.
Damos un estimador del CRRE propuesto e investigamos su distribución
exacta y asintótica. También se dan numerosos ejemplos que ilustran la
teoría.

Palabras clave: Clases de envejecimiento; Entropía residual acumulada;
Entropía de Shannon, Entropía de Tsallis; Vida útil residual media; Órdenes
estocásticas.
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1. Introduction

It is well-known that the approach in Shannon (1948) was one of the �rst
works for mathematically quantifying of the information entropy that employed the
probability and chance notion and linked between these two notions. Considering
di�erent point of views, various generalizations of Shannon's entropy have been
given by many researchers. For a comprehensive entropy-related works review and
the history of the derivation of Shannon's entropy and its di�erent generalizations,
we refer the reader to Nanda & Chowdhury (2019). It is worth to mention that
Shannon's entropy and its di�erent versions were �rstly introduced for the discrete
probability spaces. The continuous versions of the entropy measures have been
usually given by replacing the sum notation with the integral, straightforwardly.
Among the several generalizations of Shannon's entropy, Rényi (1961) has
introduced an important one which for a non-negative continuous random variable
X with density function f(x) is given by

Eβ(X) =
1

1− β
log(

∫ ∞

0

fβ(x)dx), β ̸= 1, β > 0,

where log is the natural logarithm. The dynamic version of Eβ(X) has been
studied by Abraham & Sankaran (2005). However, the density function is not
necessarily exist for all random variables. On the other hand, the obtained entropy
measures by the density function may does not have the required main properties
of an information measure. For example, they may take negative values (see,
Figure 1 for a plot of Eβ(X)). Regarding these and other limitations, alternative
generalizations of entropy measures have been introduced by researchers through
replacing the density function with the survival and distribution functions. This
kind of generalization has been started by Rao et al. (2004) when they proposed
the generalized version of Shannon's entropy as

E(X) = −
∫ ∞

0

F̄ (x)logF̄ (x)dx,

where F̄ (x) = 1 − F (x) is the survival function of random variable X with
distribution function F . Recently, motivated by the usefulness of Renyi's entropy
and Rao et al.'s cumulative residual entropy (CRE) measure, Sunoj & Linu (2012)
have introduced cumulative residual Renyi's entropy (CRRE) of order β as

γ(β) =
1

1− β
log(

∫ ∞

0

F̄ β(x)dx), β ̸= 1, β > 0.

They also considered the dynamic version of the CRRE (DCRRE, by extending
it to the residual lifetime variable) and studied its main properties useful in
reliability modelling.

As Figure 1 depicts, γ(β) has still the drawback that it may take negative
values for some distributions. It is also worth to recall that the Tsallis entropy is
one of the well-known entropy measures which its cumulative version of order α
(CTE) has been introduced by Rajesh & Sunoj (2019) as
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Figure 1: Plots of Eβ(X) and γ(β).

Tα(X) =
1

α− 1

∫ ∞

0

[F̄ (x)− F̄α(x)]dx, α ̸= 1, α > 0. (1)

Here, Tα(X) is always positive.

In this paper, by re-parametrization of γ(β) (replacing β by α + 1) and by
normalizing it, we propose an alternative measure of the CRRE of order α by the
following:

γα(X) = − 1

α
log

(∫∞
0

F̄α+1(x)dx∫∞
0

F̄ (x)dx

)
, α > 0. (2)

It is clear that γα(X) is always positive. The rest of the paper is organized
as follows. In Section 2, we �rst give the main properties of γα(X). Comparing
values of the CRRE under various stochastic orders between random variables
are also studied in this section. Section 3 is devoted to the dynamic CRRE
and its properties. The estimation of the proposed CRRE and its properties are
investigated in Section 4. Finally, some conclusions are given in Section 5.

Before proceeding to give the main results of the paper, we overview some
preliminary concepts of ageing and stochastic orders (For more details of these
concepts see, for example, Shaked & Shanthikumar, 2007).

Let X and Y be non-negative random variables with the distribution functions
F and G, survival functions F̄ = 1− F and Ḡ = 1−G, hazard functions

λX(t) = − d

dt
log F̄ (t) and λY (t) = − d

dt
log Ḡ(t),

and mean residual life functions

mX(t) =
1

F̄ (t)

∫ ∞

t

F̄ (x)dx and mY (t) =
1

Ḡ(t)

∫ ∞

t

Ḡ(x)dx,
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respectively. Throughout this paper we assume that these functions all exist and
increasing (decreasing) means non-decreasing (non-increasing).

De�nition 1. The random variable X is said to be:

(i) increasing (decreasing) failure rate in average, IFRA (DFRA), if − 1
t log F̄ (t)

is increasing (decreasing) in t,

(ii) new better (worse) than used, NBU(NWU), if F̄ (x + t) ≤ (≥)F̄ (x)F̄ (x), for
all x, t > 0,

(iii) new better (worse) than used in expectation, NBUE(NWUE), if mX(t) ≤ (≥
) mX(0), for all t > 0,

(iv) increasing (decreasing) mean residual life (IMRL(DMRL)) if mX(t) is
increasing (decreasing) in t,

(v) smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if
F̄ (t) ≤ Ḡ(t) for all t,

(vi) smaller than Y in the hazard rate ordering (denoted by X ≤hr Y ) if
λX(t) ≥ λY (t) for all t,

(vii) smaller than Y in the mean residual lifetime ordering (denoted byX ≤mrl Y )
if mX(t) ≤ mY (t) for all t,

(viii) smaller than Y in the DMRL order (denoted by X ≤dmrl Y ) if
mY (G−1(u))
mX(F−1(u))

is increasing in u ∈ [0, 1],

(ix) smaller than Y in the NBUE order (denoted by X ≤nbue Y ) if
mX(F−1(u))
mY (G−1(u)) ≤

E[X]
E[Y ] for all u ∈ [0, 1],

(x) smaller than Y in the increasing convex order (denoted by X ≤icx Y ) if
E[ϕ(X)] ≤ E[ϕ(Y )], for all increasing convex functions ϕ,

(xi) smaller than Y in the dispersive order (denoted by X ≤disp Y ) if F−1(β)−
F−1(α) ≤ G−1(β)−G−1(α), whenever 0 < α ≤ β < 1,

(xii) smaller than Y in the Lorenz order (denoted by X ≤L Y ) if
1

E(X)

∫ u

0
F−1(v)dv ≥ 1

E(Y )

∫ u

0
G−1(v)dv for all u ∈ [0, 1].

2. Some Properties of γα(X)

Note that γα(X) can also be written as

γα(X) = − 1

α
log(E[F̄α(Xe)]), (3)

where, Xe is the equilibrium random variable corresponding to X with density

function fe(x) =
F̄ (x)
µ , µ = E[X] =

∫∞
0

F̄ (x)dx. The following theorem gives the

main properties of the CRRE γα(X) for α > 0.
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Theorem 1. (a) γα(X) ≥ 0.

(b) γα(X) is decreasing in α.

(c) limα→0 γα(X) = E(X)
µ .

(d) If Y = aX, a > 0, then γα(Y ) = γα(X).

(e) Tα+1(X)
µ ≤ γα(X) ≤ E(X)

µ .

(f) γα(X) ≥ − 1
α log

(
α+1
2αµE

1−α[X
1

1−α ]
)
, for 0 < α < 1.

Proof . We only give the proof of parts (b), (e) and (f). For a proof of (b), use
(3) and the Lyapounov inequality. To prove (e), �rst note that γα(X) can also be
expressed as

γα(X) = − 1

α
log

(
1− α

µ

∫ ∞

0

mX(x)F̄α(x)dF (x)

)
(4)

= − 1

α
log(1− α

µ
Tα+1(X)), (5)

where the last equation follows from equation (7) in Rajesh & Sunoj (2019). Now,

applying the inequality − log(1−x) ≥ x, 0 ≤ x ≤ 1, implies that γα(X) ≥ Tα+1(X)
µ .

On the other hand, using the log-sum inequality we have

γα(X) = − 1

α
log

(∫∞
0

F̄α+1(x)dx∫∞
0

F̄ (x)dx

)
=

1

α
log

( ∫∞
0

F̄ (x)dx∫∞
0

F̄α+1(x)dx

)
≤ E(X)

µ
.

This completes the proof.

To prove part (f), the integration by parts gives that

γα(X) = − 1

α
log

(
α+ 1

µ

∫ ∞

0

xF̄α(x)dF (x)

)
. (6)

The result now follows from Holder's inequality with p = 1
α and q = 1

1−α .

Example 1. Let X be a random variable with a Weibull distribution and survival

function F̄ (x) = e−(λx)β . Then

γα(X) =
1

αβ
log(α+ 1).

Example 2. Let X be distributed as Pareto with survival function F̄ (x) =(
b

b+x

)a
, x, b > 0, a > 1. Then

γα(X) = − 1

α
log

(
a− 1

aα+ a− 1

)
.
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The following theorem compares the CRREs of two random variables when one
is smaller than the other in some stochastic orders.

Theorem 2. (i) If X ≤st Y , then γα(X) ≥ γα(Y )− 1
α log

(
E[Y ]
E[X]

)
, for all α > 0.

(ii) If X ≤icx Y and E[X] = E[Y ], then γα(X) ≤ γα(Y ), for all α > 0.

(iii) If X ≤nbue Y , then γα(X) ≤ γα(Y ), for all α > 0.

(iv) If X ≤L Y , then γα(X) ≤ γα(Y ), for all α > 0.

Proof .

For part (ii), �rst note that the CTE given in (1) can also be rewritten as

Tα(X) =
1

α− 1

∫ ∞

0

F−1(u)[1− α(1− u)α−1]du. (7)

This along with Theorem 4.A.4 in Shaked & Shanthikumar (2007, p. 183) implies
that if X ≤icx Y , then Tα+1(X) ≤ Tα+1(Y ). Part (ii) now follows from (5) and
the hypothesis E[X] = E[Y ].

To prove part (iii), one can see that equation (4) can also be given as

γα(X) = − 1

α
log

(
1− α

E[X]

∫ 1

0

mX(F−1(u))(1− u)αdu

)
.

The result now follows from the fact that X ≤nbue Y is equivalent to that

mX(F−1(u))

E[X]
≤ mY (G

−1(u))

E[Y ]
, 0 ≤ u ≤ 1,

(see Shaked & Shanthikumar, 2007).

Finally, for the proof of (iv), using the integration by parts, we obtain from
equation (6) that

γα(X) = − 1

α
log((α+ 1)

∫ 1

0

F−1(u)

E(X)
(1− u)αdu)

= − 1

α
log(α(α+ 1)

∫ 1

0

(1− u)α−1LX(u)du), (8)

where LX(u) = 1
E(X)

∫ u

0
F−1(v)dv is the Lorenz curve corresponding to X. The

result now follows from the fact that under the hypothesis, LX(u) ≥ LY (u), for
all u ∈ [0, 1].

It is readily seen from (8) that, for any integer k ≥ 1, γk(X) = − 1
k log(1−Gk),

where Gk is the kth Gini index (see Farris, 2010).
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Remark 1. Note that the CTE can also be given by

Tα(X) =

∫ ∞

0

φF (x;α)dF (x),

where φF (x;α) = 1
α−1

∫ x

0
[1 − F̄α−1(y)]dy is an increasing function of x for all

α > 0. Additionally, X ≤st Y if and only if E[ϕ(X)] ≤ E[ϕ(Y )] for all increasing
function ϕ Shaked & Shanthikumar (2007, p. 4). Thus, X ≤st Y implies that
Tα(X) ≤

∫∞
0

φF (x;α)dG(x) ≤
∫∞
0

φG(x;α)dG(x) = Tα(Y ), for α > 0. Since
limα→1 Tα(X) = E(X), we get that if X ≤st Y , then E(X) ≤ E(Y ). This improves
the inequality given in Proposition 2.1 in Navarro et al. (2010).

Remark 2. One can see from the proof of part (ii) in the above theorem that
if X ≤icx Y , then Tα+1(X) ≤ Tα+1(Y ). Letting α goes to zero implies that if
X ≤icx Y , then E(X) ≤ E(Y ). This relation has been used in Zardasht (2015) to
test the increasing convex order hypothesis.

3. Dynamic Cumulative Residual Renyi's Entropy

If random variable X has survival function F̄ , then, the corresponding residual

lifetime variable Xt = X − t | X > t has survival function F̄t(x) =
F̄ (x)
F̄ (t)

, x > t.

Indeed, if X is the failure time of a new product or an engineering system, Xt

is that of the product or system at its age t. The probability distribution of Xt

and its properties play an important role in reliability and life testing studies. By
replacing F̄ (x) with F̄t(x) in (2), the dynamic CRRE can be de�ned as

γα(X; t) = − 1

α
log

(∫∞
t

(
F̄ (x)/F̄ (t)

)α+1
dx∫∞

t

(
F̄ (x)/F̄ (t)

)
dx

)

= − 1

α
log

( ∫∞
t

F̄α+1(x)dx

F̄α(t)
∫∞
t

F̄ (x)dx

)
, α > 0. (9)

Example 3. Let X be a random variable with a Weibull distribution and survival

function F̄ (x) = e−(λx)β . Then

γα(X; t) = − 1

α
log

(
F̄g((α+ 1)(λt)β)eα(λt)

β

(α+ 1)
1
β F̄g((λt)β)

)
,

where F̄g(.) is the survival function of the gamma distribution with shape and
scale parameters 1

β and 1, respectively.

Example 4. Let X be distributed as power with distribution function F (x) = xβ ,
0 ≤ x ≤ 1, β > 0. Then

γα(X; t) = − 1

α
log

(
Fb(1− tβ , α+ 2, 1

β )B(α+ 2, 1
β )

(1− tβ)αFb(1− tβ , 2, 1
β )B(2, 1

β )

)
,

where, Fb(x, a, b) is the distribution function of a beta random variable with

parameters a and b, and B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function.
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Figure 2 shows the plot of γα(X; t) for the above two examples.

Figure 2: Plot of γα(X; t) for Power and Weibull distribution.

It is clear that γα(X; 0) = γα(X). Analog to equations (4), (5) and (6), the
DCRRE can also be rewritten as

γα(X; t) = − 1

α
log

(
1−

α
∫∞
t

mX(x)F̄α(x)dF (x)

F̄α(t)
∫∞
t

F̄ (x)dx

)
(10)

= − 1

α
log

(
1− αTα+1(X; t)

mX(t)

)
, (11)

= − 1

α
log

(
(α+ 1)

∫∞
t

(x− t)F̄α(x)dF (x)

F̄α+1(t)mX(t)

)
, (12)

where, mX(t) = 1
F̄ (t)

∫∞
t

F̄ (x)dx is the mean residual lifetime function of X

and equation (11) is obtained using equation (12) in Rajesh & Sunoj (2019), an
equivalent equation for the CRTE which is given by

Tα(X; t) =
1

α− 1

(
mX(t)−

∫∞
t

F̄α(x)dx

F̄α(t)

)
=

∫∞
t

mX(x)F̄α−1(x)dF (x)

F̄α(t)
.

The following theorem gives some results for γα(X; t) when X belongs to some
reliability aging classes.

Theorem 3. (a) If X ∈ IFRA(DFRA), then

γα(X; t) ≤ (≥)− 1

α
log

(
mX((α+ 1)t)F̄ ((α+ 1)t)

(α+ 1)mX(t)F̄α+1(t)

)
.

(b) If X ∈ NBU(NWU), then γα(X; t) ≥ (≤)γα(X) + 1
α log(mX(t)

µ ).
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(c) If X ∈ NBUE(NWUE), then γα(X; t) ≤ (≥)− 1
α log

(
1− αµ

(α+1)mX(t)

)
.

(d) If X ∈ DMRL(IMRL), then γα(X; t) ≤ (≥) 1
α log(α+ 1).

Proof . To prove part (a), it is not hard to show that X ∈ IFRA(DFRA) is
equivalent to F̄ a(t) ≥ (≤)F̄ (at), for a ≥ 1. Thus, for α > 0,∫ ∞

t

F̄α+1(x)dx ≥ (≤)

∫ ∞

t

F̄ ((α+ 1)x)dx

=
1

α+ 1

∫ ∞

(α+1)t

F̄ (x)dx

=
1

α+ 1
mX((α+ 1)t)F̄ ((α+ 1)t).

The result now follows from equation (9). For part (b), the hypothesis implies
that

γα(X; t) = − 1

α
log

(∫ ∞

0

(
F̄ (x+ t)

F̄ (t)

)α+1

dx

)
+

1

α
log(mX(t))

≥ (≤) − 1

α
log

(∫ ∞

0

F̄α+1(x)dx

)
+

1

α
log(mX(t))

= γα(X) +
1

α
log(

mX(t)

µ
).

This completes the proof. Parts (c) and (d) similarly follow from equation (10).

As an application in reliability theory, let X1, X2, . . . , Xn be the independent
random lifetimes of the components of a series system which are copies ofX. Then,
the lifetime of the system is X1:n = min{X1, X2, . . . , Xn}. It is not di�cult to see
from equation (9) that

αγα(X1:n; t) = (n(α+ 1)− 1)γn(α+1)−1(X; t)− (n− 1)γn−1(X; t). (13)

This reveals that the DCRRE of series systems is straightly related to that of its
components.

Consider also another series systems with Y1, Y2, . . . , Yn being its components
lifetime which are independent and are copies of Y . For these series systems, the
following result gives that, if γα(X; t) ≤ γα(Y ; t), for t ≥ 0, then under a condition,
the DCRREs of the systems are also ordered.

Theorem 4. If γα(X; t) ≤ γα(Y ; t), for all α > 0, t ≥ 0, and if X ∈ IMRL and
Y ∈ DMRL, then γα(X1:n; t) ≤ γα(Y1:n; t), for t ≥ 0.

Proof . Under the �rst assumption, and using equation (13) we obtain that

α[γα(Y1:n; t)− γα(X1:n; t)] ≥ (n− 1)[γn−1(X; t)− γn−1(Y ; t)].

The second assumption along with Theorem 3(d) now gives the result.
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Furthermore, using equation (9), for n ≥ 1, we have

γn(X; t) = − 1

n
log(

mX1:n+1
(t)

mX(t)
), (14)

which ensures that X1:n ≤mrl X.

The following theorem shows that when the components of two series systems
are ordered in the sense of the mean residual lifetime and the DCRREs, then their
mean residual lifetime functions are also ordered.

Theorem 5. If X ≤mrl Y and γn−1(X; t) ≥ γn−1(Y ; t), for t ≥ 0, then
X1:n ≤mrl Y1:n.

Proof . Using equation (14) γn−1(X; t) ≥ γn−1(Y ; t) is equivalent to that
mX1:n

(t)

mX(t) ≤ mY1:n
(t)

mY (t) . The result now follows from the fact that X ≤mrl Y means

that mX(t) ≤ mY (t), for t ≥ 0.

In the sequel, we give some results comparing the DCRRE of two random
variables which are stochastically ordered in some notions.

Theorem 6. If X ≤hr Y , then γα(X; t) ≥ γα(Y ; t)− 1
α log

(
mY (t)
mX(t)

)
, for t > 0.

Proof . The hypothesis is equivalent to F̄ (x)
F̄ (t)

≤ Ḡ(x)
Ḡ(t)

, for all t ≤ x (cf. Shaked &

Shanthikumar, 2007, p. 16). The result now follows from (9).

Theorem 7. If X ≤dmrl Y , then γα(X;F−1(p)) ≤ γα(Y ;G−1(p)), for 0 < p < 1.

Proof . First, using equation (10) we have

1− e−αγα(X;F−1(p)) =
α
∫ 1

p
mX(F−1(u))(1− u)αdu

(1− p)α+1mX(F−1(p))
. (15)

On the other hand, the hypothesis implies that mX(F−1(u))
mX(F−1(p)) ≤ mY (G−1(u))

mY (G−1(p)) , for

p ≤ u. The result now, follows from the above equation.

Theorem 8. If X and Y are non-negative random variables with common
left endpoint zero, and if X ≤disp Y , X ∈ DMRL, then γα(X;F−1(p)) ≤
γα(X;G−1(p)), for 0 < p < 1.

Proof . Using equation (15) and by applying inequalities 3.C.5 and 3.C.9, and
Theorem 3.b.13(a) in Shaked & Shanthikumar (2007), pp. 165, 166 and 154,
respectively, we obtain that

(1− e−αγα(X;F−1(p)))mX(F−1(p)) ≤ (1− e−αγα(X;G−1(p)))mX(G−1(p))

≤ (1− e−αγα(X;G−1(p)))mX(F−1(p)).

Hence, we get that γα(X;F−1(p)) ≤ γα(X;G−1(p)), for 0 < p < 1. This completes
the proof.
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Di�erentiating equation (2) with respect to t, we have

αmX(t)γ′
α(X; t) = eαγα(X;t) − αm′

X(t)− (α+ 1). (16)

A new class of distributions can be considered based on the mathematical
behaviour of the DCRRE.

De�nition 2. A random variable X is said to be increasing (decreasing) DCRRE,
denoted by IDCRRE(DDCRRE), if γα(X; t) is an increasing (decreasing) function
of t.

Note that, equation (16) implies that X ∈ IDCRRE(DDCRRE) if

αγα(X; t) ≥ (≤) log(αm′
X(t) + α+ 1),

or equivalently, if

αγα(X; t) ≥ (≤) log(αmX(t)λX(t) + 1).

Example 5. If X has a weibull distribution with survival function F̄ (x) = e(λx)
β

,
then X ∈ IDCRRE(DDCRRE) if β > (<)1.

Example 6. Let X be distributed uniformly on (0, β). Then, γα(X; t) =

− 1
α log

(
2

α+2

)
, which is a constant function of t.

Sunoj & Linu (2012) have characterized some distributions using the
relationship between their own version of the DCRRE and the mean residual
lifetime function. Rajesh & Sunoj (2019) have also obtained characterizations
for some distributions using the DCTE and mean residual lifetime function. The
following theorem gives a characterization of some distributions using the same
relationship between the mean residual lifetime function and γα(X; t).

Theorem 9. Let X be a non-negative random variable with continuous survival
function F̄ (x) and the mean residual lifetime function mX(x). Suppose that the
relationship αγα(X; t) = log(c(t)mX(t)) holds, for a nonnegative function c(t).
Then, for t ≥ 0

mX(t) =
1√

c(t)e
C(t)
2α

[

∫ t

0

−(α+ 1)

2α

√
c(x)e

C(x)
2α dx+ k], (17)

where, C ′(t) = c(t), and k is a constant.

Proof . Under the given relationship, equation (16) implies that

m′
X(t) +

(
αc′(t)− c2(t)

2αc(t)

)
mX(t) =

−(α+ 1)

2α
,

which is a di�erential equation and has a solution in the form of (17).
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The following result gives a characterization result similar to that of Theorem
2.3 in Sunoj & Linu (2012).

Theorem 10. Let αγα(X; t) = log(C). Then, X has

(i) Pareto distribution with survival function F̄ (x) = (1 + bx)−a, x, b > 0, a > 1,

(ii) exponential distribution with survival function F̄ (x) = e−λx, x, λ > 0,

(iii) �nite range distribution with survival function F̄ (x) = (1 − bx)a, 0 < x <
1
b , a, b > 0,

according as C−(α+1)
α

>
=
< 0.

Proof . Under the above relationship, equation (16) follows that m′
X(t) =

C−(α+1)
α = k, a constant. This is equivalent to mX(t) = kt + d, where d is

also a constant, which characterizes the distributions (i)-(iii) according as k
>
=
< 0.

The converse part is easy to prove.

Note that the uniform distribution in Example 3 is just the distribution in part
(iii) of the above theorem with b = 1

β and a = 1.

4. The estimation of CRRE

In this section, we propose an estimator of γα(X) and investigate its exact and
asymptotic distribution under some conditions. Let X1, . . . , Xn be independent
positive random sample from the population of X with continuous distribution
functions F and corresponding order statistics X(1), . . . , X(n). Let also Fn be the
empirical distribution function of X.

Regarding equation (6), γα(X) can also be given through an L-functional (cf.
Shao, 2003, p. 343) by

γα(X) = − 1

α
log

(∫∞
0

xJα(F (x))dF (x)∫∞
0

xdF (x)

)
, (18)

where, Jα(u) = (α+1)(1−u)α. Now, by replacing F in (18) with Fn, an estimator
of γα(X) can be given by the following:

γα(Fn) = − 1

α
log

(
1

X̄

∫ ∞

0

xJα(Fn(x))dFn(x)

)
= − 1

α
log

(
1

nX̄

n∑
i=1

Jα(
i

n
)X(i)

)
.

(19)

The following theorem gives the exact distribution of the above estimator under a
random sample from an exponential population.
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Theorem 11. Let X1, . . . , Xn be a random sample from an exponential
distribution with an arbitrary hazard rate. Then, the survival function of γα(Fn)
is given by

P [γα(Fn) > x] =

n∑
i=1

n∏
j=1

j ̸=i

(
dαi,n − e−αx

dαi,n − dαj,n

)
I(dαi,n > e−αx),

where, dαi,n = 1
n−i+1

∑n
j=i c

α
j,n, cαi,n = (α + 1)(1 − i

n )
α and I(.) is the indicator

function.

Proof . First note that, (19) can also be expressed as

γα(Fn) = − 1

α
log

(∑n
i=1 c

α
i,nX(i)∑n

i=1 X(i)

)
.

On the other hand, by using the normalized spacingsDi = (n−i+1)(X(i)−X(i−1)),
i = 1, . . . , n ( X(0) ≡ 0), one can see easily that

n∑
i=1

dαi,nDi =

n∑
i=1

(

n∑
j=i

cαj,n)(X(i) −X(i−1))

=

n∑
j=1

j∑
i=1

cαj,n(X(i) −X(i−1)) =

n∑
j=1

cαj,nX(j),

which implies that γα(Fn) can also be given by

γα(Fn) = − 1

α
log

(∑n
i=1 e

α
i,nDi∑n

i=1 Di

)
.

The result now follows by applying the Theorem 3.1 in Belzunce et al. (2005).

It is clear from the almost sure convergence property of the L-estimators (see
Example 1 and 2 in Wellner, 1977 and Helmers, 1977) and the continuous mapping
theorem (cf. Theorem 1.10 in Shao, 2003, p. 59) that as n → ∞,

γα(Fn) → γα(X),

with probability one, provided that the population mean is �nite. The following
theorem gives the asymptotic distribution of γα(Fn) under some mild conditions.

Theorem 12. Assume that E(X2) < ∞ and

σ2
α(F, J) = 2

∫ ∞

0

∫ ∞

x

F (x)F̄ (y)Jα(F (x))Jα(F (y))dydx > 0. (20)

Then, as n → ∞, √
n[γα(Fn)− γα(X)]

d−→ N(0, σ2),
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where,
d−→ denotes convergence in distribution, N(0, σ2) stands for the normal

random variable with mean zero and variance σ2 =
σ2
α(F,J)

α2γ2
1α(X)

,

γ1α(X) = (α+ 1)

∫ ∞

0

xF̄α(x)dF (x).

Proof . We have γα(Fn) = − 1
α log(γ1α(Fn)

X̄
) where γ1α(Fn) =

1
n

∑n
i=1 Jα(

i
n )X(i).

It follows from Theorem 2 and 3 in Stigler (1974) that as n → ∞,
√
n[γ1α(Fn)−

γ1α(X)] converges in distribution to a normal random variable with mean zero and
variance (20). On the other hand, X̄ is a consistent estimator of the population
mean, µ =

∫∞
0

F̄ (x)dx. Applying the Slutsky and Delta-method theorems now
gives the result.

It is worth to mention that a consistent estimator of the asymptotic variance
can be obtained by replacing F in (20) with Fn.

Crescenzo & Longobardi (2009) have used the following data sets to apply their
cumulative entropy for analyzing the lifetime data. As an example, we use these
data and compute the estimators of the CRRE γα(X) and γ(β) in Sunoj & Linu
(2012). Since, it has not been proposed any estimator of γ(β) in Sunoj & Linu
(2012), we rewrite it as

γ(β) =
1

1− β
log(β

∫ ∞

0

xF̄ β−1(x)dF (x)),

and consider the corresponding estimator by the following

γ̂(β) =
1

1− β
log(

β

n

n∑
i=1

(1− i

n
)β−1X(i)).

Example 7. The data set analyzed in Crescenzo & Longobardi (2009) includes
43 sample lifetime data which are as follows.

7, 47, 58, 74, 177, 232, 273, 285, 317, 429, 440, 445, 455, 468, 495, 497, 532,

571, 579, 581, 650, 702, 715, 779, 881, 900, 930, 968, 1077, 1109, 1314, 1334,

1367, 1534, 1712, 1784, 1877, 1886, 2045, 2056, 2260, 2429, 2509.

For these data, Crescenzo & Longobardi (2009) obtained the estimate of their
cumulative entropy as 572.3. Figure 3 depicts the plot of the estimators γα(Fn)
and γ̂(β) for di�erent values of α and β. One can see from the plot that the
estimator γ̂(β) takes negative values for β > 1.
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Figure 3: Plots of γα(Fn) (left) and γ̂(β)(right).

5. Conclusion

In this paper, we have proposed an alternative measure of cumulative residual
Renyi's entropy (CRRE) of order α which unlike the one by Sunoj & Linu (2012)
preserves the main property of an information measure and is always positive.
We have investigated the main properties of the proposed measure and studied its
relation with other entropy measures. Assuming some well-known stochastic orders
between two random variables, the imposed orders between their corresponding
CRRE were revealed. The dynamic version of the CRRE was also considered and
its main properties and its relation to Tsallis's Entropy were studied. The dynamic
CRREs of the stochastically ordered random variables were also compared. The
estimator of the proposed CRRE and its exact distribution under a random sample
from an exponential distribution and also its asymptotic distribution were studied.
Throughout the paper numerous examples and plots illustrating the theory were
given.
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