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Abstract

A previous study on the evaluation of control charts for the mean with a
Bayesian approach, based on predictive limits, was performed in such a way
that neither prior nor sample information was taken into account. This work
was developed to make a more complete study to evaluate the influence of
the combination of the prior distribution with the sample information. It is
assumed that the quality characteristic to be controlled can be modeled by
a Normal distribution and two cases are considered: known and unknown
variance. A Bayesian conjugate model is established, therefore the prior
distribution for the mean is Normal and, in the case where the variance is
unknown, the prior distribution for the variance is defined as the Inverse-
Gamma(ν, ν). The posterior predictive distribution, which is also Normal, is
used to establish the control limits of the chart. Signal propability is used to
measure the performance of the control chart in phase II, with the predictive
limits calculated under different specifications of the prior distributions, and
two different sizes of the calibration sample and the future sample. The
simulation study evaluates three aspects: the effects of sample sizes, the
distance of the prior mean to the mean of the calibration sample, and an
indicator of how informative is the prior distribution of the population mean.
In addition, in the case of unknown variance, we study what is the effect of
changing values in the parameter ν. We found that the false alarm rate could
be quite large if the prior distribution is very informative which in turn leads
to an ARL (average run length) biased chart, that is, the maximum of the
ARL is not given when the process is under control. Besides, we found
great influence of the prior distribution on the control chart power when the
size of the calibration and future samples are small, particulary when the
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prior is very informative. Finally, regarding the effect of the parameter ν,
we found that the smaller the value, which means having a less informative
prior distribution, the lower the power of the control chart.

Key words: control charts; Bayesian approach; ARL; conjugate prior;
informative prior.

Resumen
Un estudio previo sobre la evaluación de las gráficas de control para la

media con un enfoque Bayesiano, basadas en límites predictivos, fue realizado
de tal manera que no se tuvo en cuenta ni la información a priori ni la
información muestral. En este trabajo hemos desarrollado un estudio más
completo para evaluar la influencia de la combinación de la distribución
a priori con la información muestral. Se asume que la característica de
calidad a controlar puede modelarse mediante una distribución Normal y se
consideran dos casos: varianza conocida y desconocida. Para la aproximación
Bayesiana se establece un modelo conjugado, por lo tanto la distribución a
priori para la media es Normal y, en el caso donde la varianza es desconocida,
se define como distribución a priori para la varianza la Gamma-Inversa(ν,
ν). La distribución predictiva posterior, que también es Normal, es utilizada
para establecer los límites de control de la gráfica. Se utiliza la probabilidad
de señal para medir el desempeño de la gráfica en la denominada phase II de
control, con los límites predictivos calculados bajo diferentes especificaciones
de las distribuciones a priori, del tamaño de la muestra de calibración y
del tamaño de la muestra futura. El estudio de simulación evalúa tres
aspectos: efectos del tamaño de muestra, de la distancia de la media a
priori con relación a la media de la muestra de calibración, y un indicador
de cuán informativa es la distribución a priori de la media poblacional.
Adicionalmente, cuando la varianza es desconocida, se estudia el efecto de
los valores del parámetro ν. Se encuentra que la tasa de falsas alarmas puede
ser exageradamente grande si se especifica una a priori muy informativa, lo
que a su vez puede conducir a una gráfica de control con una ARL (average
run length) sesgada, es decir, que el máximo de la ARL no se dará cuando
el proceso está en control. Además, cuando el tamaño de las muestras de
calibración y de la muestra futura son pequeñas, hay gran influencia de la
especificación de la a priori sobre la potencia de la gráfica de control, en
especial cuando la a priori es muy informativa. Finalmente, en cuanto al
efecto del parámetro ν, se encuentra que entre más pequeño es su valor, lo
cual indica que la distribución a priori para la varianza es menos informativa,
menor es la potencia de la gráfica de control, en especial si los tamaños de
muestra son pequeños.

Palabras clave: gráficas de control; enfoque Bayesiano; ARL; distribución
a priori conjugada; distribución a priori informativa.

1. Introduction

Statistical Process Control (SPC) is a method of quality control which employs
statistical methods to understand, monitor and improve a process. Frequently,
monitoring consists of the detection of changes in the parameter(s) within the
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probability distribution of one variable or several variables of the process. Control
charts are techniques of SPC, which aim to monitor the process over time in order
to detect changes in the performance. Many types of statistical methods have
been incorporated into SPC procedures, for example regression models, variance
components, and time series, among others. In Woodall & Montgomery (1999) and
Woodall & Montgomery (2014) the authors provide an overview of SPC methods
and offer some directions for further research.

According to Woodall (2000), the understanding of the variation in values of a
quality characteristic is of primary importance in SPC. The sources of variability
are:

• Common: due to the inherent nature of the process.

• Assignable or special: unusual shocks or other disruptions in the process,
the causes of which can and should be removed.

A control chart is a tool for monitoring process performance, which consists
of a graphic designed to detect unusual variations due to assignable causes. This
chart plots the values of a quality feature and compare those with the control
limits. Control of the process mean quality level is usually done with control chart
for means, or the x̄ chart, introduced in Shewhart (1931). This chart plots, in a
time-ordered sequence, the sample mean x̄ of random samples collected generally
with a regular frequency. Three sigma limits are used to set the upper and lower
control limits, under the assumption of Normal distribution. We conclude that the
process is under control when all values of x̄ plot inside the control limits and no
systematic behavior is evident; otherwise, it is produced an out of control signal.
As Woodall (2000) explains, there are other rules for signaling an out-of-control
situation based on “non-random” patterns in the chart. Figure 1 shows the typical
appearance of the x̄ chart.
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Figure 1: An example of x̄ control chart.

Process monitoring involves two phases (Woodall & Montgomery 1999,Woodall
& Montgomery 2014, Woodall 2000):
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• Phase I or retrospective analysis. In this phase basically the following tasks
are performed:

⋄ Collect data to understand the process and check statistical control.
⋄ Select an appropriate in-control model.
⋄ Estimate the parameter(s) of this model.

• Phase II or process monitoring phase. The monitoring method is imple-
mented with data collected over time in order to detect changes within the
process with respect to the assumed in-control. From a practical perspective,
it is important to design monitoring methods in such a way that there would
be a reasonable low number of false alarms.

Woodall & Montgomery (1999) comment that the implementation of these two
phases can be a challenging problem because shifts in the underlying distribution
distort parameter estimation which, in turn, masks the shifts.

The calculation of any statistical measure of performance requires an
assumption about the probability distribution of the quality characteristic. The
majority of the studies about the performance of control charts for variables
have been based on the assumptions of an underlying Normal distribution and
independence of samples over time. Also, the control limits are based on this
assumption (Woodall & Montgomery 1999, Woodall & Montgomery 2014, Woodall
2000).

In phase II, performance is usually measured with probability of a signal or
with some parameter of the run length (ARL). When evaluating performance in
this phase, we usually assume that the parameters are known, ignoring that these
values were estimated in phase I. However, it is necessary to recognize that the
control limits in phase II are random variables and, therefore, this affects the
performance of the control charts (Jensen et al. 2006, Psarakis et al. 2014).
Consequently, studying the x̄ chart with a Bayesian approach is clearly justified.
In this regard Colosimo & del Castillo (2007) says “In the idealized situation that
all process readings follow a common Normal distribution with known parameters
and are independent, all the properties of the chart are well-known. . . However,
increasing realization exists that process parameters are hardly ever known to an
adequate precision for these theoretical calculations to be plausible. Furthermore,
many process drift”. Additionally Woodall (2000) comments: “. . . Deming stated
that no process, except in artificial demonstrations by use of random numbers,
is steady, unwavering. . .Deming’s objection to measures of statistical performance
of control charts because no process is stable can be overcome at least in part
by modeling the instability of the process distribution. For example, one might
consider a Normal distribution with constant variance, but with a mean that itself
is normally distributed. This approach is useful in situations for which there is
more than one component of common cause variability”.

Woodall & Montgomery (2014) point out that a few Bayesian methods have
been proposed for process monitoring and it would be useful to review this
approach. The authors say: “These methods do not seem widely used, which
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is somewhat odd considering the success of Bayesian methods in other areas of
applied statistics. Disadvantages of Bayesian methods include an added layer of
complexity and the amount of computation required. A discussion of the general
framework, advantages, disadvantages, and limitations of Bayesian surveillance
approaches, however, could be very interesting and informative”.

Some authors have studied and proposed alternatives to the x̄ control chart
with a Bayesian approach. Nenes (2013), Nikolaidis & Tagaras (2017), Tagaras &
Nikolaidis (2002) evaluate the economic performance of various adaptive control
schemes to derive conclusions about their relative effectiveness. The analysis
concentrates on Bayesian control charts used for monitoring the process mean.
Bhat & Gokhale (2014) and Saghir (2015) study x̄ control chart using the posterior
distribution. The control limits of the proposed chart are derived under the
assumption that the process mean has a conjugate prior distribution. They analyze
the power of the proposed control chart. On the other hand, Xiaosong et al. (2015)
present a control chart based on conjugate Bayesian approach for multi-batch
and low volume production. With a case study, they show that the conjugate
Bayesian approach outperforms the traditional frequency approach when sample
size is small.

Additionally, Chen (2016) proposes a Bayesian nonparametric control charts
for individual measurements. Tsiamyrtzis & Hawkins (2005) propose a model for
statistical process control in short production runs whose objetive is to detect on-
line whether the mean of the process has exceeded a prespecified upper threshold
value. Ali & Riaz (2020) consider different symmetric and asymmetric loss
functions for designing Bayesian control charts. To get the desired in-control
performance under different loss functions, they propose a corrected design of the
Bayesian control charts. Monfared & Lak (2013) propose a Bayesian approach
to estimate the change point when implementing an x̄ control chart. They show
how it is possible to use the information in an x̄ control chart and construct an
informative prior for the change point.

This article aims to contribute in the analysis of the Bayesian approach
proposed in Menzefricke (2002), where a x̄ control chart is designed when there
is uncertainty in the parameters, using the posterior predictive distribution to set
control limits. The objective is to evaluate the effect of the prior distribution for the
unknown parameters of a process on signal probability, when the quality feature
is assumed Normal, considering both the hypothetical cases in which variance is
known and unknown.

The article is organized as follows. In Section 2, x̄ control limits with predictive
limits are given when variance is known and unknown. Also, how to evaluate these
control limits. In Section 3, there is an explanation of the simulation study carried
out to evaluate the x̄ control chart and also shows the results of the simulation
study and Section 4 concludes the article.
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2. Background

2.1. x̄ Control Chart With Predictive Limits, σ2 Known

Following Menzefricke (2002), suppose we want to control a quality
characteristic X whose distribution is Normal with known variance σ2 and
unknown mean µ. We assume in phase I that a random sample of size nc is
available from a stable process, where x̄c is the sample mean. We denote the
likelihood by

p(x1.x2, . . . , xnc |µ) = (2πσ2)−nc/2 exp

[
− 1

2σ2

nc∑
i=1

(xi − µ)2

]
. (1)

The prior distribution for µ is Normal(m0,σ2/n0), where n0 measures the degree
of uncertainty about the parameter µ, therefore the larger its value the lower the
uncertainty given that the prior variance is smaller. It can be shown that the
posterior distribution is:

p(µ|x̄c) = Normal
(
m1,

σ2

n1

)
, (2)

where m1 = (n0m0 + ncx̄c) /n1 and n1 = n0 + nc (measures the impact of the
size of the training sample or the prior information). Under the assumption that
the process remains stable, we can now derive the control chart limits for a future
sample n, y = (y1, y2, . . . , yn), for which the sufficient statistic is the sample
mean, ȳn. Given µ, the distribution of ȳn is Normal(µ,σ2/n) and the predictive
distribution for ȳn is:

p(ȳn|x̄c) = Normal
(
m1, σ

2

(
1

n
+

1

n1

))
. (3)

From equation (3), Menzefricke (2002) deduces as lower and upper control
limits, respectively,

LCL = m1 − zα/2σ

√
1

n
+

1

n1
, (4)

UCL = m1 + zα/2σ

√
1

n
+

1

n1
, (5)

where zα/2 is the quantile (1− α/2) 100% of the distribution Normal(0, 1).

2.2. x̄ Control Chart with Predictive Limits, σ2 Unknown

Following Menzefricke (2002), we suppose that the variable X whose mean
we want to control, has a Normal distribution with unknown mean and variance.
Suppose that in phase I there is a random sample of size nc from the stable process,
with sample mean x̄c and sample variance s2x; the distribution of (x̄c, s

2
x|µ, σ2) is
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f
(
x̄c, s

2
x|µ, σ2

)
= f

(
x̄c|µ, σ2

)
f
(
s2x|σ2

)
, where f(x̄c|µ, σ2) = Normal

(
µ, σ2/nc

)
and f(s2x|σ2) = Gamma

(
nc−1

2 , nc−1
2σ2

)
. The prior distribution for (µ, σ−2) is

a Normal-Gamma distribution, that is, µ|σ2 ∼Normal
(
m0,

σ2

n0

)
and σ−2 ∼

Gamma
(

v0
2 ,

v0s
2
0

2

)
. Then, the posterior distribution of (µ, σ−2)|x̄c, s

2
x is,

p
(
µ|x̄c, s

2
x, σ

2
)
= Normal

(
m1,

σ2

n1

)
, (6)

p
(
σ−2|x̄c, s

2
x

)
= Gamma

(ν1
2
,
ν1
2
s21

)
, (7)

where n1 = n0 + nc, m1 = (n0m0 + ncx̄c) /n1, v1 = v0 + nc and v1s
2
1 =

v0s
2
0 + (nc − 1)s2x + ncn0(m0 − x̄c)

2/ (nc + n0).
Note that the assumed Bayesian model is a conjugate model: since the prior

distribution for the mean is Normal and the distribution for σ−2 is Gamma, a
Normal-Gamma distribution is obtained as posterior distribution. The latter is
used to find the predictive distribution for ȳn, the mean of the future sample
of size n, and with it, find the predictive control limits of phase II. Under the
assumption that the process remains stable, we can now derive the control chart
limits for the sample mean of a future sample y = (y1, y2, . . . , yn), for which the
sufficient statistic is the sample mean, ȳn. Given µ and σ2, the distribution of ȳn
is Normal(µ,σ2/n), therefore, the predictive distribution for ȳn is

ȳn|x̄c, s
2
x ∼ St

(
v1,m1,

(
1

n
+

1

n1

)
s21

)
, (8)

where St() in noncentral t-distribution with v1 degrees of freedom. From this
distribution, Menzefricke (2002) determines as lower and upper control limits for
the mean, respectively,

LCL = m1 − tα/2,v1
s1

√
1

n
+

1

n1
, (9)

UCL = m1 + tα/2,v1
s1

√
1

n
+

1

n1
, (10)

where tα/2,v1
is the quantile (1− α/2) 100% of the t distribution with v1 degrees

of freedom.

2.3. Evaluation of Control Chart in Phase II

In order to assess the effectiveness of the control chart with predictive limits
in phase II, Menzefricke (2002) used the probability of rejection or signal. We
assume that µ0 and σ2

0 are the parameters of the stable process.
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2.3.1. Known σ2

Suppose that there is a shift in the process mean in such a way that the
future random sample y = (y1, y2, . . . yn) has a Normal

(
µ0 + a1, σ

2
0

)
, a1 ∈ R,

and therefore ȳn ∼ Normal
(
µ0 + a1, σ

2
0/n

)
. Assuming µ0 and σ2

0 known, the
probability of rejection or signal, denoted by α (x̄c, µ0 + a1), is

α (x̄c, µ0 + a1) = 1−
UCL∫

LCL

Normal(ȳn|µ0 + a1, σ
2
0/n)dȳn

= 1− Φ

(
m1 − (µ0 + a1)

σ0/
√
n

+ zα/2
√
1 + p

)
+Φ

(
m1 − (µ0 + a1)

σ0/
√
n

− zα/2
√

1 + p

)
, (11)

where Φ(·) is the cumulative distribution function (CDF) of standard Normal
distribution, p = n/n1, and LCL, UCL given by (4) and (5), respectively.

2.3.2. Unknown σ2

Suppose that the future data corresponds to a random sample y =
(y1, y2, · · · yn) has a Normal

(
µ0 + a1, a

2
2σ

2
0

)
, with a1 ∈ R, and a2 ∈ R+, and

therefore ȳn ∼ Normal
(
µ0 + a1, a

2
2σ

2
0/n

)
. Assuming µ0 and σ2

0 known, the
probability of rejection or signal, denoted by α

(
x̄c, µ0 + a1, a

2
2σ

2
0

)
, is

α
(
x̄c, µ0 + a1, a

2
2σ

2
0

)
= 1−

UCL∫
LCL

Normal(ȳn|µ0 + a1, a
2
2σ

2/n)dȳn

= 1− Φ

(
m1 − (µ0 + a1)

a2σ0/
√
n

+ tα/2,v1

s1
a2σ0

√
1 + p

)
+Φ

(
m1 − (µ0 + a1)

a2σ0/
√
n

− tα/2,v1

s1
a2σ0

√
1 + p

)
, (12)

where Φ(·) is the cumulative distribution function (CDF) of standard Normal
distribution, p = n/n1, and LCL, UCL given by (9) and (10), respectively.

According to Menzefricke (2002), p = n/n1 measures the degree of uncertainty
of µ, with low values suggesting little uncertainty. However, Menzefricke (2002)
did not evaluate the effect of the prior distributions in (11) and (12), since he took
m1 = µ0 and s21 = σ2

0 , a simplification that does not allow to see the influence
of the combination of the prior distribution with the sample information. His
conclusions are only in terms of the effects of n1, a1 (only positive values) and ν1.
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3. Simulation Study

A simulation study was performed in order to analyze the effect of the prior
distribution and the sample information in (11) and (12). Without loss of
generality we may assume that µ0 = 7 and σ0 = 1. As usual with control charts,
we set the nominal false alarm rate at α = 0.0027. In order to determine whether
the prior distributions have effects in (11) and (12), we decided to control the
following parameters.

• Sample sizes on phase I (nc) and phase II (n): n = nc = 5, 30.

• p = n/n1 = 0.01, 0.2, 1. Consequently, n0 was set as a function of p, n and
nc, as follows: n0 = n

p − nc; therefore, n0 takes the following values,

Table 1: Values of n0 taken as a function of p, n and nc

n0 = n
p
− nc

p n = nc = 5 n = nc = 30

0.01 495 2970
0.2 20 120
1 0 0

• Mean of the prior distribution of µ:

1. When σ2 is known, the prior mean is m0 = x̄c +
kσ0√
nc

, where x̄c is the
sample mean in phase I. kσ0√

nc
is the magnitude and direction of the

deviation of m0 with respect to x̄c.
2. When σ2 is unkown, we define m0 = x̄c + k sx√

nc
. In this case, the

difference between m0 and x̄c will vary as a function of k sx√
nc

.

In the cases above, we take k = −3.0,−0.5, 0.0, 0.5, 3.0.

• Hyperparameters of the prior distribution of σ−2: following Gelman (2006),
we take ν0

2 =
ν0s

2
0

2 = ν, with ν = 0.001 and 1, where large values indicate
little uncertainty regarding to σ−2.

• Other parameters: we fix a2 = 1 and a1 from -3 to 3 with steps of 0.05.

3.1. Simulation procedure, known σ2

With n, nc, p and k fix, we generate 150000 random training samples of size
nc. We calcule the sample mean x̄c and evaluate (11) vs. a1, obtaining an
approximate curve of the probability of rejection as a function of a1. These values
were summarized by calculating the first and third quartiles, mean and median.
The results are shown in Figures 3 and 4.
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3.2. Simulation Procedure, Unknown σ2

With n, nc, p, ν and k fix, we generate 150000 random training samples of size
nc. We calcule the sample mean x̄c and the sample variance s2x and evaluate (12)
vs. a1. This values were summarized by calculating the first and third quartiles,
mean and median. The results are shown in the Figures from 6 to 9.

3.3. Results with Known σ2

Figures 3 and 4 show that the greater the sample size (n, nc) the control
chart is more powerful in detecting deviations of the process mean, as expected.
Furthermore, as p → 0, the control chart is more sensitive to positive or negative
a1 deviations, also depending on the magnitude and direction in which the prior
mean m0 moves away from the training sample mean x̄c (that is, according to
k). Indeed, if k < 0, there is higher power when deviations are positive (a1 > 0),
consequently minor ARL in that direction; if k > 0 the power is higher when
deviations are negative (a1 < 0) and therefore the ARL is lower for those values of
a1. Figures 2 shows the ARL behavior when p = 0.01, known σ2, k = −3, k = 3,
and samples sizes nc = n = 5 y nc = n = 30. We see that with both samples sizes,
when k = −3, if a1 > 0 then 1 ≤ ARL ≤ 2, and if a1 < 0, then 1 ≤ ARL ≤ 30
approximately; on the other hand, when k = 3, if a1 > 0 then 1 ≤ ARL ≤ 30, and
if a1 < 0, then 1 ≤ ARL ≤ 2.

−3 −2 −1 0 1 2 3
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k = − 3, nc = 5, n = 5;
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Figure 2: ARL curves with k = −3, 3, p = 0.01, when σ2 is known.
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Figure 3: Curves of 1st quantile (red dash line), median (blue solid line), mean (black
solid line) and 3rd quantile (orange dot line), of α

(
X̄c, µ0 + a1

)
, σ2 known,

with n = nc = 5. From top to bottom varying k = −3,−0.5, 0, 0.5, 3 and
from left to right varying p = 0.01, 0.2, 1.
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Figure 4: Curves of 1st quantile (red dash line), median (blue solid line), mean (black
solid line) and 3rd quantile (orange dot line), of α

(
X̄c, µ0 + a1

)
, σ2 known,

with n = nc = 30. From top to bottom varying k = −3,−0.5, 0, 0.5, 3 and
from left to right varying p = 0.01, 0.2, 1.
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It is also visible in Figures 3 and 4 an unfavorable feature, the probability of
detection or signal when there is not a shift of the mean process (when a1 = 0)
can be greater than the nominal rate of 0.0027, therefore the ARL is biased, that
is, the maximum is not when a1 = 0. The maximum value of ARL is when a1 < 0,
k < 0 and a1 > 0, k > 0, in both cases the maximum ARL is smaller than
1/0.0027 ≈ 370 (see Figure 2). The above patterns in the probability of detection
are more marked if the sample sizes (n y nc) are small, and consequently the
observed problems may be more serious with these sample sizes.

Conversely, when the prior distribution for µ is less informative, (p → 1), the
false alarm rate is close to 0.0027. The signal probability is symmetric around
a1 = 0, similar to the ordinary x̄ chart, but with less power in detecting deviations
small of the process mean. For this last chart, under the normality assumption,
the probability of detection or signal is symmetric around a1 = 0, but with less
power in detecting small deviations in the process mean. Therefore for this control
chart the ARL is symmetrical with a maximum value around 370, Figure 5 shows
the ARL curves for this situation, when p = 1, known σ2, k = −3, k = 3, and
samples sizes nc = n = 5 and nc = n = 30. We can see that the ARL curves
overlap when k = −3, 3 for each sample size.

−3 −2 −1 0 1 2 3

0
10

0
20

0
30

0
40

0

p = 1, known σ2

a1

A
R

L

k = − 3, nc = 5, n = 5;
k = − 3, nc = 30, n = 30;

k = + 3, nc = 5, n = 5
k = + 3, nc = 30, n = 30

ARL0 = 370

Figure 5: ARL curves with k = −3, 3, p = 1, when σ2 is known.

3.4. Results with unknown σ2

Figures from 6 to 9 reveal that there is a big influence of the prior distribution
of the mean when the sample sizes (n, nc) are small, particulary when this prior
is very informative, that is, when p is small, and depending the magnitud and
direction of the deviation of the prior mean (m0) with respect to the sample mean
of the calibration sample (x̄c).
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Figure 6: Curves of 1st quantile (red dash line), median (blue solid line), mean (black
solid line) and 3rd quantile (orange dot line), of α

(
X̄c, µ0 + a1, a2σ

2
0

)
, σ2

unknown, with n = nc = 5, ν = 0.001. From top to bottom varying
k = −3,−0.5, 0, 0.5, 3 and from left to right varying p = 0.01, 0.2, 1.
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Figure 7: Curves of 1st quantile (red dash line), median (blue solid line), mean (black
solid line) and 3rd quantile (orange dot line), of α

(
X̄c, µ0 + a1, a2σ

2
0

)
, σ2

unknown, with n = nc = 30, ν = 0.001. From top to bottom varying
k = −3,−0.5, 0, 0.5, 3 and from left to right varying p = 0.01, 0.2, 1.
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Figure 8: Curves of 1st quantile (red dash line), median (blue solid line), mean (black
solid line) and 3rd quantile (orange dot line), of α

(
X̄c, µ0 + a1, a2σ

2
0

)
, σ2

unknown, with n = nc = 5, ν = 1. From top to bottom varying
k = −3,−0.5, 0, 0.5, 3 and from left to right varying p = 0.01, 0.2, 1.
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Figure 9: Curves of 1st quantile (red dash line), median (blue solid line), mean (black
solid line) and 3rd quantile (orange dot line), of α

(
X̄c, µ0 + a1, a2σ

2
0

)
, σ2

unknown, with n = nc = 30, ν = 1. From top to bottom varying
k = −3,−0.5, 0, 0.5, 3 and from left to right varying p = 0.01, 0.2, 1.
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In addition, as expected, the larger the sample size, the greater the power
detecting deviations in the process mean. On the other hand, according to the
prior distribution for µ, the effect of the prior distribution for σ2 is notable with
small samples.

In general, when p → 0, the control chart may be more sensitive to positive or
negative deviations a1, depending on the magnitude and direction of the deviation
of m0 with respect to x̄c and the sample sizes as follows:

• If k < 0, there is higher power (therefore lower ARL) when deviations are
positive (a1 > 0), on the other hand, if the deviations are negative, the power
can be less than 0.2 with small samples, even almost null for deviations less
than a one standard deviation. We can also see that if ν1 → 1, the probability
of signal for positive deviations gets bigger than when ν → 0.

• On the contrary, if k > 0, the control chart shows bigger power when
deviations are negative (a1 < 0), while in the detection of positive deviations,
the power can be less than 0.2 with small samples, even almost null. Further,
if ν1 → 1, the probability of signal for negative deviations gets bigger than
when ν → 0.

For this case, unknown σ2, the false alarm rate, α
(
x̄c, µ0 + a1, σ

2
0

)
, may be

overly large if the sample sizes are large, the prior distribution of µ is very
informative and the difference between the prior mean (m0) and the calibration
sample mean (x̄c) is too big. Figure 10 exhibits the behaviour of the ARL for
p = 0.01, k = −3, 3, ν = 0.001, ν = 1 and sample sizes nc = n = 5, nc = n = 30,
these values turn leads to a ARL-biased chart.
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Figure 10: ARL curves with k = −3, 3, p = 0.01, when σ2 is unknown.

On the other hand, when p → 1, for any k value, the signal probability shows
symmetrical behavior around a1 = 0, with a value close to 0.0027. The prior
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distribution for σ2 has no visible effects when samples sizes are big. If samples
sizes are small we observe some differences between the mean signal probability
curves when ν = 0.001 and ν = 1, which leads to differences in the ARL curves,
see Figure 11, p = 1, k = −3, 3, ν = 0.001, ν = 1 and sample sizes nc = n = 5,
nc = n = 30.
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Figure 11: ARL curves with k = −3, 3, p = 1, when σ2 is unknown.

4. Conclusions

According to the relationship between the probability of detection and ARL,
the control charts with predictive limits using very informative prior distributions
will no present the maximum of the ARL when the process is in control, which in
turn leads to a ARL-biased chart. In addition, when the sample sizes are small
the bias is big. An ARL-biased chart is not attractive in practice specially if the
bias leads to a high false alarm rate. Therefore, more research is needed using
Bayesian approach in the construction of control charts to get a better behavior.
Not only is it necessary to determine how to specify the prior distributions, it also
seems necessary to evaluate possible corrections to the limits when using sample
information for the design of a control chart with an unbiased ARL and satisfying
a target value under the process in control.[
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