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Abstract
In this paper, the generalized Bayes estimator of mean vector parameter

for multivariate normal distribution with Unknown mean vector and
covariance matrix is considered. This estimation is performed under the
balanced-LINEX error loss function. The generalized Bayes estimator by
using wavelet transformation is investigated. We also prove admissibility
and minimaxity of shrinkage estimator and we present the simulation study
and real data set for test validity of new estimator.
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Resumen
En este trabajo, se considera el estimador de Bayes generalizado del

parámetro de vector medio para distribución normal multivariante con vector
de media desconocido y matriz de covarianza. Esta estimación se realiza bajo
la función de pérdida de error LINEX balanceada. Se investiga el estimador
de Bayes generalizado mediante la transformación de ondículas. También
probamos la admisibilidad y minimaxidad del estimador de contracción y
presentamos el estudio de simulación y el conjunto de datos reales para
comprobar la validez de la prueba del nuevo estimador.
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1. Introduction

Many univariate tests and confidence intervals are based on the univariate
normal distribution. Similarly, the majority of multivariate procedures have the
multivariate normal distribution as their underpinning. For more information
about this issue refer to Rencher & Christensen (2012).

Given the importance of the multivariate normal distribution, estimating the
parameters of this distribution is very important. In this paper, our goal is to
estimate the mean vector of this distribution. We suppose that the random vector
X = (X1, . . . , Xp) has a multivariate normal distribution with unknown mean
vector θ = (θ1, . . . , θp) and unknown covariance matrix Σ (X ∼ Np(θ,Σ)). For
this purpose, using the generalized Bayes estimator, we estimated mean vector
under a combination of balanced loss function and asymmetric linear exponential
(LINEX) loss function.

Balanced loss functions and their role in estimation have captured the interest
of many researchers. The balanced loss function was introduced by Zellner (2009)
to reflect two criteria: goodness of fit and precision of estimation. In Zellner’s
framework, the target estimator was least-squares, but such a target can be viewed
more broadly (e.g., Jozani, Marchand & Parsian 2006, 2014). For more details
about the use of this loss, we refer to Jozani et al. (2012), Cao & He (2017),
Zinodiny et al. (2017), Karamikabir & Arashi (2018), Karamikabir et al. (2020),
Marchand & Strawderman (2020), and Karamikabir & Afshari (2020, 2021) to
mention a few.

Suppose that X is a random vector having a multivariate normal distribution
with mean vector parameter θ. The balanced-type loss function is defined as
follows:

L∗
ω,δ0(θ, δ) = ωρ (δ0(X), δ(X)) + (1− ω)ρ (θ, δ(X)) , 0 ≤ ω < 1. (1)

where δ0 is a target estimator of θ obtained for instance using the criterion
of maximum likelihood, least-squares, unbiasedness etc. ρ(·) is an arbitrary
multivariate loss function and δ(X) is an estimator of p-vector parameter θ based
on the random vector X.

In the balanced-type loss function (1), with the change of multivariate loss
function ρ(·), we can define different types of the balanced-type loss functions. If
we consider multivariate LINEX loss function ρ(l, δ) = b

(
ea

T (δ−l) − aT (δ− l)− 1
)

with the scale parameter b and the p-vector shape parameter a = (a1, . . . , ap)
T ,

then we have the balanced-LINEX loss function as follows:

Lω,δ0(θ, δ) = bω
(
ea

T (δ(X)−δ0(X)) − aT (δ(X)− δ0(X))− 1
)

+b(1− ω)
(
ea

T (δ(X)−θ) − aT (δ(X)− θ)− 1
)
, 0 ≤ ω < 1.(2)

If ω = 0, then the balanced-LINEX loss function becomes the basic case of LINEX
loss function. For more information about this loss function see Jozani et al.
(2012).
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Shrinking and truncating the data directly or the coefficients in their Fourier
series expansions is an old technique in signal and image processing. For non-local
bases, such as trigonometric, shrinking the coefficients can affect the global shape
of the reconstructed function and introduce unwanted artifacts. In the context
of function estimation by wavelets, the shrinkage has an additional feature; it is
connected with smoothing (denoising) because the measures of smoothness of a
function depend on the magnitudes of its wavelet coefficients (Vidakovic, 2009).
Wavelet methods are usually employed as a form of nonparametric regression, and
the techniques take on many names such as wavelet shrinkage, curve estimation,
or wavelet regression. Two different kinds of threshold in denoising is the hard
threshold and the soft threshold. Donoho & Johnstone (1994) define the hard and
soft thresholding functions. Given a wavelet coefficient X and a threshold value
λ > 0, the hard threshold value is given by

δhard(X) = XI(|X| ≥ λ),

and the soft thresholding wavelet shrinkage estimation is given by

δsoft(X) = sign(X)(|X| − λ)I(|X| ≥ λ). (3)

where I(·) is an indicator function.
We try to make a connection between the generalized Bayes estimator and

the wavelet shrinkage estimator. For this purpose, we will find a threshold value
for the soft thresholding wavelet shrinkage estimator using the generalized Bayes
estimator.

In this paper, we also generalized the paper of Karamikabir & Afshari (2019)
by changing loss function and the covariance matrix and Karamikabir & Afshari
(2020) by changing the diagonal covariance matrix σ2Ip to the unknown covariance
matrix Σ. Recently, the problem of estimating a mean vector parameter has
received several new developments. For example, we can refer to Pal et al. (2007),
Jiang & Zhang (2009), Tsukuma & Kubokawa (2015), Fourdrinier & Strawderman
(2015), Joly & Oliveira (2017), Karamikabir & Arashi (2018) and Karamikabir &
Afshari (2020).

Finally, we present a method to select the threshold value in wavelet
regularization. For this purpose, the threshold value is selected using the
generalized Bayes estimator and the method described in Section 3.

The paper is outlined as follows. In Section 2, we find the generalized Bayes
estimator when X ∼ Np(θ,Σ) under a balanced-LINEX loss function. In Section
3, we discuss the shrinkage Wavelet generalized Bayes estimation and threshold
value, and in Section 4 the numerical performance of the proposed estimator using
a simulation study. In Section 5 we investigate a real example, and in Section 6
concludes the paper.

2. Main Result

In this section, we investigate the point estimation of the mean vector θ
when the covariance matrix Σ is unknown. For this purpose, we suppose that

Revista Colombiana de Estadística - Theoretical Statistics 45 (2022) 107–123



110 Hamid Karamikabir & Mahmud Afshari

X ∼ Np(θ,Σ) and we find the generalized Bayes estimator for θ with respect
to the improper prior π(θ) = 1 under the balanced-LINEX loss function. Also
suppose that X|θ ∼ Np(θ,Σ) and δ(X) = (δ(X1), . . . , δ(Xp))

T be an estimator for
θ. In this regard, we need the following theorem.

Theorem 1 (Rudin 1976, Chapter 7, pp. 148). Suppose limn→∞ fn(x) = f(x)
where x ∈ H. Put Mn = supx∈H |fn(x)− f(x)|. Then fn → f uniformly on H if
and only if Mn → 0 as n→ ∞.

Theorem 2 (Rudin 1976, Chapter 7, pp. 167). Suppose fn(x) is Riemann
integrable on [a, b], for n = 1, 2, . . . , and suppose fn(x) → f(x) uniformly on
[a, b]. Then f(x) is Riemann integrable on [a, b], and∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx.

Now, in the following theorem, we find the generalized Bayes estimator for θ
under the balanced-LINEX loss function in (2).

Theorem 3. Suppose that X ∼ Np(θ,Σ), θ ∈ Rp, under the balanced-LINEX loss
function, the generalized Bayes estimator for θ with respect to the improper prior
π(θ) = 1, is the following:

δ∗(X) =
−a
∥a∥2

log

[
ω exp

(
−aT δ0(X)

)
+ (1− ω) exp

(
−aTX +

1

2
aTΣa

)]
.

Proof . For π(θ) = 1, the posterior distribution is π(θ|X) ∼ Np(X,Σ). It is easy
to check that the posterior loss function of an arbitrary estimator δ(X) is given
by

r∗ (π(θ|X), δ(X)) =

∫
Θ

Lω,δ0(θ, δ)π(θ|X)dθ

= E
(
bω

(
ea

T (δ(X)−δ0(X)) − aT (δ(X)− δ0(X))− 1
)

+b(1− ω)
(
ea

T (δ(X)−θ) − aT (δ(X)− θ)− 1
) ∣∣∣X)

.

The generalized Bayes estimator is obtained by the following:

∂r∗ (π(θ|X), δ(X))

∂δ(X)
= bE

(
ωaT ea

T (δ(X)−δ0(X)) + (1− ω)aT ea
T (δ(X)−θ) − aT

∣∣∣X)
= b

(
ωaea

T (δ(X)−δ0(X)) + (1− ω)aea
T δ(X)Mθ|X(−aT )− a

)
= 0,

then the generalized Bayes estimator as follows:

δ∗(X) =
−a
∥a∥2

log

[
ω exp

(
−aT δ0(X)

)
+ (1− ω) exp

(
−aTX +

1

2
aTΣa

)]
.
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In Theorem 3, we obtained the generalized Bayes estimator δ∗(X) with respect
to the target estimator δ0(X). By changing the target estimator δ0(X) and the
covariance matrix Σ, the generalized Bayes estimator δ∗(X) takes on different
types. In this regard, we have the following corollaries by Theorem 3:

Corollary 1. Suppose that X ∼ Np(θ, σ
2Ip), then the generalized Bayes estimator

is

δ∗(X) =
−a
∥a∥2

log

[
ω exp

(
−aT δ0(X)

)
+ (1− ω) exp

(
−aTX +

1

2
σ2∥a∥2

)]
.

Also, if that ω = 0, then the generalized Bayes estimator is

δ∗(X) = X − σ2

2
a.

Corollary 2. Suppose that X ∼ Np(θ,Σ) and δ0(X) = X, then the generalized
Bayes estimator is

δ∗(X) = X − a

∥a∥2
log

(
ω + (1− ω) exp

(
1

2
aTΣa

))
. (4)

Also, if that Σ = σ2Ip, then the generalized Bayes estimator is

δ∗(X) = X − a

∥a∥2
log

(
ω + (1− ω) exp

(
σ2

2
∥a∥2

))
. (5)

The following proposition shows that the results of Huang (2002), Torehzadeh
& Arashi (2014) and Karamikabir & Afshari (2019) are only a special case of
Theorem 3.

Proposition 1. The special case of Theorem 3 is the following:

1. Suppose that X ∼ N(θ, σ2Ip). The generalized Bayes estimator for ω = 0,
aT = (0, . . . , ai, . . . , 0) and b = 1

n is as follows:

δ∗(Xi) = Xi −
aiσ

2

2
.

See Huang (Huang, 2002).

2. Suppose that X ∼ SMN(θ, σ2, G) (the covariance matrix of multivariate
normal distribution). The generalized Bayes estimator for ω = 0, aT =
(0, . . . , ai, . . . , 0) and b = 1

n is as follows:

δ∗(Xi) = Xi −
lnα(a2i , σ

2)

ai
,

where α(a2i , σ2) =
∫∞
0
e

a2
i σ2

2t dG(t). See Torehzadeh & Arashi (2014).
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3. Suppose that X ∼ Np(θ,Σ), The generalized Bayes estimator for ω = 0,
aT = (0, . . . , ai, . . . , 0) and b = 1

n is as follows:

δ∗(Xi) = Xi −
aiσii
2

.

See Karamikabir & Afshari (2019).

Now, we want to find minimax and admissible estimator based on general Bayes
estimator. Suppose that X ∼ Np(θ,Σ) where θ and Σ is unknown. Also suppose
that π(θ) be an arbitrary proper prior, under the balanced-LINEX loss function,
the Bayes risk of the estimator δ∗(X) is given by

r(π(θ), δ∗(X)) =

∫
Θ

R(θ, δ∗(X))π(θ)dθ

=

∫
Θ

π(θ)

∫
X

bω
(
ea

T (δ(x)−δ0(x)) − aT (δ(x)− δ0(x))− 1
)

+b(1− ω)
(
ea

T (δ(x)−θ) − aT (δ(x)− θ)− 1
)
dx dθ. (6)

The target estimator obtained using the criterion of the maximum likelihood, least-
squares, unbiasedness and etc. We have selected target estimator as the maximum
likelihood δ0(X) = X for the balanced-LINEX loss function (see Corollary 2).

In the following theorem, we want to find the the Bayes risk of the estimator
δ∗(X) by using the equation (6). For this purpose, we first obtain the risk
R(θ, δ∗(X)) and then integrate it with respect to θ. If the the Bayes risk
r(π(θ), δ∗(X)) is constant value, the generalized Bayes estimator δ∗(X) estimator
is Minimax.

Theorem 4. Suppose that X ∼ Np(θ,Σ), π(θ) be an arbitrary proper prior and
δ0(X) = X. Under the balanced-LINEX loss function in (2) the Bayes risk of the
estimator δ∗(X) in (4) is given by

r(π(θ), δ∗(X)) = b log

(
ω + (1− ω) exp

(
1

2
aTΣa

))
. (7)

Also the generalized Bayes estimator is minimax.

Proof . By using Corollary 2, we have the generalized Bayes estimator δ∗(X) in
(4). In this case, the risk function calculated as follows.

R(θ, δ∗(X)) = E [Lω,δ0(θ, δ(X))]

= E

{
bω

[
exp

(
aT

(
X − a

∥a∥2
log

(
ω + (1− ω)e

1
2a

TΣa
)
−X

))
−aT

(
X − a

∥a∥2
log

(
ω + (1− ω)e

1
2a

TΣa
)
−X

)
− 1

]
+b(1− ω)

[
exp

(
aT

(
X − a

∥a∥2
log

(
ω + (1− ω)e

1
2a

TΣa
)
− θ

))
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−aT
(
X − a

∥a∥2
log

(
ω + (1− ω)e

1
2a

TΣa
)
− θ

)
− 1

]}
= bω

[(
ω + (1− ω)e

1
2a

TΣa
)−1

+ log
(
ω + (1− ω)e

1
2a

TΣa
)
− 1

]
+b(1− ω)

(
ω + (1− ω)e

1
2a

TΣa
)−1

e−aT θMX|θ(a
T )

+b(1− ω)
[
E
(
−aTX|θ

)
+ log

(
ω + (1− ω)e

1
2a

TΣa
)
+ aT θ − 1

]
= bω

(
ω + (1− ω)e

1
2a

TΣa
)−1

+ b log
(
ω + (1− ω)e

1
2a

TΣa
)
− b

+b(1− ω)
(
ω + (1− ω)e

1
2a

TΣa
)−1

e
1
2a

TΣa

= b log
(
ω + (1− ω)e

1
2a

TΣa
)
. (8)

By using the risk R(θ, δ∗(X)) in (8), we have the following Bayes risk

r(π(θ), δ∗(X)) =

∫
Θ

R(θ, δ∗(X))π(θ)dθ

= b log
(
ω + (1− ω)e

1
2a

TΣa
)
.

Since Bayes risk r(π(θ), δ∗(X)) is a constant value, so δ∗(X) is a minimax
estimator.

Corollary 3. In Theorem 4, suppose that X ∼ Np(θ, σ
2Ip), then the Bayes risk

of the estimator δ∗(X) in (5) is given

r(π(θ), δ∗(X)) = b log

(
ω + (1− ω) exp

(
σ2

2
∥a∥2

))
.

Also, if ω = 0, then the Bayes risk of the estimator δ∗(X) in (4) is given by

r(π(θ), δ∗(X)) =
b

2
aTΣa.

And the Bayes risk of the estimator δ∗(X) in (5) is given by

r(π(θ), δ∗(X)) =
b σ2

2
∥a∥2.

In the following Lemma, we find the posterior distribution and generalized
Bayes estimators a multivariate normal distribution Np(θ,Σ) with conjugate prior
distribution Np(0, ϱ

2
kΣ).

Lemma 1. Suppose that X|θ ∼ Np(θ,Σ) and the prior distribution πk(θ) =
Np(0, ϱ

2
kΣ), then, we have the following results.

• The posterior distribution π(θ|X) is Np

(
ϱ2
k

ϱ2
k+1

X,
ϱ2
k

ϱ2
k+1

Σ
)

.
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• Under the balanced-LINEX loss function in (2), when δ0(X) = X, the Bayes
estimator for θ is:

δπk(X) = X − a

∥a∥2
log

[
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

)]
. (9)

Proof . The posterior distribution π(θ|X) is obtained as follows.

π(θ|X) ∝ f(ω|θ) π(θ)

∝ exp

[
−1

2

(
xTΣ−1x+ θTΣ−1θ − 2θTΣ−1x+

1

ϱ2k
θTΣ−1θ

)]
∝ exp

[
−1

2
θT

(
Σ−1 +

1

ϱ2k
Σ−1

)
θ + θTΣ−1x

]
= exp

{
−1

2

(
Σ−1 +

1

ϱ2k
Σ−1

)[
θT θ − 2θTΣ−1(Σ−1 +

1

ϱ2k
Σ−1)−1x

]}
∝ exp

{
− 1

2

[(
θ − (Σ−1 +

1

ϱ2k
Σ−1)−1Σ−1x

)T (
Σ−1 +

1

ϱ2k
Σ−1

)−1

×
(
θ − (Σ−1 +

1

ϱ2k
Σ−1)−1Σ−1x

)]}
∼ Np

(
(Σ−1 +

1

ϱ2k
Σ−1)−1Σ−1X, (Σ−1 +

1

ϱ2k
Σ−1)−1

)
= Np

(
ϱ2k

ϱ2k + 1
X,

ϱ2k
ϱ2k + 1

Σ

)
.

Now similar to Theorem 3, a generalized Bayes estimator is obtained by the
following:

∂r∗ (π(θ|X), δ(X))

∂δ(X)
= bE

(
ωaT ea

T (δ(X)−δ0(X)) + (1− ω)aT ea
T (δ(X)−θ) − aT

∣∣∣X)
= b

(
ωaT ea

T (δ(X)−δ0(X)) + (1− ω)aT ea
T δ(X)Mθ|X(−aT )− aT

)
= 0,

then we have the following Bayes estimator with respect to the target estimator
δ0(X).

δπk (X) =
−a

∥a∥2
log

(
ωe−aT δ0(X) + (1− ω) exp

(
− ϱ2k
ϱ2k + 1

aTX +
ϱ2k

2(ϱ2k + 1)
aTΣa

))
.

Finally by replacing δ0(X) = X in the Bayes estimator δπk(X), we have the
following Bayes estimator.

δπk(X) = X − a

∥a∥2
log

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))
.

Now, in the following theorem, we prove that the generalized Bayes estimators
δ∗(X) is admissible and minimax under the balanced-LINEX loss function.
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Theorem 5. Suppose that X ∼ Np(θ,Σ) and δ0(X) = X, then under the balanced-
LINEX loss function, δ∗(X) in (4) is admissible and a minimax estimator.

Proof . We know R(θ, δ) is continuous in θ for any δ. Suppose that δ∗ is not
admissible. Then, there exists an estimator δ such that R(θ, δ) < R(θ, δ∗), with
strict inequality for some θ, say θ0. Since R(θ, δ) and R(θ, δ∗) are continuous in
θ, there exist strictly positive constants c1 and c2 such that

R(θ, δ) < R(θ, δ∗)− c1 for θ ∈ [θ : |θ − θ0| < c2],

Consider a sequence of priors πk(θ) = Np(0, ϱ
2
kΣ), with limk→∞ ϱ2k = ∞, and

uniformly, limk→∞ πk(θ) → π(θ), where π(θ) <∞ is a proper distribution. Using
the technique of minimizing posterior expected loss, under the balanced-LINEX
loss function by using Theorem 1, we have the Bayes estimator δπk(X) in (9). By
using the balanced-LINEX loss function Lω,δ0(θ, δ(X)) in (2), the riskR(θ, δπk(X))
as follows:

bE

{
ω exp

{
− log

[
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

)]}
+ω log

[
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

)]
− 1

+(1− ω) exp

{
aTX − aT log

[
ω + (1− ω) exp

( 1

ϱ2k + 1
aTX

+
ϱ2k

2(ϱ2k + 1)
aTΣa

)]
− aT θ

}
− (1− ω)

[
aTX − aT θ

− log

[
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

)]]}

= bE

[
ω

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))−1

+ log

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))
− 1

]
+b(1− ω)MX|θ(a

TX)e−aT θ

E

[(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))−1
]

−b(1− ω)E
(
aTX|θ

)
+ b(1− ω)aT θ

= bE

[
ω

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))−1

+ log

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))
− 1

+(1− ω)

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))−1
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× exp

(
1

2
aTΣa

)]
. (10)

By using Theorem 1 for equation (10), we can obtain the values of risk as follows.

r(πk(θ), δ
πk(X)) =

∫
Θ

R(θ, δπk(x))π(θ)dθ

=

∫
Θ

∫
χ

gk(x)dx dθ.

where

gk(x) = bω

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))−1

+ log

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))
− 1

+(1− ω)

(
ω + (1− ω) exp

(
1

ϱ2k + 1
aTX +

ϱ2k
2(ϱ2k + 1)

aTΣa

))−1

× exp

(
1

2
aTΣa

)
.

As a result

lim
k→∞

gk(x) = bω

(
ω + (1− ω) exp

(
1

2
aTΣa

))−1

+b log

(
ω + (1− ω) exp

(
1

2
aTΣa

))
− b

+b(1− ω)

(
ω + (1− ω) exp

(
1

2
aTΣa

))−1

exp

(
1

2
aTΣa

)
= b log

(
ω + (1− ω) exp

(
1

2
aTΣa

))
= g(x).

Again, we put that Mk = supx∈Rp |gk(x)− g(x)|, then we can write

lim
k→∞

sup
x∈Rp

|gk(x)− g(x)| = b log

(
ω + (1− ω) exp

(
1

2
aTΣa

))
−b log

(
ω + (1− ω) exp

(
1

2
aTΣa

))
= 0.

By Theorem 1, since limk→∞Mk = 0, then limk→∞ gk(x) = g(x) uniformly on
Rp. As a result by Theorem 2, we can write

lim
k→∞

r(πk(θ), δ
πk(X)) = b log

(
ω + (1− ω)ψ

(
σ2aTa

))
.

Now, according to r(π(θ), δ∗(X)) in equation (7) we have

lim
k→∞

{r(π(θ), δ∗(X))− r(πk(θ), δ
πk(X))} = 0. (11)
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Let c3 = limk→∞ inf
∫
|θ−θ0|<c2

πk(θ)dθ. Since limk→∞ ϱ2k = ∞, then c3 > 0.
Therefore, for k is large enough

r(πk, δ
∗)− r(πk, δ

πk) ≥ r(πk, δ
∗)− r(πk, δ)

=

∫
Rp

(R (θ, δ∗)−R (θ, δ))πk(θ)dθ > c1c2 > 0.

This contradicts with equation (11). As a result, δ∗(X) is an admissible estimator.
The minimaxity of δ∗(X) follows from its admissibility and the constant risk
phenomenon (7).

3. Shrinkage Wavelet Generalized Bayes Estima-
tion

In this section, the goal is to find a particular type of the soft wavelet estimator
using the generalized Bayes estimator. In the issue, Huang (2002) investigated
the shrinkage wavelet estimation problem in the multivariate normal by diagonal
covariance matrix σ2Ip and Torehzadeh & Arashi (2014) extended his result for
a scale mixture of multivariate normal distributions. Finally Karamikabir &
Afshari (2019) investigated the shrinkage wavelet estimation problem in the class
of elliptically distribution, in LINEX loss function.

Consider the following model:

X = θ + ε,

where X = (X1, . . . , Xp)
T are the p × 1 random vector, ε = (ε1, . . . , εp)

T

are independent identical distribution Np(0,Σ), and θ = (θ1, . . . , θp)
T are the

p-vector mean vectors. Again, suppose that X|θ ∼ Np(θ,Σ) and δ(X) =
(δ(X1), . . . , δ(Xp))

T be an estimator for θ.
For deonising or shrinkage coefficients, one of the most important concepts

in wavelets and deionising is using thresholds. Shrinkage of the empirical wavelet
coefficients works best in problems where the underlying set of the true coefficients
of f is sparse and the remaining few large coefficients explain most of the functional
form in f . By shrinking, the empirical coefficients towards zero, the smaller ones
which contain primarily noise may be reduced to negligible levels, hence denoising
the signal.

Let Y1, . . . , Yn are observed data from model,

Y = f(Z) + η,

where the {ηi} is some noise and {Zi} is some points from domain of f . Typically
n is an integer power of 2.

Note that the observations are sampled from distribution f but with some noise
and we are interested to remove noises. To achieve this aim, observations or noisy
data are converted to wavelet coefficients. Denoised coefficients are returned to
the Y domain by the inverse discrete wavelet transformation.
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In this section, we suppose that X ∼ Np(θ, σ
2Ip). In this regard, we use the

condition of corollary 2, under the balanced-LINEX loss function with δ0(X) = X.
Consider the generalized Bayes estimator in (4). For aT = (0, . . . , ai, . . . , 0) (ith
element is ai), the ith element of δ∗(X) is

δ∗(Xi) = Xi −
1

ai
log

(
ω + (1− ω) exp

(
1

2
a2iσ

2

))
.

We again suppose that aT = (0, . . . , ai, . . . , 0) in the balanced-LINEX loss
function. We consider specifically ai values depending on signs of θi’s

ai =

{
c for, θi > 0,

−c for, θi < 0,
i = 1, . . . n.

where c > 0 is some constant. Such an error criterion discourages estimators from
over-estimation in magnitude (i.e., in absolute value) and results in shrinkage
estimation towards zero. In other words, we can be considered this issue as a
regularization problem that regularizes or shrinks the wavelet coefficient estimates
towards zero.

Under such a loss criterion the generalized Bayes estimator in (4) is given by
δ∗(Xi) = Xi − sign(θi)λi, where λi = 1

c log
(
ω + (1− ω) exp

(
σii

2 c
2
))

.
The wavelet estimation problem can be treated via the estimation of the

mean vector θ from a elliptical distribution X|θ ∼ Np(θ,Σ). Often the signs of
parameters θi’s are not known. A natural approach is to use sign(Xi) to estimate
sign(θi) and make truncation at zero. In conclusion, we have the empirical version
of δ∗ in the following Proposition.

Proposition 2. According to δsoft(Xi) in (3), by choosing the threshold value of
λi =

1
c log

(
ω + (1− ω) exp

(
σii

2 c
2
))

, the soft wavelet shrinkage estimator for θ by
using δsoft(Xi) can be obtained as follows.

δsoft(Xi) =

{
(Xi − λi) ∨ 0 for, Xi ≥ 0,

(Xi + λi) ∧ 0 for, Xi < 0,
= sign(Xi)(|Xi| − λi)+.

4. Simulation

In this section, we checked theoretical outcomes with the numerical
computation and simulation to investigate the performance of the soft wavelet
shrinkage estimator in Section 3.

We compare the new threshold method to the three commonly used shrinkage
strategies, i.e, hard and soft thresholding with the universal threshold and false
discovery rate (FDR). To assess the performance, we calculated the average mean
squared error (AMSE) from the m = 1000 simulations. The value of AMSE is
obtained as follows:

m−1N−1
m∑
j=1

N∑
i=1

(
f(xi)− f̂(xi,j)

)2

,
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where f(xi) is the true signal and f̂(xi,j) is the estimate of the function from
simulation j. In general, lower values of AMSE represent the accuracy of the

estimate. We suppose that X ∼ N2(θ,Σ) where θ = (0, 0) and Σ =

[
2 1

1 3

]
.

Tables 1 and 2 represent the AMSE with respect to c and ω for wavelet estimator
based on the hard and soft universal threshold, FDR threshold and new threshold
for the X ∼ N2(θ,Σ). As shown in Tables 1 and 2, the AMSE amount obtained
in the new method is lower than that of the methods. Also, by increasing of the
value of ω, the estimation AMSE increases and by increasing the N and c, the
AMSE of the all method decreases.

Table 1: AMSE for hard and soft universal, FDR and new threshold for c = 25.

N New threshold Universal Universal FDR
ω = 0.2 ω = 0.5 ω = 0.8 Soft Hard

128 0.01615664 0.01616252 0.01617411 0.04245191 0.22163175 0.11313481
256 0.00931865 0.00932817 0.00934689 0.03439703 0.19397322 0.11066790

Table 2: AMSE for hard and soft universal, FDR and new threshold for c = 35.

N New threshold Universal Universal FDR
ω = 0.2 ω = 0.5 ω = 0.8 Soft Hard

128 0.01550174 0.01550226 0.01550329 0.04245191 0.22163175 0.11313481
256 0.00798796 0.00798963 0.00799290 0.03439703 0.19397322 0.11066790

In general, as the amount of ω increases, the risk increases. The reason for
this is the value of threshold (λ). As the amount of ω increases, the amount of
λ decreases. Also, by increasing the c or σii, the AMSE decreases. Because the
amount of c or σii increases, the amount of λ increases.

Now, we checked theoretical outcomes with the numerical computation and
simulation to investigate the performance of the soft wavelet shrinkage estimator
and generalized Bayes estimator. All calculations in this section are done using R
software.

To investigate the risk of estimators, a Monte Carlo simulation study was
performed to compare the risk values estimators for the N8(θ,Σ) where Σ is
randomly generated using Wishart distribution and θ is selected as

(√
k, 0, . . . , 0

)
and k = 0, 0.1, 0.2, . . . , 10. In this case, ∥θ∥ = θT θ =

p∑
i=1

θi
2 = k. These risk

values have been obtained using the 1000 Monte Carlo simulation replications
and plotted in Figure 1 for p = 8, c = 25, different values of ω, the soft wavelet
shrinkage estimator and generalized Bayes estimator.

In Figure 1 the soft wavelet shrinkage estimator risk curve is lower that of the
generalized Bayes estimator, i.e., the soft wavelet shrinkage estimator dominates
the generalized Bayes estimator. As the value of ω increases, the superiority of the
soft wavelet shrinkage estimator over the generalized Bayes estimator is increases.
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Figure 1: Risk plot for the soft wavelet shrinkage estimator and generalized Bayes
estimator with p = 8 for selected values of ω.

5. 3D Road Network Data Set

In this section, we further investigate the average risk value of the soft wavelet
shrinkage estimator for real data set. For this sake, we use the 3D road network
data set from Guo et al. (2012). This dataset was constructed by adding elevation
information to a 2D road network in North Jutland, Denmark (covering a region of
185×135 km2). Elevation values where extracted from a publicly available massive
Laser Scan Point Cloud for Denmark. This 3D road network was eventually used
for benchmarking various fuel and CO2 estimation algorithms. This dataset can be
used by any applications that require to know very accurate elevation information
of a road network to perform more accurate routing for eco-routing, cyclist routes
etc. The dataset contains 4 variables and 434873 observations.

We have implemented a bootstrap analysis to evaluate the risk functions. Table
3 lists the average risk value of the soft wavelet shrinkage estimator for different
values of ω. As shown in Table 3, by increasing of the value of ω, the average
risk value decreases. In the case of ω = 0, the balanced-LINEX loss function
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is the basic case of LINEX loss function and it has the most average risk value.
Therefore, it can be concluded that the risk values can be reduced by using the
balanced-LINEX loss function.

Table 3: Average risk value of the soft wavelet shrinkage estimator for 3D road network
data set.

δ ω = 0 ω = 0.2 ω = 0.4 ω = 0.6 ω = 0.8

δsoft(X) 1.610567 1.397633 1.185041 0.9731351 0.7630683

6. Conclusion

In this paper, we consider the generalized Bayes shrinkage estimator of mean
vector for multivariate normal distribution under balanced-LINEX loss function.
We assume that the random vector X having Np(θ,Σ) distribution with the
unknown covariance matrix Σ. We find minimax and admissible estimator of mean
vector based on generalized Bayes estimator. Theoretical findings of this paper are
further supported by some numerical analyses. In this regard, the performance
evaluation of the proposed class of estimators is checked through a simulation
study and real data set.
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