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Abstract
An important stage in the analysis of time series is forecasting of

the interest variables. However, the forecasting in non-linear time series
models is not straightforward as in linear time series models because an
exact analytical expression for the conditional expectation it is not easy to
obtain. In this paper, a procedure for forecasting with multivariate threshold
autoregressive(MTAR) models is proposed via the so-called predictive
distributions in the Bayesian approach. This strategy gives us the forecasts
for the response and exogenous variable vectors. The coverage percentages
of the forecast intervals and the variability of the predictive distributions are
analyzed in this work. An application in the Hydrology field is presented.

Key words: Bayesian approach; Forecasting; Predictive distributions;
Coverage percentages; Multivariate threshold autoregressive Model.

Resumen
Una etapa importante en el análisis de series de tiempo es el pronóstico

de las variables de interés. Sin embargo, el pronóstico en modelos de series
de tiempo no lineales no es directo como en el caso de modelos lineales de
series de tiempo porque obtener la forma analítica exacta de la esperanza
condicional no es fácil. En este artículo, un procedimiento de pronóstico con
modelos multivariados autorregresivos de umbrales(MTAR) es propuesta vía
las las llamadas distribuciones predictivas en el enfoque Bayesiano. Esta
estrategia nos entrega tanto los pronósticos del vector de respuesta, como el
de las variables exógenas. Los porcentajes de cobertura de los intervalos de
pronósticos y la variabilidad de las distribuciones predictivas son analizadas
en este trabajo. Una aplicación al campo de la hidrología es presentada.
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1. Introduction

Time series analysis is referred to the comprehension of dependence in real
problems when the observations are taken in time. Linear and nonlinear models
are used to understand those problems; however, sometimes, we can get better
results using nonlinear models instead of linear ones. Many nonlinear time series
models have been studied in the literature. We can find in Tsay & Chen (2018)
an extensive compendium of statistical methodologies for analyzing time series
through nonlinear models. For instance, a family of that nonlinear time series
models that have been useful in econometrics is the threshold autoregressive
models(TAR), see Tong (2015) for a specific review of those models.

Some developments in the analysis of multivariate threshold autoregressive
(MTAR) models have been carried out in the last years. Tsay (1998) introduced
a methodology to estimate the parameters of de model using conditional least
squares and Akaike Information Criterion (AIC) for identifying the so-called
structural parameters. Additionally, recursive least squares and predictive
residuals in the arranged regression were used to construct a non-linearity test.
On the other hand, Bayesian analysis of MTAR models has been studied by
some authors. Kwon et al. (2009) proposed a conjugate analysis to find the
posterior distributions of the coefficients and covariance matrices, and next,
these parameters were integrated out of the posterior distributions to obtain the
threshold and the lag value. These authors identified the autoregressive orders
via some information criteria. Wu & Lee (2011) also developed a Bayesian
methodology to analyze MTAR models with conditional heteroscedasticity without
exogenous variables as covariates. Calderon & Nieto (2017) carried out the analysis
of MTAR models with missing data in the output and exogenous vectors. Variable
selection methodology was employed to identify the autoregressive orders; marginal
likelihood and the Metropolised Carlin-and- Chib gave in (Dellaportas et al., 2002)
were used to determinate the number of regimes. Informative prior distributions
were established in order to get a Bayesian conjugate analysis.

In spite of the latest developments in the MTAR models, the forecasting with
these models has not been taken into account in the phase of the model fitting
in these studies. A specific problem that is studied by time series analysis is the
forecasting of interest variables. We can find an interesting survey of forecasting
with nonlinear time series models in Kock & Teräsvirta (2011), including the neural
networks model. In Geweke & Amisano (2010), we can also find a forecasting
strategy through predictive distribution for asset returns. However, we can find
some advances in forecasting with multivariate threshold autoregressive models.
De Gooijer & Vidiella-i Anguera (2004) proposed two schemes of simulation(Monte
Carlo and Bootstrapping) for obtaining the multi-step ahead forecasts and evaluate
the forecasts using three criteria. The schemes do not include the uncertainty of the
parameters. Another forecasting procedure that uses Monte Carlo(MC) simulation
and the ability to extract samples from the posterior distribution of the parameters
was proposed by Kwon (2003). This procedure includes the uncertainty of the
some of parameters of the model. Nevertheless, these forecasting procedures do not
incorporate, neither, the forecasting of the exogenous variables nor the uncertainty
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of autoregressive orders. Therefore, in this paper, a methodology is proposed to
compute the point forecasts of variables-of-interest that it is based on Calderon
& Nieto’s (2017) model. Additionally, the uncertainty of the point forecasts is
obtained using the predictive distributions. The key issue of the methodology is the
use of the uncertainty of the parameters of the model, including the autoregressive
orders. This work also allows to deal with missing data and the forecasting of the
exogenous variables in the model. The methodology is illustrated with simulation
examples and a real-data hydrological/meteorological application. The article
is organized as follows. In Section 2, the model with its assumptions and the
forecasting procedure are presented. In Section 3, a simulation study is carried
out to illustrate the proposed methodology. A real-data application is presented
in Section 4 and Section 5 concludes.

2. The model and Forecasting Procedure

2.1. Specifying the MTAR Model

This section is a summary of Calderon & Nieto’s (2017) paper, where a
Bayesian methodology was developed for fitting the so-called MTAR model. In
that paper, we found, particular details about the chosen prior distributions and
the MCMC methods that were implemented. Let {Yt} , {Xt} {Zt} be stochastic
processes such that Yt = (Y1t, . . . ,Ykt)

′, k ≥ 1, Xt = (X1t, . . . ,Xvt)
′, ν ≥ 1,

and {Zt} is a univariate process. We say that {Yt} follows a MTAR model with
threshold variable Zt if, for all t,

Yt = ϕ
(j)
0 +

pj∑
i=1

ϕ
(j)
i Yt−i +

qj∑
i=1

β
(j)
i Xt−i +

dj∑
i=1

δ
(j)
i Zt−i +Σ

1/2
(j)

εt when rj−1 < Zt ≤ rj , (1)

where j = 1, . . . , l, l ∈ {2, 3, . . .} is the number of regimes and −∞ = r0 < r1 <
· · · < rl−1 < rl = ∞ are the thresholds, which define the regimes. The non-
negative integer numbers pj , qj and dj , with j = 1, . . . , l are called autoregressive
orders for each regime. Notice that we have added the threshold variable as a
covariate in an autoregressive form. {Yt}, {Xt} and {Zt} are called respectively
the output, covariates and threshold processes. Additionally, the innovation
process {εt} follows a multivariate independent Gaussian zero-mean process with
covariance matrix Ik, the identity matrix of order k, and it is mutually independent
of {Xt} and {Zt}.

For j = 1, . . . , l, the coefficients ϕ
(j)
i for i = 0, 1, . . . , pj , β(j)

i for i = 1, . . . , qj ,
δ
(j)
i for i = 1, . . . , dj and Σ

1/2
(j) are real matrices of suitable dimensions and

we call them non-structural parameters. We also define the vector of non-
structural parameters as θyns = (θ′1, . . . , θ

′
l , vec(Σ)

′)′, with θj = vec(Aj), ηj =
1 + k · pj + v · qj + dj , for j = 1, . . . , l where

Aj = (ϕ
(j)
0 , ϕ

(j)
1 , . . . , ϕ(j)

pj
, β

(j)
1 , . . . , β(j)

qj , δ
(j)
1 , . . . , δ

(j)
dj

)k×ηj
,
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and Σ = (Σ(1), . . . ,Σ(l)). The autoregressive orders, the threshold values r =
(r1, . . . , rl−1)

′ and the number of regimes l are known as structural parameters and
they are denoted as θys = (p1, . . . , pl, q1, . . . , ql, d1, . . . , dl, r′, l)′. Therefore, the full
vector of parameters of the model, denoted MTAR(l; p1, . . . , pl, q1, . . . , ql, d1, . . . , dl),
is θy = (θ′yns, θ

′
ys)

′.
The MTAR model (1) can be written in the following way:

Yt = (Ik ⊗ w′
t,j)θj +Σ

1/2
(j) εt if rj−1 < Zt ≤ rj , (2)

where θj = vec(A′
j) for j = 1, . . . , l, and ⊗ denotes the Kronecker product. We

add 0-1 indicator variables γi,j , i = 1, . . . , ηj , j = 1, . . . , l; such that if γi,j = 1 , the
associated parameter θi,j should be included; if γi,j = 0 the associated parameter
should not be included. These indicator variables are added to the MTAR model
in order to identify the autoregressive orders. Now, let γj = (γ1,j , . . . , γηj ,j)

′ be
the full vector of indicators in the regime j. Based on that, we can re-write the
MTAR model in (2) with the vectors γj , j = 1, . . . , l as follows,

Yt = (Ik ⊗ w′
t,j)Γjθj +Σ

1/2
(j) εt (3)

= (Ik ⊗ w′
t,j)ϑj +Σ

1/2
(j) εt (4)

if rj−1 < Zt ≤ rj , where ϑj = (γ1,jθ1,j , . . . , γηj ,jθηj ,j) and Γj = Diag{γj} and
now the vector of structural parameters is θys = (γ′

1, . . . ,γ
′
l, r, l). Additionally,

we assume that {Ut = (Zt,X′
t)

′} is a (v + 1)-dimensional homogeneous bth order
Markov chain with stationary density fu(·) and transition kernel density fu(·|·),
both with respect to the Lebesgue-measure, where b is an integer number greater
than zero. We assume {Ut} is exogenous in the sense that there is no feedback of
{Yt} towards {Ut}. The Markovian assumption on {Ut} ensures that a greater
quantity of possible models could be used to describe the time series {ut}. Theory
and some examples of Markov chains can be found in (Meyn & Tweedie, 2009). In
order to identify the models and estimate its parameters, we recommend following
these steps in the presence of missing data: 1) fill the missing data in the time
series with initial values, 2) identify the number of regimes using the Metropolised
Carlin-and-Chib approach or the marginal likelihood procedure. If the marginal
likelihood procedure is used, then the threshold values are identified in this step
using the non-linear AIC(NAIC). 3) Identify the autoregressive orders using the
KUO or GVS variable selection methods. If the Metropolised Carlin-and-Chib
approach was employed to identify the number of regimes, use the appropriated
full conditional distribution for estimating the threshold values. 4) Estimate the
non-structural parameters and the missing data. 5) Go to Step 1 putting now
as initial missing-data estimates those obtained in Step 4 and continue the loop
until the estimation of the parameters and missing data are practically the same
(numerically stable).

2.2. The Forecasting Procedure

In this section, a procedure for forecasting with an MTAR model is proposed.
This is the core of this work, and the in-sample fit of the model is only an
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intermediate step, following Calderon & Nieto’s (2017) methodology. The goal is
to find E[YT+h|y1:T , u1:T ,m], where T is the sample size, h ≥ 1, y1:T = (y1, . . . , yT ),
x1:T = (x1, . . . , xT ) and u1:T = (u1, . . . , uT ). This is the best prediction in the sense
of the MMSE (minimum mean square error). Nevertheless, an exact analytical
expression of that conditional expectation is not easy to obtain in this context of
non-linear models. This fact was pointed out in Nieto’s (2008) article for univariate
TAR models. Therefore, using Bayesian analysis and the quadratic loss function
as the optimality criterion, we proceed to find the joint predictive distributions
p(yT+h|y1:T , u1:T ,m) for h ≥ 1, with which we can obtain the target conditional
expectations. This distribution can be obtained in the following way:

p(yT+1:T+h,uT+1:T+h|y1:T , u1:T ,m) = (5)∫
p(yT+1:T+h, uT+1:T+h|y1:T , u1:T , θy,m,m)p(θy,m|y1:T , u1:T ,m)dθy,m,

where p(θy,m|y1:T , u1:T ,m) is the posterior distribution of the parameters of an
MTAR model with m regimes and p(yT+1:T+h, uT+1:T+h|y1:T , u1:T , θy,m,m) is a
distribution that must be specified with the assumptions of the MTAR model.
In order to specify that distribution, all the assumptions about the MTAR model
presented in last section are accepted and also for all t, Y1:t does not Granger-cause
Ut (see Harvey, 1989), then

p(yT+1, . . . , yT+h,uT+1, . . . , uT+h|y1:T , u1:T , θy,m,m) = (6)
h∏

i=1

p(uT+i|u1:T+i−1)p(yT+i|uT+i, y1:T+i−1, u1:T+i−1, θy,m,m).

It is worth noting that the densities in (6) for, i = 1, . . . , h, satisfy the following:

(i) p(uT+i|u1:T+i−1) is the kernel density of the Markov chain {Ut}.

(ii) p(yT+i|uT+i, y1:T+i−1, u1:T+i−1, θy,m,m) is a multinormal distribution with
mean

(Ik ⊗ w′
T+i,j)Γjθj

and covariance matrix Σ(j) if rj−1 < zT+i ≤ rj , with w′
T+i,j ,Γj , θj for

j = 1, . . . ,m described in Calderon & Nieto (2017).

To draw samples from (5), we can use MC simulation in the following way:
for the i− th iteration:

Step 1. Extract a random draw θ
(i)
y,m of the posterior distribution p(θy,m|y1:T , u1:T ,m)

following the results shown in Calderon & Nieto (2017).

Step 2. Extract a random draw u(i)
T+1 of the kernel density p(uT+1|u1:T ).

Step 3. Extract a random draw y(i)
T+1 of the density p(yT+1|u

(i)
T+1, y1:T , u1:T , θ

(i)
y,m,m).
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Continue extracting random draws recursively for u(i)
T+j and y(i)

T+j from
p(uT+j|u(i)

T+1:T+j−1, u1:T ) and p(yT+j|u
(i)
T+1:T+j, y(i)

T+1:T+j−1, y1:T , u1:T , θ
(i)
y,m,m) respec-

tively, for j = 2, . . . , h. With the set {u(i)
t+h, y

(i)
t+h}i,h, it is possible to calculate:

the mean of the predictive distribution (point forecast), the covariance matrix of
the predictive distribution (measure of uncertainty of the forecast) and credible
intervals or region intervals for future value of the vector (UT+1:T+h, YT+1:T+h).
This procedure allows us to include the uncertainty of the parameters of the MTAR
model in the forecast, which generalizes the forecasting procedure proposed by
Nieto (2008) and Vargas (2012).

3. Simulation Examples

Let Ut = (Zt,Xt)
′ be a stable V AR(1) process defined as

Ut = AUt−1 + rt,

with

A =

(
0.5 0.1

0.4 0.5

)
and

{rt} ∼ IIDN(0,Σr),

where

Σr =

(
1.0 0.4

0.4 2.0

)
.

It is well known that this process is a homogeneous Markov chain of order 1.
We consider the following models:

Model 1.

Yt =

ϕ
(1)
0 + ϕ

(1)
1 Yt−1 + ϕ

(1)
2 Yt−2 + β

(1)
1 Xt−1 + δ

(1)
1 Zt−1 +Σ

1/2
(1)

εt, if Zt ≤ r

ϕ
(2)
0 + ϕ

(2)
1 Yt−1 +Σ

1/2
(2)

εt, if Zt > r,

where

ϕ
(1)
0 =

(
1.0

−1.0

)
, ϕ

(2)
0 =

(
5.0

2.0

)
,

ϕ
(1)
1 =

(
0.5 −0.2

−0.2 0.8

)
, ϕ

(1)
2 =

(
0.1 0.6

−0.4 0.5

)

ϕ
(2)
1 =

(
0.3 0.5

0.2 0.7

)
, β

(1)
1 =

(
0.3

−0.4

)
, δ

(1)
1 =

(
0.6

1.0

)
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Σ
1/2
(1) =

(
1.0 0.6

0.6 1.5

)
, Σ

1/2
(2) =

(
2.5 0.5

0.5 1.0

)
with r = ẑ0.4, the 40−th percentile of the series {zt}.

Now, we set the model with three regimes as:

Model 2.

Yt =


ϕ

(1)
0 + ϕ

(1)
1 Yt−1 +Σ

1/2
(1)

εt, if Zt ≤ r1

ϕ
(2)
0 + ϕ

(2)
1 Yt−1 + ϕ

(2)
2 Yt−2 + β

(2)
1 Xt−1 +Σ

1/2
(2)

εt, if r1 < Zt ≤ r2

ϕ
(3)
0 + ϕ

(3)
3 Yt−3 + β

(3)
2 Xt−2 + δ

(3)
1 Zt−1 +Σ

1/2)
(3)

εt, if Zt > r2

where

ϕ
(1)
0 =

(
2.0

1.0

)
, ϕ

(2)
0 =

(
0.4

−4.0

)
, ϕ

(3)
0 =

(
−3.0

2.0

)

ϕ
(1)
1 =

(
−0.9 0.0

0.2 −0.5

)

ϕ
(2)
1 =

(
0.7 0.0

0.0 0.6

)
, ϕ

(2)
2 =

(
0.8 0.2

0.0 −0.4

)

ϕ
(3)
3 =

(
−0.8 0.0

0.2 0.8

)

β
(2)
1 =

(
1.2

−0.8

)
, β

(3)
2 =

(
−0.6

0.7

)

δ
(3)
1 =

(
0.6

2.0

)

Σ
1/2
1 =

(
1.0 0.3

0.3 4.0

)
, Σ

1/2
2 =

(
1.0 0.0

0.0 1.0

)
, Σ

1/2
3 =

(
2.0 −0.4

−0.4 1.0

)
with r1 = ẑ0.25 and r2 = ẑ0.75, the 25−th and 75−th percentiles of the time series
{zt}.

Finally, we consider the following model:

Model 3.

Yt =



 1.0

−1.0

 +

0.5 0.1

0.4 0.5

 Yt−1 +

 0.0 0.0

0.25 0.0

 Yt−2 +

 0.3

−0.4

 Xt−1 +

1.0 0.6

0.6 1.5

 εt, if Zt ≤ r

5.0

2.0

 +

0.3 0.5

0.2 0.7

 Yt−1 +

2.5 0.5

0.5 1.0

 εt, if Zt > r.
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This model has less influence of the exogenous variables and its marginal variability
is less than that exhibited by Model 1. This model characteristic can be seen in
the simulated realizations of the stochastic processes.

We simulate a realization of size 1000 + h of the models 1, 2, and 3; next, we
take as the effective sample size T = 1000, and we proceed to forecast the vectors
for T + h with h ≥ 1. We use the Frobenius norm of the covariance matrix of
the predictive distribution (FNPD) to quantify the joint variability of the forecast.
Table 1 gives us the forecasting results for the proposed Model 3, while Tables 2
and 3 give us the summary of the forecasting results for models 1 and 2 with h = 10
and the last 10000 iterations. We can see that all the true values lie within the
95% individual credible intervals and many of the forecasts are close to them. It is
important to point out that the forecasts for Model 3 proposed in this section have
FNPD less than the forecasts for Model 1, this may be due to the lesser influence
of the exogenous variables and less heteroscedasticity of the new proposed model.
Another feature of the forecasting with MTAR models is that FNPD increases as
the forecast horizon increases. Finally, we carried out a simulation study in order
to check the performance of the proposed forecasting procedure. We simulated
100 realizations of Model 1, Model 2, and Model 3, next it was calculated the
percentage of times that true future values lie within individual 95% prediction
credible intervals. We can observe in Table 4 that the coverage percentages are
high for all models; however, some percentages are smaller than the expected value
95%. The reason for that fact is that we did not calculate coverage percentages
using joint prediction intervals. We can establish that the method proposed to
forecast MTAR models behaves appropriately.

Table 1: Forecasting output and exogenous vectors for Model 3.
h y1000+h ŷ1000+h FNPD 95% C.I. u1000+h û1000+h FNPD 95% C.I.

1 13.99 18.05 3.77 (11.05;23.99) -0.54 0.72 1.74 (-1.24;2.67)
23.16 18.00 (15.54;21.41) -1.67 0.85 (-1.93;3.62)

2 9.31 17.25 4.98 (8.10;24.69) -0.58 0.44 2.03 (-1.80;2.66)
21.04 18.60 (14.92;22.94) -0.88 0.71 (-2.60;3.99)

3 7.73 16.64 5.90 (6.34;25.24) -0.94 0.27 2.15 (-2.06;2.64)
16.54 18.76 (13.37;24.17) -1.67 0.50 (-2.98;3.98)

4 6.17 16.21 6.65 (5.11;25.48) -0.94 0.19 2.23 (-2.21;2.61)
14.23 18.60 (11.03;24.97) -0.69 0.35 (-3.34;4.07)

5 6.34 15.77 7.30 (4.11;25.72) -0.53 0.12 2.25 (-2.23;2.55)
11.85 18.34 (9.14;25.30) -2.05 0.25 (-3.50;3.89)

6 10.61 15.37 7.84 (3.50;26.02) 0.69 0.08 2.28 (-2.35;2.51)
11.65 17.95 (7.34;25.84) -1.91 0.14 (-3.60;3.89)

7 11.06 15.09 8.27 (3.11;26.14) 1.68 0.04 2.29 (-2.39;2.40)
17.63 17.63 (6.21;26.23) 1.47 0.09 (-3.56;3.82)

8 18.13 14.75 8.57 (2.70;26.23) 0.00 0.01 2.26 (-2.39;2.43)
12.38 17.28 (5.32;26.22) 3.19 0.04 (-3.69;3.75)

9 11.80 14.46 8.83 (2.42;26.26) 1.77 0.01 2.27 (-2.43;2.47)
14.10 16.93 (4.58;26.30) 4.66 0.04 (-3.70;3.71)

10 15.80 14.46 9.05 (2.11;26.19) 3.49 0.01 2.29 (-2.37;2.46)
12.96 16.62 (4.10;26.30) 4.60 0.03 (-3.77;3.75)
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Table 2: Forecasting output and exogenous vectors for Model 1.
h y1000+h ŷ1000+h FNPD 95% C.I. u1000+h û1000+h FNPD 95% C.I.

1 14.66 15.70 5.42 (11.60;21.03) 1.13 0.05 1.73 (-1.91;2.02)
13.50 11.43 (2.52;16.73) -0.11 0.38 (-2.36;3.18)

2 16.03 16.16 6.81 (9.06;22.03) -0.42 0.06 2.02 (-2.21;2.31)
10.06 10.52 (-1.02;18.24) 1.33 0.22 (-2.99;3.52)

3 12.74 15.51 9.11 (7.47;22.68) -0.13 0.05 2.13 (-2.23;2.40)
11.04 8.99 (-9.77;19.38) -1.72 0.13 (-3.28;3.65)

4 13.97 14.83 11.34 (4.40;23.25) 0.03 0.03 2.23 (-2.40;2.45)
13.07 7.42 (-18.02;20.20) -2.77 0.11 (-3.49;3.76)

5 11.11 13.86 13.51 (0.18;23.70) -0.83 0.03 2.26 (-2.41;2.49)
6.52 5.87 (-25.83;20.65) -2.42 0.08 (-3.63;3.72)

6 14.97 12.73 15.62 (-4.66;23.93) -0.51 0.02 2.29 (-2.47;2.42)
4.24 4.50 (-33.00;21.09) -3.82 0.09 (-3.73;3.86)

7 9.32 11.60 17.54 (-9.95;24.25) -0.91 0.02 2.28 (-2.41;2.42)
-3.11 3.29 (-38.46;21.42) -4.08 0.01 (-3.70;3.64)

8 9.73 10.53 19.08 (-15.56;24.40) -2.26 0.00 2.26 (-2.47;2.44)
-8.00 2.20 (-41.94;21.54) -2.08 0.02 (-3.63;3.73)

9 3.84 9.51 20.40 (-20.96;24.60) -1.71 0.00 2.27 (-2.39;2.40)
-17.00 1.28 (-45.67;21.71) -1.78 0.08 (-3.74;3.76)

10 0.23 8.58 21.35 (-24.53;24.49) -4.32 0.00 2.28 (-2.45;2.42)
-25.12 0.54 (-45.41;21.82) -0.95 0.01 (-3.77;3.77)

Table 3: Forecasting output and exogenous vectors for Model 2.
h y1000+h ŷ1000+h FNPD 95% C.I. u1000+h û1000+h FNPD 95% C.I.

1 -2.32 -1.34 4.07 (-3.94;1.03) -1.75 -1.91 1.74 (-3.87;0.11)
2.09 0.92 (-6.60;8.89) -4.53 -3.02 (-5.80;-0.20)

2 5.24 1.74 4.86 (-3.80;5.94) -1.76 -1.25 2.04 (-3.48;1.02)
-3.17 -0.42 (-7.99;8.37) -1.36 -2.28 (-5.62;1.03)

3 1.02 -1.18 5.53 (-7.48;4.46) -0.14 -0.85 2.19 (-3.18;1.49)
-5.08 -0.42 (-8.49;9.29) -0.20 -1.65 (-5.28;1.96)

4 5.05 0.54 6.02 (-7.88;7.09) -0.62 -0.58 2.23 (-2.96;1.85)
-4.92 -0.95 (-8.92;8.83) -0.01 -1.17 (-4.82;2.46)

5 -0.77 -0.99 6.43 (-10.02;6.93) -0.87 -0.41 2.24 (-2.82;2.02)
7.05 -0.91 (-8.91;9.82) -0.19 -0.81 (-4.45;2.79)

6 0.81 0.02 6.92 (-10.95;8.32) -0.24 -0.28 2.29 (-2.74;2.17)
2.56 -1.17 (-9.13;9.39) -3.78 -0.55 (-4.28;3.18)

7 0.78 -0.81 7.48 (-11.81;8.82) -1.46 -0.21 2.29 (-2.64;2.25)
1.29 -1.17 (-9.52;10.37) -5.42 -0.39 (-4.17;3.38)

8 0.78 -0.81 7.98 (-12.09;10.13) -1.47 -0.14 2.28 (-2.53;2.30)
1.29 -1.17 (-9.93;10.11) -3.25 -0.26 (-3.98;3.55)

9 -0.50 -0.60 8.35 (-13.11;10.64) -1.60 -0.09 2.28 (-2.51;2.31)
-0.97 -1.15 (-9.95;10.73) -2.79 -0.18 (-3.86;3.62)

10 4.32 -0.24 8.74 (-13.32;12.51) -1.61 -0.06 2.28 (-2.52;2.40)
4.91 -1.12 (-9.98;10.95) -3.57 -0.15 (-3.86;3.61)
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Table 4: Coverage percentage of the individual 95% prediction credible intervals.
h Model 2 Model 3 Model 4
1 90 100 92
2 93 96 90
3 88 95 93
4 100 98 95
5 94 93 96
6 97 92 91
7 100 91 95
8 99 96 96
9 96 95 96
10 97 94 95

4. An Empirical Application

In this section, we apply the forecasting procedure to hydrological data. In
Calderon & Nieto (2017) was found the relationship between daily rainfall (in mm)
and the daily river flow (in m3/s) of two rivers where one river empties into the
other in a region of the department of Cauca in Colombia. The rainfall was
measured at the San Juan’s meteorological station with an altitude of 2400 meters
above the sea level and geographical coordinates 2◦ 2’ 7.1” north and 76◦ 29’
47.1” west. The first river flow was measured at the El Trebol’s hydrological
station of the Bedon river with an altitude of 1720 meters above the sea level and
geographical coordinates 2◦ 15’ 0.1”north and 76◦ 7’ 42.6”west; the second river
flow was measured at the La Plata river at the Villalosada hydrological station
with an altitude of 1300 meters above the sea level and geographical coordinates
2◦ 18’ 43.9” north and 75◦ 58’ 12.5” west. The stations are located close to the
Earth’s equator in a very dry geographical zone. This last characteristic permits
the control of hydrological/meteorological factors, which may distort the kind of
dynamical relationship explained by the MTAR model, this fact was mentioned in
Nieto (2005) with regard to univariate TAR models. The period of time that we
considered is from January 1st, 2006 to April 14th, 2009 (1200 time points) which
has 57 time points with missing data in the rainfall series, 214 in the series of the
river flow of the Bedon river and 213 in the series of the river flow of the La Plata
river. These data were provided by IDEAM, the official Colombian agency for
hydrological and meteorological studies. We can note in Figure 1 the time series of
the variables proposed for the analysis, these figures show us a strong relationship
between the rainfall and the river flows, and a stable behaviour in mean with some
bursts of large values which were taken into account in the modelling process.

Let Pt and Yt = (Y1,t,Y2,t)
′ be the rainfall and the bivariate river flow of the

Bedon and La Plata rivers at day t. We consider that the threshold variable is
Zt =

√
Pt−1 because of universal convention due to measurement of the variables,

and for decreasing the heteroscedasticity in {Pt}. The original bivariate time series
{yt} was transformed due to the marginal heteroscedasticity in both variables to
ỹt = log(

√yt), which means that the transformations are made componentwise.
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Figure 1: Time series of the real application: (a) Rainfall; (b) River flow of the Bedon
River; (c) River flow of the La Plata River.

On the other hand, we can see that the threshold variable has a mixed type
distribution, which does not have density with respect to the Lebesgue-measure.
Nieto’s (2005) ideas suggest an approximation for the distributions that defines
the Markov chain {Zt}, the initial distribution

F1(z) = pF0(z) + (1− p)G(z)

where p = Pr(Z = 0) > 0, F0(z) = I[0,∞)(z), I denotes the indicator function, and
G(z) is a distribution function with Lebesgue-measure density g(z) with support
on (0,∞). The transition kernel is defined as the distribution

F (zt|zt−1) = p(zt−1)F0(zt) + [1− p(zt−1)]G(zt|zt−1)

where p(zt−1) = Pr(Zt = 0|zt−1) and G(zt|zt−1) is a distribution function that
depends on zt−1 with Lebesgue-measure density g(zt|zt−1) with support on (0,∞).
The approximation is considered as follows: for each positive integer n, let

F0n(z) =


0, −∞ < z < −1/n,

(1/2)[sin(nzπ + π/2) + 1], −1/n ≤ z ≤ 0,

1, z > 0.

{F0n} is a sequence of distribution functions and converges pointwise to F0.
Additionally, F0n is differentiable at all real number z with first derivative

hn(z) = F ′
0n(z) =


0, −∞ < z < −1/n,

(nπ/2)[cos(nzπ + π/2) + 1], −1/n ≤ z ≤ 0,

0, z > 0.
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The sequence hn converges pointwise to δ0, the Dirac delta function at z = 0 which
is not a Lebesgue density function. The approximations of the initial and Kernel
densities for n sufficiently large are respectively

f1n = phn(z) + (1− p)g(z)

and
fn(zt|zt−1) = p(zt−1)hn(zt) + [1− p(zt)]g(zt|zt−1),

we use n = 100 for the approximation. We proceed with estimation of the
parameters of the initial density. To estimate p, we counted the number of zeroes
in the sample of the rainfall and used the relative frequency as an estimation which
is p̂ = 0.23; we consider that g(z) is a normal density truncated at z = 0.
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Figure 2: Density estimate throughout kernel Gaussian.

A numerical procedure is used to estimate the mean and standard deviation of
density g(z), it is based on a non-parametric approximation with Gaussian Kernel,
see Figure 2. The maximum of the estimated kernel is µ̂ = 2.64 and the inflexion
point must have the form µ̂ + σ̂ which can be found using the second derivative
of the estimated kernel, see Figure 3. We can observe an inflexion point located
at the interval (4.44; 4.45) and it is approximately 4.445, therefore the estimation
of standard deviation is σ̂ = 1.885 and with this we complete the estimation of
the parameters for the initial density. For the kernel density, the estimation of
pj = Pr(Zt = 0|zt−1 ∈ Bj) where Bj = {z|rj−1 < z ≤ rj} for j = 1, . . . , l is done
counting the pairs (zt−1 ∈ Bj , zt = 0) and dividing by the total pairs (zt−1, zt = 0)
which for m = 2 they are p̂1 = 0.8532, p̂2 = 0.1468; the kernel is a normal density
truncated at z = 0 with mean zt−1 and standard deviation σ̂ = 1.885.
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Figure 3: Second derivative of estimated density for threshold variable.

Table 5: Forecasting of output and threshold variables for the real data.
h yT+h ŷ1200+h FNPD 95% C.I. zT+h ẑ1200+h FNPD 95% C.I.

1 N.A. 1.166 0.160 (0.973;1.394) 3.00 0.601 1.309 [0;4.522)N.A. 1.561 (1.339;1.820)

2 N.A. 1.153 0.182 (0.944;1.447) 2.828 0.738 1.566 [0;5.627)N.A. 1.564 (1.317;1.870)

3 1.097 1.135 0.197 (0.913;1.466) 2.645 0.701 1.582 [0;5.623)1.458 1.549 (1.300;1.893)

4 1.042 1.120 0.207 (0.888;1.475) 2.449 0.781 1.645 [0;5.827)1.445 1.540 (1.278;1.881)

5 1.166 1.112 0.216 (0.872;1.487) 1.414 0.789 1.668 [0;5.801)1.504 1.538 (1.266;1.907)

6 1.313 1.100 0.225 (0.850;1.483) 4.24 0.801 1.695 [0;5.983)1.739 1.530 (1.251;1.921)

7 1.216 1.091 0.231 (0.835;1.477) 3.605 0.785 1.671 [0;5.937)1.556 1.520 (1.222;1.908)

8 1.179 1.080 0.236 (0.821;1.462) 2.236 0.779 1.665 [0;5.933)1.435 1.508 (1.210;1.901)

9 1.147 1.073 0.239 (0.810;1.473) 1.732 0.785 1.668 [0;5.960)1.394 1.500 (1.189;1.885)

10 1.142 1.065 0.242 (0.793;1.466) 1.414 0.779 1.663 [0;5.887)1.393 1.491 (1.179;1.895)
N.A. means that it is a missing value.

It was also found that the estimation of the number of regimes and the threshold
was l̂ = m = 2 and r̂ = 2.6. With this information and replacing the missing data
with their estimation, we proceed with the forecasting procedure. The forecasting
for both threshold variable and output vector was carried out regarding a forecast
horizon of h = 10, where the final estimates of the missing data were used to
complete the series. The forecasts, credible intervals and the FNPD are shown
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on Table 5 based on a run of 15000 iterations with a burning period of 5000.
All credible intervals take zeroes or positive values only, this is an important fact
because the forecasting of the univariate TAR model in Nieto (2008) exhibited
negative values in the credible intervals for the output vector in the hydrological
application.

5. Conclusions

In this paper, we have derived the Bayesian predictive distributions of the
MTAR model, which involve the uncertainty of the model parameters. The
forecasts are obtained using simulation methods to draw samples of the joint
predictive distribution. Additionally, the procedure includes how to deal with
missing data. We note that the forecasting procedure behaves well based on the
results of the simulated and real data examples. As future work, we will consider
the influence of prior distributions for the parameters models in the forecasting
performance. [

Received: November 2020 — Accepted: May 2021
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