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Abstract
In bayesian wavelet shrinkage, the already proposed priors to wavelet

coefficients are assumed to be symmetric around zero. Although this
assumption is reasonable in many applications, it is not general. The
present paper proposes the use of an asymmetric shrinkage rule based on
the discrete mixture of a point mass function at zero and an asymmetric
beta distribution as prior to the wavelet coefficients in a non-parametric
regression model. Statistical properties such as bias, variance, classical
and bayesian risks of the associated asymmetric rule are provided and
performances of the proposed rule are obtained in simulation studies
involving artificial asymmetric distributed coefficients and the Donoho-
Johnstone test functions. Application in a seismic real dataset is also
analyzed.

Key words: asymmetric beta distribution; nonparametric regression;
wavelet shrinkage.

Resumen
En la contracción de las ondículas bayesianas, se supone que los

coeficientes a priori ya propuestos de las ondículas son simétricos alrededor
de cero. Aunque esta suposición es razonable en muchas aplicaciones, no
es general. El presente artículo propone el uso de una regla de contracción
asimétrica basada en la mezcla discreta de una función de masa puntual
en cero y una distribución beta asimétrica como priori de los coeficientes
de ondícula en un modelo de regresión no paramétrico. Se proporcionan
propiedades estadísticas tales como sesgo, varianza, riesgos clásicos y
bayesianos de la regla asimétrica asociada y se obtienen los rendimientos
de la regla propuesta en estudios de simulación que involucran coeficientes
distribuidos asimétricos artificiales y las funciones de prueba de Donoho-
Johnstone. También se analiza la aplicación en un conjunto de datos sísmicos
reales.

Palabras clave: contracción de las ondículas; distribución beta asimétrica;
regresión no paramétrico.
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1. Introduction

Wavelet-based methods have been extensively studied and applied in several
areas, such as mathematics, signal and image processing, geophysics, genomics
and many others. In statistics, applications of wavelets arise mainly in the areas
of non-parametric regression, density estimation, functional data analysis and
time series analysis. In non-parametric regression, the focus of this work, an
unknown function is expanded as linear combination of wavelet basis and the
coefficients of this representation are estimated. The use of wavelets representation
is attractive in non-parametric regression due their well localized and sparse
wavelet coefficients, i.e., the coefficients are typically non-zero or significant on
positions where the function has important characteristics to be recovered, as
peaks, cusps and discontinuities for example and are zero or very close to zero on
smooth regions of the function. These features of wavelets provide computational
and analytical advantages. More about wavelet methods in statistics can be seen
in Vidakovic (1999).

Due the sparsity property of wavelet coefficients, shrinkage and thresholding
methods are generally used to estimate them in the wavelet domain by reducing
the magnitude of the observed (empirical) coefficients obtained by application of
a discrete wavelet transformation on the original data. There are in fact several
shrinkage and thresholding techniques available in the literature. The main works
in this area are of Donoho (1995a; 1995b), Donoho & Johnstone (1994a; 1994b;
1995), but also Donoho et al. (1995; 1996), Vidakovic (1998), Antoniadis et al.
(2001) and Johnstone & Silverman (2005) can be cited. For more details of
shrinkage methods, see Vidakovic (1999) and Jansen (2001).

Bayesian shrinkage methods have also been studied, mainly for the possibility
of adding, by means of a prior probabilistic distribution, prior information about
the regression, coefficients and other parameters to be estimated. Specifically in
the case of wavelets, information about the degree of sparsity of the coefficient
vector, the support of these coefficients (if they are limited), among others
can be incorporated into the statistical model of study by means of bayesian
procedures. In this sense, the choice of the prior distribution of the wavelet
coefficients is extremely important to achieve meaningful results. Several bayesian
shrinkage procedures have been proposed in the last years in many statistical
fields. Some of them are found in Lian (2011), Beenamol et al. (2012), Karagiannis
et al. (2015), Griffin & Brown (2017) and Torkamani & Sadeghzadeh (2017).
Further, priors models in the wavelet domain were proposed since 1990s, as
for example a mixture of gaussian distributions by Chipman et al. (1997),
mixtures of a point mass function at zero and a symmetric distribution were
considered by Abramovich et al. (1998), Vidakovic (1998) with the use of the
t-distribution as the symmetric density in the mixture, Vidakovic & Ruggeri
(2001) with the double exponential distribution, Angelini & Vidakovic (2004)
with a Γ-Minimax shrinkage rule based on the Bickel distribution, Weibull
prior were proposed by Reményi & Vidakovic (2015), Dirichlet-Laplace priors
by Bhattacharya et al. (2015), the logistic prior by Sousa et al. (2021) and the
symmetric beta distribution by Sousa et al. (2021), among others. The common
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use of the mixture prior involving the point mass function at zero is suitable
for wavelet coefficients distribution modelling due the sparsity feature of them,
i.e, most of the wavelet coefficients are typically zero in practice. In this sense,
the point mass function allows to incorporate prior information about sparsity of
the wavelet coefficients by the determination of its weight in the prior mixture
distribution model.

One feature of the priors already proposed to the wavelet coefficients is that
they are symmetric around zero. Although these priors have been well succeeded in
many real applications, this symmetry assumption is not a general case, i.e, wavelet
coefficients can be asymmetrically distributed. In this sense, the proposition
of an asymmetric prior distribution could be welcome for better estimation of
asymmetrically distributed wavelet coefficients. Moreover, little attention has been
given to bounded priors, which can be important to model bounded energy signals
denoising, restricted to the proposition of the uniform and Bickel distributions
by Angelini & Vidakovic (2004) and the symmetric beta prior by Sousa et al.
(2021), although bounded energy signals occur in practice. Motivated by these
reasons, we propose in this work an asymmetric prior distribution to wavelet
coefficients based on a discrete mixture of a point mass function at zero and the
beta distribution with support on [−m,m]. The novelty of this study is, therefore,
the application of an asymmetric shrinkage rule associated with this prior model to
estimate asymmetrically distributed wavelet coefficients of the unknown function
to be recovered in a non-parametric regression model. Thus, the present work
can be viewed as an important extension of Sousa (2020), who proposed the use
of beta prior only in the symmetric case, restricting its hyperparameters values.
As we will see in the simulation studies, the proposed asymmetric shrinkage rule
outperforms the symmetric ones when the wavelet coefficients are asymmetric, as
expected.

The use of the asymmetric beta prior is interesting by several reasons. First
of all, it has a well known shape flexibility obtained by convenient choices
of its hyperparameters. Further, its hyperparameters have direct and easy
interpretations in terms of asymmetry (left and right asymmetry choices) and
shrinkage level, which are very useful for their elicitations by practitioners. Finally,
the shrinkage rule under asymmetric beta prior outperformed, in terms of averaged
mean squared and absolute errors, the considered shrinkage/thresholding methods
in our simulations studies, mainly when the coefficients present high asymmetry.

This paper is organized as follows: Section 2 defines the model and the
proposed asymmetric beta prior, Section 3 establishes the associated shrinkage
rule, shows statistical properties of the rule, such as variance, bias and risks.
Parameterand hyperparametes elicitations are discussed in Section 4. Simulation
studies involving artificial asymmetric coefficients and the so called Donoho-
Jonhstone test functions to evaluate performances are done in Section 5 and
application of the proposed shrinkage rule in a real seismic dataset is done
in Section 6. The paper finishes with conclusion and final considerations in
Section 7.
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2. Statistical Model

Let us consider the non-parametric regression problem involving one
dimensional values xi and yi of the form

yi = f(xi) + ei, i = 1, . . . , n = 2J , J ∈ N, (1)

where xi ∈ R, i = 1, . . . , n, f ∈ L2(R) = {f0 : R → R|
∫
f20 < ∞}, and ei,

i = 1, . . . , n, are zero mean independent normal random variables with unknown
variance σ2.

The unknown function f can be represented by

f(x) =
∑
j,k∈Z

θj,kψj,k(x),

where {ψj,k(x) = 2j/2ψ(2jx − k), j, k ∈ Z} is an orthonormal wavelet basis for
L2(R) constructed by dilations j and translations k of a function ψ called wavelet
or mother wavelet and θj,k are wavelet coefficients that describe features of f at
spatial location 2−jk and scale 2j or resolution level j. In this context, the data
points (x1, y1), . . . , (xn, yn) can be viewed as an approximation of f at the finest
resolution level J with additive and positive noise contamination.

In vector notation, we can rewrite model (1) as

y = f + e, (2)

where y = (y1, . . . , yn)
′, f = (f(x1), . . . , f(xn))

′ and e = (e1, . . . , en)
′. To estimate

the unknown function f , the standard procedure is to apply a discrete wavelet
transform (DWT) on (2), represented by an orthogonal transformation matrix W
of dimension n×n determined according to the considered wavelet basis, to obtain
the following model in the wavelet domain,

d = θ + ϵ, (3)

where d = Wy, θ = Wf and ϵ = We. For a specific component of the vector d,
we have the simple model dk = θk + ϵk or, for simplicity,

d = θ + ϵ, (4)

where d is the empirical wavelet coefficient, θ ∈ R is the wavelet coefficient to
be estimated and since the orthogonality of wavelet transformation preserves the
stochastic structure of gaussian noise, ϵ ∼ N(0, σ2) is normal random error with
unknown variance σ2. Although W is used as DWT representation for pedagogical
purposes, fast algorithms such as the pyramidal algorithm, which has complexity
O(n) and is a sequence of low and high pass filters, are applied to perform DWT
in practice, see Mallat (1998) for more details about DWT. Note that, according
to the model (4), d | θ ∼ N(θ, σ2) and then, the problem of estimating a function
f becomes a normal location parameter estimation problem in the wavelet domain
for each coefficient, with posterior estimation of f by the inverse discrete wavelet
transform (IDWT), i.e., f̂ = W T θ̂.
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One of the main advantages of expanding an unknown function in wavelet
basis is the typical sparsity of the vector of wavelet coefficients θ. In fact, the
coefficients are nonzero or significant only in localizations of time domain where
the function has features to be recovered, as discontinuities or peaks for example
and most of the remaining coefficients are zero or very close to zero. In this sense,
a good estimator of θ should take this sparsity feature into account. Most of
the classical procedures usually apply some kind of thresholding policy on the
empirical coefficients d, i.e, the empirical coefficient d are shrunk to zero if it is
less than some threshold value λ, λ > 0.

For bayesian estimation of θ, it is possible to model the sparsity of θ by
proposing a discrete mixture of a point mass function at zero and a continuous
distribution, attributing most of the weight on the point mass at zero. We propose
in this work the following prior discrete mixture distribution for θ,

π(θ;α, a, b,m) = αδ0(θ) + (1− α)g(θ; a, b,m), (5)

where α ∈ (0, 1), δ0(·) is the point mass function at zero and g(·; a, b,m) is the
beta density function on [−m,m], which is given by

g(θ; a, b,m) =
(θ +m)a−1(m− θ)b−1

(2m)a+b−1B(a, b)
I[−m,m](θ), (6)

for a, b,m > 0, a ̸= b (asymmetric case), B(·, ·) the standard beta function and
IA(·) the usual indicator function on the set A. In fact, the proposed beta density
on [−m,m] can be obtained by the transformation X = 2mY −m, where Y is a
random variable with standard beta distribution on [0, 1]. Thus the proposed prior
distribution to the wavelet coefficients has α, a, b and m as hyperparameters to be
elicited. We will see later that α, a and b values impact directly on the shrinkage
level of the estimator. Sousa (2020) proposed the prior model (5) and (6), but
restricted to symmetric case a = b. A performance comparison between shrinkage
rules under symmetric and asymmetric cases are provided in the simulation studies,
in Section 5.

According to the prior model given by Equations (5) and (6), we have that the
prior expected value Eπ(θ) and variance V arπ(θ) of θ are given respectively by

Eπ(θ) =
m(1− α)(a− b)

a+ b
,

V arπ(θ) =
(1− α)m2

(a+ b)2

[
4ab

a+ b+ 1
+ α(a+ b)2

]
.

Moreover, the Pearson skewness coefficient of a random variable X with
distribution (6) and the prior Pearson skewness coefficient of θ, which are their
third standardized moments, are given respectively by

Skewg(X) =
2(b− a)

√
a+ b+ 1

(a+ b+ 2)
√
ab

,

Skewπ(θ) = −α
[

Eπ(θ)

SDπ(θ)

]3
+ (1− α)

2(b− a)
√
a+ b+ 1

(a+ b+ 2)
√
ab

,
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where SDπ(θ) is the prior standard deviation of θ. First of all, we can note that
the proposed prior does not have zero mean wavelet coefficients. Actually, it only
occurs when a = b, the symmetric context, which is not considered on this work.
Further, the Pearson’s skewness coefficient tells us that when a > b, Skewπ(θ) < 0
and the prior is left assymetric. When a < b, Skewπ(θ) > 0 and the prior is
right asymmetric. Moreover, the asymmetry increases as |a − b| increases. The
symmetry occurs when a = b and then, for this work, we consider only the cases
a ̸= b, i.e., the asymmetric setup. Figure 1 shows some beta density functions for
a = 4, b ∈ {1, 2, 3, 4} and b = 4, a ∈ {1, 2, 3}, m = 3. When a > b, beta density is
left asymmetric and when a < b, it is right asymmetric. For a = b, beta density is
symmetric around zero. In this work we considered the asymmetric case. Further,
note that there is symmetry around x = 0 between densities of interchangeable
values of parameters a and b. We will see in the next section the impact on the
shrinkage rules and their statistical properties according to the skewness of the
prior distribution of θ.

Figure 1: Beta density functions (6) for a = 4, b ∈ {1, 2, 3, 4} and b = 4, a ∈ {1, 2, 3},
m = 3. When a > b, beta density is left asymmetric and when a < b, it is
right asymmetric. For a = b, beta density is symmetric around zero.

3. Statistical Description of the Shrinkage Rule

The model (4), (5) and (6) allows us to obtain the bayesian shrinkage rule δ(·),
which is the Bayes estimator of θ based on the empirical wavelet coefficient d. It
is well known that under the quadratic loss function L(δ, θ) = (δ − θ)2, the Bayes
estimator is the posterior expected value of θ, i.e., δ(d) = Eπ(θ|d). Proposition 1 by
Sousa et al. (2021) gives the specific expression of the shrinkage rule under model
(4), a general prior distribution of the form π(θ;α,m, τ ) = αδ0(θ)+ (1−α)g(θ; τ )
and for a density function g with support in [−m,m].

Proposition 1. Consider the location parameter θ estimation problem (4). If
the prior distribution of θ is of the form π(θ;α,m, τ ) = αδ0(θ) + (1 − α)g(θ; τ ),
where g is a density function with support in [−m,m] and parameters τ , then the

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 41–63



Asymmetric Prior in Wavelet Shrinkage 47

shrinkage rule under the quadratic loss function is given by

δ(d) =
(1− α)

∫ m−d
σ

−m−d
σ

(σu+ d)g(σu+ d; τ )ϕ(u)du

α 1
σϕ(

d
σ ) + (1− α)

∫ m−d
σ

−m−d
σ

g(σu+ d; τ )ϕ(u)du
(7)

where ϕ(·) is the standard normal density function.

Thus we can apply the Proposition 1 to the specific beta density function (6)
with τ = (a, b)′ to obtain the shrinkage rule of the proposed model numerically
using Monte Carlo methods to calculate integrals in (7). Figure 2 presents the
shrinkage rules for α = 0.9, m = 3, σ = 1 and (a) left asymmetric case a > b, for
a = 7 and b ∈ {1, 2, 3, 4, 5, 6} and (b) right asymmetric case a < b, for b = 7 and
a ∈ {1, 2, 3, 4, 5, 6}. The symmetric shrinkage rule for a = b = 7 is also included in
both figures for comparison. First of all, we can observe a symmetric behavior
of the rules relative to the origin of the cartesian system for interchangeable
choices of a and b, i.e, if δa,b(d) = δ(d) for choices of hyperparameters a and
b, then δa,b(d) = −δb,a(−d). For example, δ7,1(d) = −δ1,7(−d). This feature is a
consequence of the symmetry around zero between the respective densites. Thus,
we describe the shrinkage rule and its features just for the left asymmetric case
(a > b), once the same properties occur symmetrically for the right asymmetric
distributional context.

(a) Left asymmetric case a > b. (b) Right asymmetric case a < b.

Figure 2: Shrinkage rules under beta prior for α = 0.9, m = 3, σ = 1 and (a) left
asymmetric case (a > b), a = 7 and (b) right asymmetric case (a < b), b = 7.
The symmetric case a = b = 7 is included in both figures for comparison.

Figure 2 (a) shows, as expected, that the shrinkage rules under left asymmetric
beta prior perform shrinkage asymetrically around zero. In fact, negative empirical
coefficients are shrunk more than the positive ones. Moreover, the shrinkage level
increases as |a − b| increases, once the interval size of d-values that are shrunk
to zero is higher. Another property usually taken by bayesian shrinkage rules for
bounded wavelet coefficients is that they are also bounded by [−m,m]. Since
θ is bounded by [−m,m], empirical coefficients d occur with absolute values
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higuer than m due noise effect, then they are shrunk to m at most. Figure 3
(a) presents the impact of the hyperparameter α on shrinkage level of the rules,
for α ∈ {.6, .7, .8, .9, .99}, a = 7, b = 3 and m = 3. As expected, the rule shrinks
more as α increases, since this set more weight to the point mass at zero function
in the prior model (5). Squared bias, Bias2(θ) = {E[δ(d)|θ] − θ}2, and variance

(a) Shrinkage rules for several α values. (b) Squared bias for several b values.

Figure 3: Shrinkage rules under beta prior for a = 7, b = 3 and m = 3 for several values
of α (a) and squared bias for shrinkage rules for α = 0.9, m = 3, σ = 1 and
left asymmetric case (a > b) with a = 7 (b). The symmetric case a = b = 7
is included in (b) for comparison.

of the shrinkage rules for left asymmetric case (a > b) are provided in Figures 3
(b) and 4 (a) respectively. The estimators are practically unbiased and achieve
minimum variance when θ is close to zero (but not for θ = 0). These features
also exist when symmetric priors are assumed for θ. However, these properties
behave differently for negative and positive θ values. The bias increases faster
for negative θ values than for positive ones while the variance increases faster
for positive values. Since the shrinkage is stronger for negative values of d, it is
reasonable the asymmetrical increase of the bias on the negative values direction
with the simultaneously decreasing variance toward it. Figure 4 (b) and Table
1 show, respectively, the classical risks Rδ(θ) and Bayes risks rδ respectively for
the same rules considered on the plots of squared bias and variance. In fact, the
behavior of the classical risks is the same as the squared bias one, i.e, there is a
faster increase of the risk for negative θ values than for positive values, with the
minimum risk close to zero. Moreover, we observe that the Bayes risk decreases
as the hyperparameter b increases and goes to the symmetric case. Further, Bayes
risks for several α values are presented in Table 2. As expected, the bayesian risk
decreases as α increases, once this last one implies a higher shrinkage and agree
with the prior belief of sparsity of the θ vector.

Table 1: Bayes risks of the shrinkage rules under beta prior distribution with
hyperparameters α = 0.9, m = 3, σ = 1 and a = 7.

b 1 2 3 4 5 6
rδ 0.221 0.182 0.139 0.103 0.078 0.063
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(a) Variances. (b) Classical risks.

Figure 4: Variances and classical risks for shrinkage rules under beta prior for α = 0.9,
m = 3, σ = 1 and left asymmetric case (a > b) with a = 7. The symmetric
case a = b = 7 is included in both figures for comparison.

Table 2: Bayes risks of the shrinkage rules under beta prior distribution with
hyperparameters m = 3, σ = 1, a = 7 and b = 3.

α 0.6 0.7 0.8 0.9 0.99
rδ 0.352 0.299 0.231 0.139 0.019

4. Prior Elicitation

Methods and criteria for determination of the involved parameters and
hyperparameters to estimate the coefficients are important in bayesian procedures.
In the framework of model (4), (5) and (6), the choices of the σ parameter of the
normal random error distribution and the hyperparameters α, m, a and b of the
beta prior distribution of the wavelet coefficient are required. We present the
methods and criteria already available in the literature for such choices and used
in simulation and application studies and some direction on elicitation of the beta
shape parameters.

Based on the fact that much of the noise information present in the data can
be obtained on the finer resolution scale, for the robust σ estimation, Donoho &
Johnstone (1994a) suggest

σ̂ =
median{|dJ−1,k| : k = 0, . . . , 2J−1}

0.6745
. (8)

The hyperparameters α and m are the weight of the point mass function at
zero of the proposed prior and the upper value of the beta support respectively.
Angelini & Vidakovic (2004) suggest the hyperparameters α and m be dependent
on the level of resolution j according to the expressions

α = α(j) = 1− 1

(j − J0 + 1)γ
(9)
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and
m = m(j) = max

k
{|djk|}, (10)

where J0 ≤ j ≤ J − 1, J0 is the primary resolution level and γ > 0. They also
suggest that in the absence of additional information, γ = 2 can be adopted.

Finally, the shape hyperparameters a and b should be chosen according to
asymmetry and shrinkage levels criteria. Left asymmetry imposes a > b and right
one says a < b. As |a − b| increases, the asymmetry level and shrinkage in the
direction of this asymmetry increase. In practice, assuming symmetric around
zero noise, as the considered model (4), the observed asymmetry of the empirical
coefficients d can provide some information about wavelet coefficients asymmetry
criteria and be a starting point to elicite it. Based on our experiments, we suggest
a, b ∈ {1, 2, 3, 4, 5, 6, 7} as default possible values.

5. Simulation Studies

Two simulation studies were done to evaluate the performance of the proposed
shrinkage rule and to compare it with well known shrinkage/thresholding methods.
The first one (simulation study 1) had empirical coefficients vector d artificially
generated according to the models (4), (5) and (6) and the second one (simulation
study 2) involved Donoho-Johnstone test functions, which are usually applied in
the literature to compare wavelet-based methods.

In both simulation studies, the performances of our proposed shrinkage
rule (denoted by ASYM BETA in Tables and Figures) were compared with
soft thresholding with threshold parameter chosen according to the following
policies: universal thresholding (UNIV) proposed by Donoho & Johnstone (1994b),
false discovery rate (FDR) proposed by Abramovich & Benjamini (1996), cross
validation (CV) of Nason (1996) and Stein unbiased risk estimator (SURE) of
Donoho & Johnstone (1995). Moreover, we also compared with bayesian shrinkage
methods: bayesian adaptive multiresolution shrinker (BAMS) of Vidakovic &
Ruggeri (2001), large posterior mode (LPM) of Cutillo et al. (2008) and a
symmetric beta shrinkage rule (SYM BETA) proposed by Sousa et al. (2021).

We used the mean squared error (MSE), MSE = 1
n

∑n
i=1[f̂(xi)− f(xi)]

2 and
the mean absolute error (MAE) MAE = 1

n

∑n
i=1 |f̂(xi) − f(xi)| as performance

measures of the shrinkage rules on each run of the simulation. For each function,
the simulation was repeated M times and the comparison measures, the average
of the obtained MSEs and MAEs, AMSE = 1

M

∑M
j=1MSEj and AMAE =

1
M

∑M
j=1MAEj , were respectively calculated. Thus, the best method in terms

of averaged mean squared error and averaged mean absolute error is the one with
the smallest values of AMSE and AMAE respectively.

In both simulation studies, normal random noise vectors were generated
according to three signal to noise ratio values (SNR), 3, 6 and 9, two sample
sizes were considered, n = 512 and 2048 and wavelet basis Daubechies with eight
null moments (Daub8) was applied.
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5.1. Simulation Study 1

To evaluate the performance of the proposed shrinkage rule in asymmetric
distributed wavelet coefficients, we generated the wavelet coefficients θ according
to the models (5) and (6) in two sceneries of asymmetry and one symmetric
scenery controlled by the choice of a and b. The symmetric scenery was considered
to evaluate the performance of the asymmetric shrinkage rule in a symmetric
distributed coefficients. The hyperparameters choices for the first asymmetric
scenery were a = 3, b = 7, m = 10 and α = 0.9, which give Eπ(θ) = −0.40,
V arπ(θ) = 2.20 and Skewπ(θ) = 0.07 (Skewg(X) = 0.48) . Thus, this scenery has
a moderate asymmetry and a large amount of null coefficients due the impact of
the weight α of the point mass function at zero. On the second scenery one had
more extreme hyperparameters choices, a = 1, b = 20, m = 30 and α = 0.6, which
give Eπ(θ) = 10.86, V arπ(θ) = 179.78 and Skewπ(θ) = 0.16 (Skewg(X) = 1.73).
This last one introduces more asymmetry and less null coefficients. Finally, for the
symmetric scenery, we considered a = 5, b = 5, m = 30 and α = 0.9, corresponding
to Eπ(θ) = 0, V arπ(θ) = 89.18 and Skewπ(θ) = 0 (Skewg(X) = 0).

Tables 3, 4 and 5 show the AMSEs and AMAEs for the first, second and third
sceneries respectively obtained for M = 1000 simulation runs in each scenery
of sample size and SNR. When performing this simulation study, sceneries with
the right asymmetric case a < b were originally considered, but as mentioned in
Section 3, the dynamic of the proposed asymmetric shrinkage rule is the same as
for a > b, thus we just analyze in this first simulation study the left asymmetry
context for simplicity.

Table 3: AMSE and AMAE of the shrinkage/thresholding rules in the simulation study
1 for the empirical wavelet coefficients vector artificially generated according
to the models (4), (5) and (6) for α = 0.9, a = 3, b = 7 and m = 10-Scenery 1.

n Method SNR = 3 SNR = 6 SNR = 9
AMSE (AMAE) AMSE (AMAE) AMSE (AMAE)

512 UNIV 0.439 (0.367) 0.119 (0.191) 0.054 (0.129)
FDR 0.445 (0.362) 0.129 (0.202) 0.067 (0.144)
CV 0.634 (0.429) 0.177 (0.226) 0.082 (0.153)

SURE 0.122 (0.204) 0.031 (0.103) 0.014 (0.069)
BAMS 0.402 (0.381) 0.375 (0.373) 0.371 (0.373)
LPM 0.288 (0.391) 0.072 (0.196) 0.032 (0.130)

SYM BETA 0.041 (0.132) 0.060 (0.063) 0.005 (0.042)
ASYM BETA 0.035 (0.120) 0.012 (0.056) 0.004 (0.035)

2048 UNIV 0.310 (0.356) 0.087 (0.186) 0.040 (0.126)
FDR 0.237 (0.303) 0.065 (0.158) 0.030 (0.107)
CV 0.404 (0.407) 0.116 (0.217) 0.054 (0.147)

SURE 0.078 (0.182) 0.020 (0.092) 0.009 (0.062)
BAMS 0.237 (0.327) 0.218 (0.317) 0.215 (0.315)
LPM 0.240 (0.384) 0.060 (0.192) 0.026 (0.128)

SYM BETA 0.040 (0.124) 0.124 (0.059) 0.010 (0.040)
ASYM BETA 0.037 (0.111) 0.008 (0.051) 0.003 (0.036)
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Table 4: AMSE and AMAE of the shrinkage/thresholding rules in the simulation study
1 for the empirical wavelet coefficients vector artificially generated according
to the models (4), (5) and (6) for α = 0.6, a = 1, b = 20 and m = 30-
Scenery 2.

n Method SNR = 3 SNR = 6 SNR = 9
AMSE (AMAE) AMSE (AMAE) AMSE (AMAE)

512 UNIV 8.316 (1.780) 2.082 (0.888) 0.922 (0.593)
FDR 14.350 (2.879) 27.230 (3.152) 26.385 (3.092)
CV 11.456 (2.076) 2.854 (1.039) 1.261 (0.694)

SURE 2.345 (1.022) 0.589 (0.511) 0.260 (0.340)
BAMS 2.097 (1.064) 0.401 (0.414) 0.256 (0.312)
LPM 6.933 (2.116) 1.733 (1.059) 0.770 (0.706)

SYM BETA 3.971 (1.426) 1.836 (0.901) 1.651 (0.819)
ASYM BETA 0.307 (0.269) 0.111 (0.162) 0.057 (0.115)

2048 UNIV 12.204 (2.219) 3.058 (1.109) 0.922 (0.740)
FDR 9.333 (1.996) 2.838 (1.280) 26.385 (1.010)
CV 17.047 (2.607) 4.279 (1.304) 1.261 (0.870)

SURE 2.680 (1.051) 0.672 (0.526) 0.260 (0.350)
BAMS 2.425 (1.075) 0.449 (0.439) 0.256 (0.340)
LPM 7.464 (2.108) 1.867 (1.055) 0.770 (0.703)

SYM BETA 3.790 (1.425) 1.706 (0.882) 1.419 (0.764)
ASYM BETA 0.351 (0.330) 0.120 (0.198) 0.057 (0.141)

Table 5: AMSE and AMAE of the shrinkage/thresholding rules in the simulation study
1 for the empirical wavelet coefficients vector artificially generated according
to the models (4), (5) and (6) for α = 0.9, a = 5, b = 5 and m = 30-
Scenery 3.

n Method SNR = 3 SNR = 6 SNR = 9
AMSE (AMAE) AMSE (AMAE) AMSE (AMAE)

512 UNIV 0.089 (0.188) 0.024 (0.099) 0.011 (0.067)
FDR 0.089 (0.187) 0.027 (0.103) 0.012 (0.071)
CV 0.115 (0.213) 0.031 (0.112) 0.014 (0.077)

SURE 0.028 (0.113) 0.007 (0.058) 0.003 (0.039)
BAMS 0.335 (0.359) 0.334 (0.358) 0.334 (0.357)
LPM 0.093 (0.244) 0.023 (0.121) 0.010 (0.081)

SYM BETA 0.012 (0.065) 0.002 (0.030) 0.001 (0.019)
ASYM BETA 0.018 (0.072) 0.008 (0.043) 0.007 (0.035)

2048 UNIV 0.163 (0.265) 0.0468 (0.143) 0.021 (0.097)
FDR 0.126 (0.232) 0.035 (0.123) 0.016 (0.084)
CV 0.214 (0.304) 0.063 (0.167) 0.029 (0.115)

SURE 0.041 (0.136) 0.010 (0.069) 0.004 (0.047)
BAMS 0.373 (0.392) 0.371 (0.391) 0.371 (0.391)
LPM 0.116 (0.272) 0.029 (0.136) 0.012 (0.090)

SYM BETA 0.022 (0.091) 0.004 (0.041) 0.001 (0.026)
ASYM BETA 0.028 (0.100) 0.010 (0.054) 0.007 (0.041)

We can observe an excelent performance of the shrinkage rule under asymmetric
prior in both asymmetric sceneries. In fact, our rule had the best performance in

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 41–63



Asymmetric Prior in Wavelet Shrinkage 53

terms of AMSE and AMAE in all the considered sceneries of sample size and
SNR and both the contexts of hyperparameters choice. We emphasize the second
sceneries, with strong asymmetry and less sparsity degree of the coefficients, where
the difference in performance of the rule with the others are significant. It suggests
that when the wavelet coefficients are asymmetrically distributed, our proposed
rule should be considered as the shrinker to be applied.

Another interesting observed feature is the good performance of the rule for
low SNR values. When SNR = 3, the beta rule had significant difference against
the comparison methods, i.e., the shrinker can be well succeeded even for presence
with high noise level in the data, which is a desirable for shrinkers.

Moreover, the performance of the asymmetric rule in the symmetric scenery
was close to the symmetric rule one, the best method in this context as expected,
in both measures.

Boxplots of MSEs and MAEs obtained for the shrinkage/thresholding rules in
both contexts for n = 512 and SNR = 3 are presented in Figures 5 (a) and (b).

5.2. Simulation Study 2

To conclude our simulation studies, we evaluated the performance of the
proposed shrinkage rule in the four Donoho-Jonhstone test functions called Bumps,
Blocks, Doppler and Heavisine. Figure 6 (a) shows these popular functions in
statistical wavelet research, once each of them has interesting features such as
discontinuities, spikes and oscillations that are important to be captured in curve
estimation procedures by wavelet modelling.

In fact, the four functions present asymetrically distributed wavelet coefficients
with different levels. Bumps and Doppler functions have the highest levels
of wavelet coefficients asymmetry and the Heavisine, the shortest one, i.e., its
coefficients are almost symmetric around zero. These previous knowledge allows
us to explain the different performances of our asymmetric shrinker among the
functions.

In each function, data were generated according to the addition of normal
random noise with the same scenarios of sample size and SNR of simulation study
1. The AMSEs and AMAEs obtained for each rule are in Tables 6 and 7, for
M = 500 simulation runs for each scenario.

We observe that the proposed shrinkage rule had great performance in
practically all the scenarios. It was the best one for the performance measures
in Bumps and Doppler functions and beat the comparison rules in some scenarios
for Blocks function. Even for Heavisine function, that has the least asymmetric
coefficients distribution, which was dominated by CV method, our asymmetric
beta rule had reasonable performance, with AMSE and AMAE very close to the
best methods on almost all the scenarios for this function. This feature should
be emphasized: although the asymmetric shrinker had the best performance when
applied in empirical wavelet coefficients of functions with significant asymmetrical
wavelet coefficients distributions, which was already expected, it also had good
results when the wavelet coefficients of the signal are practically symmetric. This
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provides some sort of flexibility of the proposed shrinker, which is essential for real
data applications. Finally, as observed in simulation study 1, we also have good
results for low SNR values, such as 3.

(a) MSE - Scenery 1 (b) MAE - Scenery 1

(c) MSE - Scenery 2 (d) MAE - Scenery 2

(e) MSE - Scenery 3 (f) MAE - Scenery 3

Figure 5: Boxplots of MSEs and MAEs of shrinkage/thresholding rules in simulation
study 1 involving artificial asymmetric distributed wavelet coefficients for
n = 512 and SNR=3 according to the models (4), (5) and (6) for α = 0.9,
a = 3, b = 7 and m = 10 (Scenery 1) and α = 0.6, a = 1, b = 20 and
m = 30 (Scenery 2) and α = 0.9, a = 5, b = 5 and m = 30 (Scenery 3) . The
associated rules are: 1-UNIV, 2-FDR, 3-CV, 4-SURE, 5-BAMS, 6-LPM and
7-SYM BETA and 8- ASYM BETA.
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(a) Donoho-Johnstone test functions.

(b) Fitted curves.

Figure 6: Donoho-Johnstone test functions used as underlying signals in simulation
study 2 (a) and fitted curves obtained after application of asymmetric
shrinkage rule under beta prior for n = 512 and SNR = 6.

Figures 6 (b), 7 and 8 show fitted curves obtained after denoising by asymmetric
shrinkage rule and boxplots of the MSEs and MAEs of the shrinkage/thresholding
rules respectively for n = 512 and SNR = 6. One can note that the fitted curves
recover the main features of each signal, as jumps and spikes. Moreover, the MSEs
of the proposed rule (rule number 8 at the boxplots) had low variation.
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Table 6: AMSE and AMAE of the shrinkage/thresholding rules in the simulation study
for the empirical wavelet coefficients vector artificially generated with Donoho
Jonhstone test functions Bumps and Blocks as underlying signals and additive
normal random noise.

Signal n Method SNR = 3 SNR = 6 SNR = 9
AMSE (AMAE) AMSE (AMAE) AMSE (AMAE)

Bumps 512 UNIV 11.122 (1.773) 3.882 (1.146) 2.014 (0.862)
FDR 9.313 (1.664) 3.324 (1.073) 1.774 (0.814)
CV 11.444 (1.792) 7.665 (1.517) 4.533 (1.219)

SURE 3.656 (1.229) 1.159 (0.713) 0.578 (0.511)
BAMS 2.833 (1.240) 1.355 (0.827) 1.160 (0.772)
LPM 5.441 (1.862) 1.363(0.930) 0.606 (0.620)

SYM BETA 2.763 (1.205) 1.348 (0.757) 0.684 (0.612)
ASYM BETA 2.968 (1.250) 1.075 (0.729) 0.548 (0.528)

2048 UNIV 5.050 (1.223) 1.769 (0.761) 0.935 (0.569)
FDR 3.582 (1.052) 1.173 (0.635) 0.602 (0.465)
CV 1.610 (0.816) 0.578 (0.477) 0.381 (0.378)

SURE 1.651 (0.818) 0.510 (0.466) 0.250 (0.328)
BAMS 1.635 (0.943) 0.573 (0.531) 0.482 (0.478)
LPM 5.453 (1.861) 1.359 (0.931) 0.604 (0.620)

SYM BETA 1.555 (0.822) 0.734 (0.546) 0.550 (0.451)
ASYM BETA 1.450 (0.764) 0.465 (0.432) 0.298 (0.310)

Signal n Method SNR = 3 SNR = 6 SNR = 9
AMSE (AMAE) AMSE (AMAE) AMSE (AMAE)

Blocks 512 UNIV 6.940 (1.852) 2.846 (1.151) 1.524 (0.840)
FDR 5.911 (1.693) 2.244 (1.013) 1.164 (0.736)
CV 2.575 (1.146) 1.000 (0.694) 0.673 (0.561)

SURE 2.827 (1.181) 0.904 (0.667) 0.448 (0.475)
BAMS 2.469 (1.172) 1.163 (0.771) 1.018 (0.719)
LPM 5.469 (1.861) 1.363 (0.930) 0.605 (0.622)

SYM BETA 2.811 (1.494) 1.945 (1.192) 1.376 ( 1.036)
ASYM BETA 2.834 (1.227) 0.950 (0.706) 0.416 (0.470)

2048 UNIV 3.417 (1.241) 1.376 (0.772) 0.757 (0.567)
FDR 2.688 (1.093) 0.967 (0.645) 0.513 (0.464)
CV 1.307 (0.788) 0.444 (0.452) 0.248 (0.333)

SURE 1.359 (0.796) 0.441(0.453) 0.220 (0.320)
BAMS 1.502 (0.901) 0.499 (0.491) 0.418 (0.441)
LPM 5.450 (1.860) 1.361 (0.931) 0.605 (0.620)

SYM BETA 2.245 (1.234) 0.993 (0.870) 0.497 (0.591)
ASYM BETA 1.306 (0.769) 0.445 (0.450) 0.231 (0.321)
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Table 7: AMSE and AMAE of the shrinkage/thresholding rules in the simulation study
for the empirical wavelet coefficients vector artificially generated with Donoho
Jonhstone test functions Doppler and Heavisine as underlying signals and
additive normal random noise.

Signal n Method SNR = 3 SNR = 6 SNR = 9
AMSE (AMAE) AMSE (AMAE) AMSE (AMAE)

Doppler 512 UNIV 2.645 (1.143) 1.102 (0.752) 0.608 (0.566)
FDR 2.540 (1.119) 0.967 (0.699) 0.514 (0.520)
CV 1.269 (0.821) 0.518 (0.520) 0.374 (0.438)

SURE 1.318 (0.835) 0.435 (0.480) 0.216 (0.337)
BAMS 1.527 ( 0.933) 0.537 (0.549) 0.461 (0.512)
LPM 5.448 (1.861) 1.365 (0.930) 0.603 (0.620)

SYM BETA 1.656 (1.030) 0.987 (0.812) 0.751 (0.722)
ASYM BETA 1.303 (0.781) 0.469 (0.485) 0.212 (0.334)

2048 UNIV 1.155 (0.724) 0.457 (0.463) 0.257 (0.345)
FDR 1.040 (0.691) 0.377 (0.419) 0.199 (0.301)
CV 0.557 (0.520) 0.191 (0.300) 0.097 (0.212)

SURE 0.573 (0.527) 0.194 (0.302) 0.097(0.213)
BAMS 1.084 (0.770) 0.211 (0.335) 0.160 (0.283)
LPM 5.439 (1.864) 1.358 (0.930) 0.604 (0.620)

SYM BETA 1.033 (0.808) 0.705 (0.663) 0.378 (0.497)
ASYM BETA 0.468 (0.458) 0.174 (0.280) 0.103 (0.204)

Signal n Method SNR = 3 SNR = 6 SNR = 9
AMSE (AMAE) AMSE (AMAE) AMSE (AMAE)

Heavisine 512 UNIV 0.570 (0.529) 0.348 (0.400) 0.237 (0.334)
FDR 0.594 (0.543) 0.368 (0.410) 0.228 (0.328)
CV 0.511 (0.503) 0.219 (0.329) 0.122 (0.246)

SURE 0.573 (0.531) 0.360 (0.405) 0.249 (0.341)
BAMS 1.142 (0.797) 0.258 (0.380) 0.204 (0.333)
LPM 5.429 (1.863) 1.365 (0.931) 0.604 (0.618)

SYM BETA 1.112 (0.790) 0.788 (0.660) 0.703 (0.633)
ASYM BETA 0.623 (0.753) 0.267 (0.608) 0.136 (0.563)

2048 UNIV 0.358 (0.394) 0.193 (0.290) 0.123 (0.229)
FDR 0.389 (0.410) 0.186 (0.284) 0.111 (0.216)
CV 0.264 (0.349) 0.109 (0.222) 0.060 (0.163)

SURE 0.360 (0.395) 0.197 (0.292) 0.111 (0.217)
BAMS 0.982 (0.725) 0.143 (0.278) 0.100 (0.226)
LPM 5.444 (1.861) 1.359 (0.930) 0.604 (0.620)

SYM BETA 0.926 (0.732) 0.724 (0.657) 0.429 (0.505)
ASYM BETA 0.548 (0.649) 0.795 ( 0.551) 0.326 (0.392)
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Figure 7: Boxplots of MSEs and MAEs of shrinkage/thresholding rules in simulation
study 2 involving Donoho-Johnstone test functions Bumps and Blocks for
n = 512 and SNR = 6. The associated rules are: 1-UNIV, 2-FDR, 3-CV,
4-SURE, 5-BAMS, 6-LPM, 7-SYM BETA and 8-ASYM BETA.

Figure 8: Boxplots of MSEs and MAEs of shrinkage/thresholding rules in simulation
study 2 involving Donoho-Johnstone test functions Doppler and Heavisine
for n = 512 and SNR = 6. The associated rules are: 1-UNIV, 2-FDR, 3-CV,
4-SURE, 5-BAMS, 6-LPM, 7-SYM BETA and 8-ASYM BETA.
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6. Application: Seismic Dataset

Coso, California, is a geothermal area, with geological strucute tectonically
active and its geological and geophysics properties have been studied along the
last decades by experts of the area. Once with a seismogram at hand, the experts
classify the subsets of the data as primary waves (P-waves), secondary waves (S-
waves) and body waves, according to some faetures of the signal, as amplitude,
velocity and other geophysical parameters. The precision of the classification
could be extremely important to predict events, such earthquakes. In this sense,
denoising de seismogram with statistical methods is crucial for precision of such
wave type classifications and naturally, wavelet based statistical methods are some
of the most attractive and proposed methods for this purpose. Chik et al. (2009),
To et al. (2009), Ansari et al. (2010), Beenamol et al. (2012, 2016), Mousavi et al.
(2016) and Vargas and Veiga (2017) are some of relevant works related to wavelet
based methods applied in denoising seismic data.

We applied the proposed shrinkage rule in denoising seismic amplitudes dataset
collected from Coso, California and available in RSEIS R package (Lees et al.,
2020). The available dataset has 726 seismic amplitudes measured in a short time
interval. We considered J = ⌊log2 726⌋ = 9 resolution levels, thus n = 29 = 512
data points. The considered seismogram is shown in Figure 9 (a). For more details
of Coso geological studies and the dataset, the reader is addressed to Lees (2004).

After application of a DWT using Daub10 basis, we observed an empirical
right asymmetry of the coefficients, with ˆSkew(d) = 0, 25 and σ̂ = 298, 38. Then,
our asymmetric shrinkage rule was applied for denoising the empirical coefficients,
with hyperparameters a = 2, b = 3, α = α(j) and m = m(j) according to (9)
and (10) respectively. The denoised seismogram is shown in Figure 9 (b). From
comparison of figures in (9), one can observe considered noise reduction, mainly on
the final period of the seismogram, when the seismic activity becomes to decrease.

(a) Seismic dataset (b) Denoised data

Figure 9: Considered seismogram from Coso, California (a) and its denoised version (b)
after application of the proposed asymmetric shrinkage rule under beta prior.
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Noise reduction can also be observed directly from the wavelet coefficients of
the considered seismogram and its denoised version, shown in Figures 10 (a) and
(b) respectively. In fact, denoising occures mainly at high resolution levels, where
most of non-zero magnitudes of the coefficients are tipically attributed to noise,
as already mentioned in Section 5.

(a) Empirical coefficients (b) Shrunk coefficients

Figure 10: Empirical wavelet coefficients of the considered seismogram dataset (a) and
their shrunk versions after denoising by the proposed asymmetric shrinkage
rule under beta prior (b).

(a) Empirical against shrunk coefficients (b) Histogram of shrunk coefficients

Figure 11: Empirical coefficients against their shrunk versions (a) and histogram of
shrunk coefficients obtained by application of asymmetric shrinkage rule
under beta prior.

Finally, we present the asymmetric shrinkage process in Figures 11 (a) and
(b). The first one shows us the plot of empirical coefficients against their shrunk
versions ones. There is a weak right asymmetry around zero, i.e, empirical
coefficients greater than zero had a little bit stronger shrinkage than the smaller
ones, which is the effect of the chosen hyperparameters of the beta, a = 2 and
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b = 3. Although the asymmetry is not high, the adaptive asymmetric prior
assigned according to this weak deviation of symmetry improved the denoising
performance of the shrinkage rule. Figure 11 (b) presents the histogram of shrunk
coefficients, which emphasizes the sparsity of the estimated coefficients vector,
with more than a half of the 512 coefficients shrunk to zero or very close to it.

7. Final Considerations

We propose in this work the use of asymmetric prior based on the beta
distribution to the wavelet coefficients, which is a novelty in the wavelet shrinkage,
since all the already proposed shrinkage methods are typically symmetric around
zero. Moreover, few studies are concerned to bounded energy signals, which imply
in bounded wavelet coefficients. In this sense, a bounded prior proposition, as the
beta distribution, can be an alternative for applications in this context.

The easy interpretation of the beta hyperparameters a and b in terms
of asymmetry and shrinkage level and the well known flexibility of this
distribution allow elicitation of the hyperparameters and adaptivity in modelling
the coefficients, which are very attractive in bayesian setup. Further, the associated
shrinkage rule had great performance in simulation studies and outperformed
the considered shrinkage/thresholding methods in most of the scenarios, mainly
when coefficients are highly asymmetric. Even when the coefficients are close
to symmetry, the asymmetric shrinkage rule showed satisfactory results. These
features allow the asymmetric beta to be considered by practitioners as a candidate
to bayesian modelling of wavelet coefficients.

The proposed shrinkage rule was obtained under squared loss function, which
is symmetric around zero. Due the considered asymmetry aspect of the wavelet
coefficients, asymmetric loss functions can naturally be considered instead of the
squared function one. Further, the impact of wavelet basis choice, the proposition
of other asymmetric distributions to wavelet coefficients, the evaluation of the
proposed beta shrinkage rule in other performance measures are trivial possible
extensions of this work.
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