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Abstract

Assumption of normality in statistical analysis had been a common
practice in many literature, but in the event where small sample is
obtainable, then normality assumption will lead to erroneous conclusion
in the statistical analysis. Taking a large sample had been a serious
concern in practice due to various factors. In this paper, we further derived
some inferential properties for log student’s t-distribution (simply log-t
distribution) which makes it more suitable as substitute to log-normal when
carrying out analysis on right-skewed small sample data. Mathematical and
Statistical properties such as the moments, cumulative distribution function,
survival function, hazard function and log-concavity are derived. We further
extend the results to case of multivariate log-t distribution; we obtained the
marginal and conditional distributions. The parameters estimation was done
via maximum likelihood estimation method, consequently its best critical
region and information matrix were derived in order to obtain the asymptotic
confidence interval. The applications of log-t distribution and goodness-of-fit
test was carried out on two dataset from literature to show when the model
is most appropriate.

Key words: best critical region; log-t distribution; maximum likelihood
estimation; Multivariate log-t distribution; Shannon entrop.

Resumen

La suposicion de normalidad en el analisis estadistico habia sido una
pratica comun en mucha literatura, pero en el caso de que se pueda obtener
una muestra pequena, la suposicion de normalidad conducira a conclusiones
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erroneas en el analisis estadistico. En la practica, la toma de una muestra
grande habia sido una gran preocupacion debido a varios factores. En
este articulo, obtuvimos ademas algunas propiedades inferenciales para la
distribucion t de log student (simplemente distribucion log-t) que la hace
mas adecuada como sustituto de log-norma al realizar analisis en datos
de muestras pequenas con sesgo a la derecha. Se derivan propiedades
matematicas y estadisticas como los momentos, la funcion de supervivencia,
la funcion de riesgo y la concavidad logaritmica. ampliamos aun mas
el resultado al caso de distribucion log-t multivariante; obtuvimos las
distribuciones marginales y condicionales. La estimacion de los parametros
se realizo mediante el metodo de estimacion de maxima verosimilitud, por lo
que se derivo su mejor region critica y matriz de informacion para obtener el
intervalo de confianza asintotico. Las aplicaciones de la distribucion log-t y
la prueba de bondad de ajuste se llevaron a cabo en dos conjuntos de datos
de la literatura para mostrar cuando el modelo es mas apropiado.

Palabras clave: distribucion log-t; distribucion log-t multivariante;
estimacion de maxima verosimilitud; entropia de Shannon; mejor region
critica.

1. Introduction

The student’s t-distribution is a continuous probability distribution that arises
when estimating the normally distributed population mean with unknown variance
for a small sample size. It has the degree of freedom parameter which regulates it
tails and generalizes Cauchy and normal distributions when varied, Gosset (1908)
and Fisher (1925). Some univariate and multivariate extensions of the student’s
t-distribution have been studied by Lin (1972), Kotz & Nadarajah (2004), Kibria
& Joarder (2006), Cassidy (2016) and Hassan & Assar (2016).

However, in lifetime data analysis, Saw et al. (2002) introduced the
log-Exponential Inverse Gaussian distribution (log-EIG) by adopting the
transformation that exist between the lognormal and normal distribution. The
study showed that the log-EIG model outperformed other lifetime models such
has the gamma, Weibull, lognormal and inverse Gaussian distributions that have
been widely used. Mitzenmacher & Tworetzky (2003) also introduced the log-
t distribution as a new model and method for file size distributions and it
was remarked that the log-t was suitable just as the hybrid lognormal-pareto
distribution owing to its fewer parameters and also outperformed the lognormal
distribution.

Moreover, the log-t distribution is a positively skewed distribution derived from
the transformation of the random variable that has a student’s t-distribution. It
possesses the same parameters as that of the student’s t but on a positive real line
like other lifetime distributions studied by Cassidy et al. (2013), Butt & Habibullah
(2016). However, several distributions such as gamma, lognormal, Weibull, log-
logistic and so on have been used in modelling lifetime data irrespective of the
sample size. Whereas, the log-t distribution which tends to perform better than
other distributions in this class due to its degree of freedom parameter which
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could be varied to generalize the log-Cauchy and lognormal distributions, and
more importantly when analyzing relatively small sample size data (n < 30) has
been under-utilized in literature as far as we know. It is on this basis, we examine
some inferential statistics of the log-t distribution and its multivariate extension
which may make it suitable in situations where researchers do not have large
enough data to assume lognormality.

Finally, we applied the log-t distribution two dataset of different sample sizes:
bladder cancer and acute leukamia data as presented by Lee & Wang (2003).

The paper is organized as follows: In section 1, the introduction of the study is
presented. In section 2, the distribution is derived, some mathematical properties
are obtained. In section 3, the moment of the distribution is investigated. In
section 4, the Shannon entropy is obtained. In section 5, the log-concavity and
monotonicity of the distribution are investigated. In section 6, the special cases
of the distribution are studied. In section 7, the distribution parameters are
estimated by the maximum likelihood estimation (MLE) method. In section 8, the
information matrix and asymptotic confidence interval are obtained. In section 9,
the distribution’s multivariate version, marginal and conditional distributions, log-
concavity, bivariate densities and contours are studied. Finally, in section 10, the
application of the distribution is investigated on two datasets of different sample
sizes.

2. Log Student’s T-distribution

We derive the log-t distribution using a transformation of the student’s t
density function. This is presented in proposition 2.1.
Proposition 1. Suppose that a random variable W follows the univariate
student’s t-distribution. Then it has a density function given as

f(w;µ, σ2, k) =
Γ(k+1

2 )
[
1 + 1

k

(
w−µ
σ

)2]−( k+1
2 )

Γ(k2 )σ
√
kπ

; w ∈ R (1)

where µ ∈ R is the mean of the distribution, σ2 > 0 is the variance and k > 0 is
the degree of freedom parameter which regulates its tails.
A random variable U is said to have log-t distribution if

f(u;µ, σ2, k) =

Γ(k+1
2 )

[
1 + 1

k

(
ln(u)−µ

σ

)2
]−( k+1

2 )

uΓ(k2 )σ
√
kπ

; u > 0 (2)

where µ ∈ R+, is the mean of the distribution, σ2 > 0 is the variance and k > 0
is the degree of freedom.

Proof . The proof is obtained by simply applying the transformation U = eW

FU (u) = Pr(U ≤ u) = Pr(eW ≤ u), =⇒ Pr(W ≤ ln(u)) = FW (ln(u)),
d

du
FW (ln(u)) =

1

u
fW (ln(u)). Then Equation (1) becomes Equation (2).
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Henceforth equation (2) will be referred to as the Log-t Distribution (LTD).
We denote this distribution as U ∼ LTD (µ, σ, k). We shall proof in subsequent
section that when k = 1 Equation (2) reduces to log-Cauchy distribution and
approaches log-normal distribution as the degree of freedom parameter k grows
large. The plot of the density function (2) is given in figure 1 for some values of
the degree of freedom.

Figure 1: Log-T Distribution density plot for n=5, and k taking the values 2, 12 and
99.

Proposition 2. Let U be a random variable having log-t distribution given in
Equation (2). Then the cumulative distribution function (CDF), the survival and
the hazard function are respectively;

F (a; k) =
1

2
+

1

2
Ra

(
1

2
,
k

2

)
; (3)

S(t) = 1− F (a) =
1

2
− 1

2
R

(
a;

1

2
,
k

2

)
(4)

and

h(t) =
f(t)

1− F (a)
=

t−
1
2 [1 + t]−(

k+1
2 )

B( 12 ,
k
2 )[1−R(a; 1

2 ,
k
2 )]

(5)

Where Ba(λ, τ) is the incomplete beta function and R(a;λ, τ) is the regularized
incomplete beta function.

Proof . Let t = (ln(u)−µ)2
kσ2 in Equation (2) then (ln(u)−µ)2 = tkσ2 which implies

that
u = e(µ+σ

√
tk)

and

du =
σ

2

√
k

t
e(µ+σ

√
tk)dt

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 209–229



Some Inferential Problems from Log Student’s T-distribution... 213

The density function (2) can be written as

f(t;µ, σ2, k) =
Γ(k+1

2 )[1 + t]−(
k+1
2 )

e(µ+σ
√
tk)Γ(k2 )σ

√
kπ

σ

2

√
k

t
e(µ+σ

√
tk)dt. (6)

Equation (6) can be written as

f(t; k) =
1

2B( 12 ,
k
2 )

t−
1
2

(1 + t)
k+1
2

; t > 0 (7)

where B(.) is the beta function defined by B(λ, τ) = Γ(λ)Γ(τ)
Γ(λ+τ) , λ, τ ∈ R+ and

k > 0 is the degree of freedom parameter.

Since the log-t distribution is a special case of the generalized beta distribution
of the second kind (GB2) Hence, the CDF of the log-t distribution given as:

F (b; k) =
1

2B( 12 ,
k
2 )

∫ b

0

t−
1
2

(1 + t)
k+1
2

dt (8)

where b = a
1−a , t > 0, k > 0

F (a; k) =
1

2B( 12 ,
k
2 )
.Ba

(
1

2
,
k

2

)
(9)

F (a; k) =
1

2
+

1

2
Ra

(
1

2
,
k

2

)
(10)

where Ba( 12 ,
k
2 ) is the incomplete beta function and Ra

(
1
2 ,

k
2

)
is the regularized

incomplete beta function.

The survival and the hazard follow by substituting (2) and (10) in each definition.
Hence

S(t) = 1− F (a) =
1

2
− 1

2
R

(
a;

1

2
,
k

2

)
, (11)

and

h(t) =
f(t)

1− F (a)
=
f(t)

S(t)
=

t−
1
2 [1 + t]−(

k+1
2 )

B( 12 ,
k
2 )[1−R(a; 1

2 ,
k
2 )]

(12)

Some of the mathematical properties of the log-t distribution are presented below.

2.1. The Moment

To investigate the finite moment of the log-t distribution, let u ∼ LTD(k) for
r = 1, 2, 3, . . . The rth non-central moments is given as

µr = E[ur] =

∫ ∞

0

urf(u)du
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For r = 1, the first moment is given as

E[u] =

∫ ∞

0

u
Γ(k+1

2 )
[
1 + (ln(u))2

k

]−( k+1
2 )

uΓ(k2 )σ
√
kπ

du (13)

= lim
a→∞

∫ a

0

Γ(k+1
2 )

[
1 + (ln(u))2

k

]−( k+1
2 )

Γ(k2 )σ
√
kπ

du (14)

=
1√

kB( 12 ,
k
2 )

lim
a→∞

∫ a

0

[
1 +

(lnu)2

k

]−( k+1
2 )

du (15)

The approximate solution of the integral is obtained by the series expansion given
as [

1 +
(ln(u))2

k

]−( k+1
2 )

= 1 +

[
−
(
k + 1

2

)][
(lnx)2

k

]
+ · · · (16)

= 1− (k + 1)(ln(u))2

2k
+ · · ·

Integrating the result with respect to u gives,

lim
u→∞

[
u− k + 1

2k
(2u− 2u ln(u) + u(ln(u))2)

]
= ∞ (17)

Hence, E[u] = ∞
Remark: Since the mean of the log-t distribution is infinite, thus higher

moments of the log-t distribution do not exist.

3. The Shannon Entropy

An entropy provides a superior tool to quantify the amount of information (or
uncertainty) contained in a random observation regarding its parent distribution
(population). A large value of entropy implies greater uncertainty in the data.
The two most popular entropies are Renyi (1960) and ? entropies measures. The
Renyi entropy of a random variable U with density function f(u) is defined by

IR =
1

1− α
log(

∫ ∞

0

fα(u)du); α > 0, α ̸= 1. (18)

While the Shannon entropy of a random variable U is defined by:

hu = E[− ln(fu(u))] = −
∫
S

fu(u) ln(fu(u))du

where S = {u : fu(u) > 0} It is a special case of Renyi entropy as α ↑ 1.
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Now, from the transformation that resulted to equation (8), the Shannon
entropy of the log-t distribution is given by

ht = −
∫ ∞

0

f(t;µ, σ2, k) ln f(t;µ, σ2, k)dt (19)

to have

h(k) = − 1

2B( 12 ,
k
2 )

∫ ∞

0

t−
1
2

(1 + t)
k+1
2

ln

[
t−

1
2

2B( 12 ,
k
2 )(1 + t)

k+1
2

]
dt (20)

= − ln

[
2B(

1

2
,
k

2
)

] ∫ ∞

0

1

2B( 12 ,
k
2 )

t−
1
2

(1 + t)
k+1
2

dt+
1

4B( 12 ,
k
2 )

∫ ∞

0

ln(t)
t−

1
2

(1 + t)
k+1
2

dt

+
k + 1

4B( 12 ,
k
2 )

∫ ∞

0

ln(1 + t)
t−

1
2

(1 + t)
k+1
2

dt

(21)

the first integral gives by the property of PDF over entire domain gives

= ln

[
2B(

1

2
,
k

2
)

]
+

k + 1

4B( 1
2
, k
2
)

[ ∫ ∞

0
ln(t)t−

1
2 (1 + t)

−
(

k+1
2

)
dt+ (k + 1)

∫ ∞

0
ln(1 + t)t−

1
2 (1 + t)

−
(

k+1
2

)
dt

]
(22)

setting y = 1 + t, t = y − 1, dt = dy 1 < y <∞ in the third integral, we have∫ ∞

1

(y − 1)−
1
2 ln(y)

y(
k+1
2 )

dy (23)

From Gradshteyn & Ryzhik (1965), formula 4.255(1) pp. 541.∫ ∞

u

(y − u)θ−1 ln(y)

yλ
dy = uθ−λB(λ− θ, θ)[ln(u) + ψ(λ)− ψ(λ− θ)] (24)

provided 0 < Re(θ) < Re(λ), B(·, ·) is the beta function and ψ(·) is the digamma
function. Hence,∫ ∞

1

(y − 1)−
1
2 ln(y)

y(
k+1
2 )

dy = B(
k

2
)

[
ψ(
k + 1

2
)− ψ(

k

2
)

]
(25)

where u = 1, θ = 1
2 , λ = k+1

2 and Gradshteyn & Ryzhik (1965), formula 4.253(1)
pp 538 gives∫ 1

0

yθ−1(1− y)λ ln(y)dy =
1

s2
B

(
θ

s
, λ

)[
ψ(
θ

s
)− ψ(

θ

s
+ λ)

]
(26)

Re(θ), Re(λ), s > 0.
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Hence the first integral gives∫ ∞

0

ln(t)t−
1
2 (1 + t)−(

k+1
2 )dt = B

(
1

2
,
k

2

)[
ψ(

1

2
)− ψ(

k + 1

2
)

]
(27)

where θ = 1
2 , λ = k

2 and s = 1 The resultant equation gives

= ln(2)+lnB

(
1

2
,
k

2

)
+
1

4
ψ(

1

2
)−

1

4
ψ(
k + 1

2
)+

(k + 1)B( k
2
)

4B
(

1
2
, k
2

) ψ(
k + 1

2
)−

(k + 1)B( k
2
)

4B
(

1
2
, k
2

) ψ(
k

2
) (28)

Hence, the Shannon entropy of the log-t distribution is given as

log2

{
2B

(
1
2 ,

k
2

)
e

1
4ψ(

1
2 )e

(k+1)B( k
2
)

4B( 1
2
, k
2 )

ψ( k+1
2 )

e
1
4ψ(

1
2 )e

(k+1)B( k
2
)

4B( 1
2
, k
2 )

ψ( k
2 )

}
bits (29)

4. Log-concavity and Monotonicity

Bagnoli & Bergstrom (2005) defined the log-concavity of twice-differentiable
real-valued function, g whose domain is an interval on the extended real line
as a function that satisfies the condition: (ln g(x))′′ < 0. Log-concavities of
distributions have important properties in modelling. Based on this property,
the log-concavity of the log-t distribution is presented in proposition 3.3.1.
Proposition 3. The Log-t distribution with probability density function, f(u) is
either log-concave or log-convex on its entire domain. It depends on the values of
the random variable U and the degree of freedom k.

Proof . Given the density in equation (2), without loss of generality when µ = 0
and σ = 1, the natural logarithm is given as

ln f(u) = ln

[
Γ

(
k + 1

2

])
− ln

[
Γ(
k

2
)

]
− ln(

√
kπ)−

(
k + 1

2

)
ln

[
k + (ln(u))2

k

]
− ln(u) (30)

The first order derivative of equation (30) with respect to u gives
d ln f(u)

du
= −

(
k + 1

2

)[
2 ln(u)

u[k + (ln(u))2]

]
− 1

u
(31)

The second order derivative of equation (30) with respect to u gives
d2 ln f(u)

du2
= −

(
k + 1

2

)[
2k(1− ln(u))− 2(ln(u))2 − 2(ln(u))3

[u+ k + (ln(u))2]2

]
+

1

u2
(32)

Hence, from equation (32), the log-concavity and log-convexity of d2[ln f(u)]
du2 over

positive real line depends on the values of random variable U and degree of freedom
k. For example, suppose u ∈ (0, 1.7] and k > 1 then, [ln f(u)]′′ < 0, this implies
log-concavity and the log-t density function is monotonically increasing on the
real line because it is easy to see that f(u + ϵ) − f(u) > 0 for any k > 0. The
case is reversed when on the interval (1.7,∞) for k > 1, it is log-convex and
monotonically decreasing. Therefore, we conclude that equation (32) is neither
strictly log-concave nor log-convex on its entire domain.
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5. The Special Cases of The Log-t Distribution

Proposition 4. Suppose U is a random variable having equation (2) as its density
function then;

1. for k = 1, we have the log-Cauchy distribution; and

2. as k → ∞ we have the lognormal distribution

Proof . The proof is trivial, by substituting k = 1 into the density function of
log-t distribution in equation (2) and noting

Γ(
1

2
) =

√
π

We have,

f(u;µ, σ) =
1

uπ

[
σ

σ2 + (ln(u)− µ)2

]
; u > 0 (33)

where µ ∈ R and σ > 0 which is the density function of the log-Cauchy distribution.
For the second part and without loss of generality from equation (2), let µ = 0
and σ = 1. (2) becomes the standardized probability density function of the log-t
distribution given by

f(u; k) =
Γ(k+1

2 )
[
1 + (ln(u))2

k

]−( k+1
2 )

uΓ(k2 )
√
kπ

; 0 < u <∞ (34)

Let 1
p = (ln(u))2

k and k = p(ln(u))2. The principal part of the numerator can be
written as [

1 +
(ln(u))2

k

]−( k+1
2 )

=

[
1 +

1

p

]−(
p(ln(u))2+1

2

)

=

[
1 +

1

p

]− p(ln(u))2

2

×
[
1 +

1

p

]− 1
2

Recall, limp→∞

[
1 + 1

p

]p
= e

= lim
p→∞

[
1 +

1

p

]p−(ln(u))2

2

× lim
p→∞

[
1 +

1

p

]−1
2

which gives, e
−(ln(u))2

2 × 1. Taking the other part of (34)

Γ(k+1
2 )

uΓ(k2 )
√
kπ

=
Γ(k+1

2 )

uΓ(k2 )
√

k2π
2

=
Γ(k+1

2 )

Γ(k2 )
√

k
2

1

u
√
2π
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To show that Γ( k+1
2 )

Γ( k
2 )
√

k
2

= 1we apply the asymptotic formula given by

Γ(λz + τ) ∼
√
2πe−λz(λz)λz+τ−

1
2 (35)

where λ = 1
2 , τ = 1

2 and z = k respectively in the numerator while λ = 1
2 , τ = 0

and z = k respectively in the denominator.
Substituting this values we have

Γ(k+1
2 )

Γ(k2 )
√

k
2

× 1

u
√
2π

∼
√
2πe−

k
2
k
2

k
2

√
2πe−

k
2
k
2

k
2−

1
2+

1
2

× 1

u
√
2π

∼ 1× 1

u
√
2π

Combining these results we obtain the standardized lognormal distribution defined
by

f(u) =
1

u
√
2π
e−

1
2 (ln(u))

2

; 0 < u <∞ (36)

Hence, the standardized log-t distribution generalizes the standardized lognormal
distribution as the degree of freedom parameter k → ∞.

6. Maximum Likelihood Estimate of the Parame-
ters

Given a random sample of n observations u1, u2, . . . , un from log-t distribution,
the likelihood function is given as:

L(ui;µ, σ, k) =

n∏
i=1

f(ui;µ, σ, k), (37)

The log-likelihood function gives

ℓ(ui;µ, σ, k) = n ln Γ

(
k + 1

2

)
− n ln Γ

(
k

2

)
−

n∑
i=1

ln(ui)

− n ln(σ)− n

2
ln(k)− n

2
ln(π)

−
(
k + 1

2

) n∑
i=1

ln

[
kσ2 + (ln(ui)− µ)2

kσ2

] (38)

Differentiating equation (38) with respect to each parameter to have

∂

∂µ
ℓ(ui;µ, σ, k) = (k + 1)

n∑
i=1

[
ln(ui)− µ

kσ2 + (ln(ui)− µ)2

]
(39)
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∂

∂σ
ℓ(ui;µ, σ, k) =

−n
σ

+

(
k + 1

σ

) n∑
i=1

[
(ln(ui)− µ)2

kσ2 + (ln(ui)− µ)2

]
(40)

∂

∂k
ℓ(ui;µ, σ, k) =

n

2

[
ψ

(
k + 1

2

)
− 1

k

]
+

(
k + 1

2k

) n∑
i=1

[
(ln(ui)− µ)2

kσ2 + (ln(ui)− µ)2

]

− 1

2

n∑
i=1

ln

[
kσ2 + (ln(ui)− µ)2

kσ2

]
(41)

where
∂ ln Γ(k+1

2 )

∂k
= 1

2ψ
(
k+1
2

)
and

∂ ln Γ(k2 )

∂k
= 1

2ψ
(
k
2

)
ψ(, ) is the digamma

function.
Setting equations (39), (40) and (41) equals zero and solving simultaneously

does not give a closed form solution. Hence, we adopt a numerical approach
(Newton-Raphson Method) which gives the approximate value for each parameter
estimated from the sample data.

7. Information Matrix and Asymptotic Confidence
Interval

In statistical inference, the inverse of the Fishers information matrix is often
used to construct the confidence interval and in testing hypotheses.

For the asymptotic inference of the parameter space Φ = (µ, σ,k), the Fisher
information matrix I(Φ) is required such that its inverse is known to be the
asymptotic variance matrix of the maximum likelihood estimators.

The Fisher information matrix for the log-t distribution is presented in the
proposition given below

Proposition 5. Given a random variable, u that follows log-t distribution, let Φ
be the parameter space µ, σ and k, then the second order partial derivatives of the
log-likelihood function form the elements of the Fisher information matrix

I(Φ) = −

 Iµµ Iµσ Iµk
Iσµ Iσσ Iσk
Ikµ Ikσ Ikk


Proof . The elements of I(Φ) are

Iµµ =
∂2l∗
∂µ̂2

= (k + 1)

n∑
i=1

{
−kσ2 + [ln(ui)− µ̂]2

[kσ2 + [ln(ui)− µ̂]2]2

}
(42)

Iµσ =
∂2l∗
∂µ̂∂σ̂

=
∂2l∗
∂σ̂∂µ̂

= (k + 1)

n∑
i=1

{
−2kσ̂[ln(ui)− µ̂]

[kσ̂2 + [ln(ui)− µ̂]2]2

}
(43)
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Iµk =
∂2l∗
∂µ̂∂k̂

=
∂2l∗
∂k̂∂µ̂

= (k+1)
n∑

i=1

{
−σ2[ln(ui)− µ̂]

k̂σ2 + [ln(ui)− µ̂]2

}
+

n∑
i=1

{
[ln(ui)− µ̂]

k̂σ2 + [ln(ui)− µ̂]2

}
(44)

Iσσ =
∂2l∗
∂σ̂2

=

(
k + 1

σ̂

) n∑
i=1

{
−2kσ̂

[kσ̂2 + [ln(ui)− µ̂]2]2

}
−
(
k + 1

σ̂2

) n∑
i=1

{
[ln(ui)− µ̂]

k̂σ2 + [ln(ui)− µ̂]2

}
+
n

σ̂2

(45)

Iσk =
∂2l∗
∂σ̂∂k̂

=
∂2l∗
∂k̂∂σ̂

= −
(
k + 1

σ̂

) n∑
i=1

{
[ln(ui) − µ̂]2

[kσ̂2 + [ln(ui) − µ̂]2]2

}
+

1

σ̂

n∑
i=1

{
[ln(ui) − µ̂]2

[kσ̂2 + [ln(ui) − µ̂]2]

}
(46)

Ikk =
∂2l∗
∂k̂2

=
n

4

[
Ψ

′
(
k̂ + 1

2

)
−Ψ

′
(
k̂

2

)
+

2n

k̂2

]
−
(
k + 1

2k̂

) n∑
i=1

{
σ̂[ln(ui)− µ̂]2

[kσ̂2 + [ln(ui)− µ̂]2]2

}

−
1

2k̂2

n∑
i=1

{
[ln(ui)− µ̂]2

[kσ̂2 + [ln(ui)− µ̂]2]

}
+

1

2k̂

n∑
i=1

{
[ln(ui)− µ̂]2

[kσ̂2 + [ln(ui)− µ̂]2]

}
(47)

Where Ψ
′
(·) is the trigamma function.

Consequently, let parameter vector Φ = (µ, σ,k) and the corresponding
maximum likelihood estimate of ϕ as ϕ̂ = (µ̂, σ̂, k̂), the asymptotic normality
results can be written as

(ϕ̂− ϕ) → N3(0, (I(ϕ))
−1) (48)

where I(ϕ) is the Fishers information matrix. Therefore, under certain regularity
conditions of asymptotic properties of the maximum likelihood estimation ensure
that √

n(Φ̂−Φ) →d N3(0, I(Φ)−1)

where →d means the convergence in distribution, with mean 0 = (0,0,0, )T and
3X3 variance covariance matrix I(Φ)−1.

Hence, the 100(1− α) confidence interval for Φ ≡ (µ, σ,k) becomes:

Φ̂±Cα
2

√
var(Φ̂)

where Cα
2

is the standard normal at the significance level α
2 and var(·)’s denote

the diagonal elements of I(Φ)−1 corresponding to the model’s parameters.

8. The Best Critical Region for the Mean
µ Parameter

The best critical region is obtained by the Neymann Pearson lemma defined
as follows:
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Neyman-Pearson Lemma: Let u1, u2, . . . , un be a random sample from
f(u, θ) where θ is one of the known values θ0 and θ1. Let 0 < α < 1 be fixed, q is
a positive constant and A is a subset ∀ x ∈ α that satisfy

(i) Pr [u1, u2, . . . , un ∈ A|H0] = α

(ii) L(u1,u2,...,un∈A|H0)
L(u1,u2,...,un∈A|H1)

≤ q; 0 < q < 1

The Neyman-Pearson lemma demonstrates that the likelihood ratio test is the
most powerful test. The likelihood function of the log-t distribution is given by

L(u;µ, σ, k) =

(
Γ(k+1

2 )

Γ(k2 )

)n(
1

σ
√
kπ

)n
.

1∑n
i=1 ui

n∏
i=1

[
1 +

1

k

(
ln(ui)− µ

σ

)2 ]−( k+1
2 )

(49)
To test simple null hypothesis (H0) against simple alternative hypothesis (H1)
denoted by

H0 : µ0 = 0 vs H1 : µ1 = 1

L(u;µ0 = 0)

L(u;µ1 = 1)
=

(
Γ( k+1

2 )

Γ( k
2 )

)n
.(kπσ2)−

n
2 . 1∑n

i=1 ui
.
∏n
i=1

[
1 + 1

k

(
ln(ui)−µ0

σ

)2
]−( k+1

2 )

(
Γ( k+1

2 )

Γ( k
2 )

)n
.(kπσ2)−

n
2 . 1∑n

i=1 ui
.
∏n
i=1

[
1 + 1

k

(
ln(ui)−µ1

σ

)2
]−( k+1

2 )

(50)

=

∏n
i=1

[
1 + 1

k

(
ln(ui)
σ

)2
]−( k+1

2 )

∏n
i=1

[
1 + 1

k

(
ln(ui)−1

σ

)2
]−( k+1

2 )
≤ q; for 0 < q ≤ 1 (51)

Taking the natural logarithm of both sides of equation (51) to have

−
(
k + 1

2

) n∑
i=1

ln

[
1+

1

k

(
ln(ui)

σ

)2 ]
+

(
k + 1

2

) n∑
i=1

ln

[
1+

1

k

(
ln(ui)− 1

σ

)2 ]
≤ ln(q) (52)

= −
(
k + 1

2

) n∑
i=1

[
ln

[
1 +

1

k

(
ln(ui)

σ

)2 ]
− ln

[
1 +

1

k

(
ln(ui)− 1

σ

)2 ]]
≤ ln(q)

(53)

= −
(
k + 1

2

) n∑
i=1

ln

[
kσ2 + (ln(ui))

2

kσ2

kσ2

kσ2 + (ln(ui)− 1)2

]
≤ ln(q) (54)

= −
(
k + 1

2

) n∑
i=1

ln

[
kσ2 + (ln(ui))

2

kσ2 + (ln(ui)− 1)2

]
≤ ln(q) (55)

The exponential of both sides gives
n∑
i=1

[
kσ2 + (ln(ui))

2

kσ2 + (ln(ui)− 1)2

]
≥ qe−(

2
k+1 ) (56)

Hence, we have a test whose critical point of acceptance or rejection of H0 or H1

is at q.
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9. Multivariate Extension of Log-t Distribution

Proposition 6. A random vector w = (w1, . . . ,wp)
′ with p ≥ 1 has a p-

dimensional log-t distribution with mean vector µ = (µ1, . . . , µp)
′, positive definite

symmetric matrix Σpxp and degree of freedom parameter k ∈ (0,∞) if its density
is

fw(w;µ,Σ,k) =
Γ(k+p

2 ){1+ 1
k [ln(w)− µ]′Σ−1[ln(w)− µ]}−(

k+p
2 )∏p

i=1 wiΓ(
k
2 )k

p
2 π

p
2 |Σ|

1
2

Proof . From the univariate log-t distribution we derive its multivariate
counterpart by some transformations of random variable given as follows: Let
w = Φ(u) where Φ is a smooth and bijective function.

Pw(w) = Pu(Φ
−1(w))|detJΦ−1(w)|

where JΦ−1 is the Jacobian matrix of the inverse transformation.
By definition, if u = ln(w) ∼ t(µ, σ, k) then w = eu ∼ LTD(µ, σ, k)

u = Φ−1(w) = ln(w), dΦ−1

dw = | 1w |, JΦ−1(w) = diag( 1
w1
, . . . , 1

wn
).

Since one of the properties of a diagonal matrix is |D| =
∏n
i=1 di. then,

|detJΦ−1(w)| =
n∏
i=1

w−1
i =

1

w1, w2, . . . , wn

fw(w) = fu[Φ
−1(w)].|dΦ

−1(w)

dw
|

Also, by the Mahalanobis distance approach,(
ln(w)− µ

σ

)2

= [ln(w)− µ]′(σ2)−1[ln(w)− µ]

[ln(w)− µ]′Σ−1[ln(w)− µ]

Thus, the density function of the multivariate log-t distribution is given by

f(w;µ,Σ,k) =
Γ(k+p

2 ){1+ 1
k (z(w)− µ)′Σ−1(z(w)− µ)}−(

k+p
2 )∏p

i=1 wiΓ(
k
2 )k

p
2 π

p
2 |Σ|

1
2

(57)

where p ≥ 1, Σ is positive definite symmetric matrix, k ∈ (0,∞), µj > 0,
j = 1, 2, 3, . . . , p and z = z(w) = [ln(w1), . . . , ln(wp)]

′ and µ = [µ1, . . . , µp]
′

The degree of freedom parameter k is also referred to as the shape parameter
because the peakedness of equation (57) may be decrease, preserved or increased
by varying k.

The distribution is said to be central if µ = 0; otherwise it is non-central.
If p = 1, µ = 0 and Σ = 1, then equation (57) is the density function of the

univariate log-t distribution with degree of freedom k.

Revista Colombiana de Estadística - Applied Statistics 45 (2022) 209–229



Some Inferential Problems from Log Student’s T-distribution... 223

If k = 1, then equation (57) is the p-variate log-Cauchy distribution and the
limiting of equation (57) as k → ∞ is the joint PDF of the p-variate lognormal
distribution with mean vector µ and covariance matrix Σ.

9.1. Marginal Distributions

Let w be p-variate log-t distribution with degree of freedom k, mean vector µ,
covariance matrix Σ. Consider the partition using the notation in equation (57)

z =

(
z1
z2

)
, µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
where z1 is p1x1 and Σ11 is

p1 x p1. Then, z1 has p1-variate log-t distribution with degree of freedom k, mean
vector µ1, covariance matrix Σ11 and with joint PDF given by

f(z1) =
Γ(k+p1

2 )

w1Γ(
k
2 )(kπ)

p1
2 |Σ11|

1
2

X

[
1+

1

k
(z1 − µ1)

′Σ−1
11 (z1 − µ1)

]−( k+p1
2 )

(58)

Similarly, z2 also has the (p−p1)-variate log t distribution with degree of freedom
k, mean vector µ2, covariance matrix Σ22 and with joint PDF given by

f(z2) =
Γ(k+p−p1

2 )

w2Γ(
k
2 )(kπ)

p1
2 |Σ22|

1
2

[
1+

1

k
(z2 − µ2)

′Σ−1
22 (z2 − µ2)

]−( k+p−p1
2 )

(59)

9.2. Conditional Distributions

Considering central log-t such that µ = 0, let w = w1w2, |Σ| 12 = |Σ11|
1
2 |Σ22|

1
2

f(z2|z1) =
f(z1, z2)

f(z1)

f(z2|z1) =
w1Γ(

k+p
2 )

w(kπ)
p1
2 Γ(k+p

2 )

|Σ11|
1
2

|Σ| 12

[
1+ 1

kz
′
1Σ

−1
11 z1

]−( k+p1
2 )[

1+ 1
kz

′Σ−1
11 z

]−( k+p
2 )

(60)

Since |Σ| = |Σ11||Σ22 −Σ21Σ
−1
11 Σ12| and

z′Σ−1z = z′1Σ
−1
11 z1 + z′2.1Σ

−1
22.1z2.1

9.3. Log-concavity of Multivariate Log-t Distribution

A non-negative function ψ : Rm → R is log-concave if for all u,w ∈ Rm and
β ∈ (0, 1) we have

ψ(βu + (1− β)w) ≥ [ψ(u)]β [ψ(w)]1−β

If ψ(u) > 0 for all u ∈ Rm then,

lnψ(βu + (1− β)w) ≥ β lnψ(u) + (1− β) lnψ(w)
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Suppose Ψ(u) = − lnψ(u) then the definition is equivalent to ▽2Ψ(u ≥ 0)
provided Ψ(·) is twice differentiable and the Hessian elements given by

▽2Ψ(u)i,j =
∂2Ψ(u)
∂uiuj

, i, j = 1, . . . , n

exist.

Proposition 7. Let U = (U1, . . . , Un) be a random vector with density function
Ψ(u) = f(u1, . . . , un) of the multivariate log-t distribution given equation (57) then
Ψ(u) is neither log-concave nor log-convex in its entire domain.

Proof . The multivariate log-t distribution is

ψ(u; k) = C

[
1 + (ln(u))2

k

]−( k+1
2 )

u
; u > 0 (61)

where C =
Γ( k+1

2 )

Γ( k
2 )

√
kπ

Ψ(u) = − lnΨ(u) = − ln(C) +

(
k + 1

2

)
ln

[
1 +

(ln(u))2

k

]
+ ln(u) (62)

The first order partial derivative of equation (62) with respect to u is

Ψ′(u) =
(k + 1) ln(u)

u[k + (ln(u))2]
+

1

u
(63)

The second order partial derivative of equation (62) with respect to u is

Ψ′′(u) =
(k + 1)[k − k ln(u)− (ln(u))2 − (ln(u))3]

[uk + u(ln(u))2]2
− 1

u2
(64)

Thus,
∂2Ψ(u)
∂uiuj

=
(k + p)[k − k

√
z′z − z′z − z′z

√
z′z]

[kui + uiz′z]2
− 1

u2i
(65)

for i ̸= j = 1, . . . , n. The elements of the Hessian matrix A are given by the above
second order partial derivatives and the corresponding quadratic form becomes

Z′AZ = Z′
[
∂2Ψ(u)
∂uiuj

]
Z ≥ 0 (66)

Therefore, the multivariate log-t density is neither strictly log-concave nor log-
convex on its entire domain, but its log-concavity or log-convexity depends on the
random vectors Ui and their respective values of degree of freedom ki.
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9.4. Bivariate Log-t Distribution

Considering the two random variables u1 and u2 in terms of their individual
parameters: µu1 = E(u1), µu2 = E(u2), σ11 = var(u1), σ22 = var(u2),
ρ12 = σ12√

σ11σ22
= corr(z(u1), z(u2)) and a positive semi-definite 2 × 2 variance-

covariance matrix:

Σ =

(
var(u1) cov(u1, u2)

cov(u1, u2) var(u1)

)
=

(
σ2
u1

ρσu1
σu2

ρσu1σu2 σ2
u2

)

where z(u) =

(
z(u1)

z(u2)

)
=

(
ln(u1)

ln(u2)

)
.

Then the joint PDF becomes

Γ( k+2
2 )

{
1 + 1

k(1−ρ2)

[(
z(u1)−µu1√

σ11

)2
+
(

z(u2)−µu2√
σ22

)2
− 2ρ

(
z(u1)−µu1√

σ11

)(
z(u2)−µu2√

σ22

)]}−
(
k+2
2

)

u1u2Γ(
k
2 )(kπ)

√
σ11σ22(1 − ρ2)

(67)
If the random variable u1 and u2 are uncorrelated so that ρ = 0, the joint
density can be written as the product of two univariate log-t densities of the
form f(u1, u2) = f(u1)f(u2) where u1 and u2 are independent.

Thus, equation (67) becomes

f(u1, u2) =

{
1 + 1

k

[(
z(u1)−µu1√

σ11

)2

+
(
z(u2)−µu2√

σ22

)2
]}−( k+2

2 )

u1u2Γ(
k
2 )(kπ)

√
σ11σ22

(68)

The densities and contour plots for different degrees of freedom parameter k are
shown below It is observed that, as the degree of freedom increases the kurtosis of
the densities increase. Also, increase in the value of k flattens the contours. The
contour plots show the asymmetric nature of the bivariate log-t distribution. One
desirable property of this distribution is its adaptivity to both peakedness and
flatness in the dataset by varying the value of the degree of freedom k. Therefore,
the distribution is flexible enough to capture the heavy-tail behaviour of large
datasets.

10. Applications

In this section, we provide applications to two datasets presented by Lee &
Wang (2003) to illustrate the performance of the lognormal and log-t distributions.
The goodness-of-fit of statistics for these distributions are compared and the
maximum likelihood estimations of their parameters are also provided. The log-
likelihood and Akaike information criterion (AIC) are compared for the fitted
distributions. However, the smaller these values the better the fit.
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Figure 2: Densities and contour plots for the bivariate log-t distribution.

10.1. Remission Times of Bladder Cancer Patients

The first dataset is the remission times (months) of 128 bladder cancer patients
as shown below: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 0.52,
4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 0.22, 13.80, 25.74, 0.50, 2.46,
3.64, 5.09, 7.26, 9.47, 14.24, 0.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31,
0.81, 0.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 0.39, 10.34, 14.38,
34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 0.96, 3.66, 1.05, 2.69, 4.23, 5.41, 7.62,
10.75, 16.62, 43.01, 0.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 0.66,
11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 0.40, 3.02, 4.34, 5.71, 7.93,
11.79, 18.10, 1.46, 4.40, 5.85, 0.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02,
2.02, 0.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07,0.73, 2.07, 3.36,
6.93, 8.65, 12.63, 22.69, 5.49

Table 1: Comparison of lognormal distribution with log-t distribution in the analysis of
bladder cancer patents data.

Parameter Lognormal Log-T
µ̂ 1.75345 1.76490
σ̂ 12.16384 0.37002
k̂ ****** 3.80275
Log-likelihood -228.3571 -228.3563
AIC 460.7142 462.7126
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10.2. Remission Times of Acute Leukamia Patients

The second dataset is the remission times (in weeks) of 21 acute leukamia
patients as shown below: 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 8, 8, 9, 10, 10, 12, 14, 16, 20,
24, 34.

Table 2: Comparison of lognormal distribution with log-t distribution in the analysis of
acute leukamia patents data.

Parameter Lognormal Log-T
µ̂ 1.84886 1.84903
σ̂ 4.36282 0.00605
k̂ ****** 3.37290
Log-likelihood -41.71817 -34.90832
AIC 87.43634 75.81664

10.3. Discussion

The probability density plot shown in Figure(1) reveals how increase in the
degree of freedom parameter of the log-t distribution regulates its tails. Moreover,
the flexibility and heaviness of its tails accommodate more data. Figure(2) shows
the bivariate densities and contour plots. Table 1. shows the comparison of
log-normal distribution with log-t distribution on bladder cancer patients data
with relatively large sample size (n = 128). The comparison was done using the
AIC values. Using this data, the maximum Likelihood estimate of parameters of
lognormal distribution are µ̂ = 1.75345 and σ̂ = 12.16384. While the parameters
of the log-t distribution are µ̂ = 1.76490, σ̂ = 0.37002 and k̂ = 3.80275. More so,
the AIC values of the lognormal and log-t distributions are 460.7142 and 462.7126
respectively. The lognormal distribution which has the smaller value of AIC is
considered to fit the data better. In the same vein,Table 2. shows the comparison
of lognormal distribution with log-t distribution on acute leukamia patients data
with relatively small sample size (n = 21). The comparison was done using the
AIC values. Using this data, the maximum Likelihood estimate of parameters of
lognormal distribution are µ̂ = 1.84886 and σ̂ = 4.36282. While the parameters
of the log-t distribution are µ̂ = 1.84903, σ̂ = 0.00605 and k̂ = 3.37290. More so,
the AIC values of the lognormal and log-t distributions are 87.43634 and 75.81664
respectively.The log-t distribution which has the smaller value of AIC is considered
to fit the data better. Therefore, the log-t distribution outperforms the lognormal
distribution for relatively small sample size (n < 30).

11. Conclusion

This study examined some inferential statistics of the log-t distribution which
has degree of freedom parameter that regulates it tails. It generalizes both log-
Cauchy and lognormal distributions. It fits better relatively small sample size data
than the lognormal distribution. The multivariate log-t distribution is unique and
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generalizes the multivariate log-Cauchy and multivariate lognormal diatributions.
Therefore, we advocate its application in survival analysis in situations where
researchers could not get large enough data to assume lognormality.[
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