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Abstract

Patient reported outcomes are gaining more attention in patient-centered
health outcomes research and quality of life studies as important indicators
of clinical outcomes, especially for patients with chronic diseases. Factor
analysis is ideal for measuring patient reported outcomes. If there is
heterogeneity in the patient population and when sample size is small,
di�erential item functioning and convergence issues are challenges for
applying factor models. Bayesian hierarchical factor analysis can assess
health disparity by assessing for di�erential item functioning, while avoiding
convergence problems. We conducted a simulation study and used an
empirical example with American Indian minorities to show that �tting
a Bayesian hierarchical factor model is an optimal solution regardless of
heterogeneity of population and sample size.
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Resumen

Las repuestas reportadas por el paciente están siendo fuertemente
consideradas en la investigación de respuestas de salud centradas en el
paciente y en estudios de calidad de vida comos indicadores importantes de
respuestas clínicas, especialmente en pacientes con enfermedades crónicas.
El análisis factorial es ideal para medir respuestas reportadas por el
paciente. Cuando hay heterogeneidad en la población de pacientes y
el tamaño muestral es pequeño, diferencias en el funcionamiento de los
ítems y problemas de convergencia plantean di�cultades para aplicar
modelos factoriales. El análisis factorial jerárquico Bayesiano puede evaluar
disparidades de salud evaluando el funcionamiento diferencial de los ítems,
mientras que evita problemas de convergencia. Hemos realizado un estudio
de simulación y empleado un ejemplo empírico con minorías indígenas
Americanas para mostrar que el ajuste de un modelo factorial jerárquico
Bayesiano es una solución óptima sin importar la heterogeneidad de la
población o el tamaño muestral.

Palabras clave: Análisis factorial; Disparidades en salud; Funcionamiento
diferencial de ítems; Indígena americano; Modelo jerárquico Bayesiano;
Respuestas reportadas por el paciente.

1. Introduction

Patient reported outcomes (PRO) are variables re�ecting the status of a
patient's health condition whose values comes directly from the patient (FDA-NIH
Biomarker Working Group, 2016). PROs are gaining more attention in patient-
centered health outcomes research and quality of life (QOL) studies as important
indicators of clinical outcomes for patients including chronic diseases (diseases
that last for year or more and require ongoing treatment; Centers for Disease
Control and Prevention (2021)). PROs are especially important when symptoms,
functioning, and well-being are main concerns. There have been discrepancies
between patient and clinician perspectives on certain disease outcomes (e.g. Basch
et al., 2011; Cuijpers et al., 2010; Sanderson & Kirwan, 2009). PROs allow
researchers to assess treatment e�ects and satisfaction with health services from
patients' own perceptions of changes in symptoms, in mental, physical, and social
health, and in overall QOL (Cella et al., 2010; Deshpande et al., 2011). PROs are
also easier and less expensive to administer than clinician reported measures. The
importance of PROs has been advocated by health regulatory authorities (Doward
et al., 2010; European Medicines Agency, 2016; US Food and Drug Administration,
2009; US Food & Drug Administration, 2020). The National Institutes of Health
(NIH) funded the development of the Patient-Reported Outcomes Measurement
Information System (PROMIS) for purposes of clinical research across a variety of
chronic diseases (National Institutes of Health, 2019). PROs often are measured
using survey questionnaires with ordinal response scales, the development of which
must go through rigorous testing and validation to ensure their psychometric
integrity (Dawson et al., 2010; Garrard et al., 2015). Standardized PROs such
as the PROMIS measures allow comparisons to be made across studies. They can
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also increase precision of results, reduce burden on patients, and improve decision-
making in clinical trials Frost et al. (2007), Ware Jr et al. (2004), as well as more
accurately re�ect long term clinical changes and assist in better individualized
treatment plans and clinical decisions (Calvert et al., 2018; European Medicines
Agency, 2016; Tunis et al., 2003; US Food and Drug Administration, 2009).

Because PROs typically re�ect hypothetical constructs like QOL that cannot
be directly observed, latent variable methods are ideal for analyzing PROs, e.g.,
Joreskog et al. (1979) and MacCallum & Austin (2000). Factor analysis (FA),
for example, accounts for the measurement errors in the hypothetical constructs
that underlie observed variables like PROs (Muthén, 2002). In factor analysis,
maximum likelihood estimation (MLE) has been criticized for always leading to
the rejection of the model (Marsh et al., 2009) and for its susceptibility to the
identi�cation problem (MacCallum et al., 1992). When sample size is limited, e.g.
in the case of rare diseases where sample size is often 50 or less in clinical trials
(Bell & Smith, 2014), MLE is fallible.

Bayesian factor analysis is an alternative FA method where the model is
identi�ed by incorporating prior information about the distribution of model
parameters. Compared to maximum likelihood estimation (MLE), Bayesian
estimates generally have smaller error variance but larger bias (Chaloner, 1987).
Bayesian FA performs better than traditional FA with small samples (Asparouhov
& Muthén, 2010; McNeish, 2016); Muthén (2010); Muthén & Asparouhov (2012);
Scheines et al. (1999) and also has better convergence properties than MLE in
con�rmatory FA (Hoofs et al., 2018). Bayesian estimation in FA was discussed by
Press (2009) and Lee (2007). Bayesian analysis (Gelman et al., 2006; Kruschke,
2011; Lynch, 2007)) became popular due to the success of the new Markov Chain
Monte Carlo (MCMC) computational methods (Gamerman & Lopes, 2006; Gilks
et al., 1996). The MCMC makes use of the Gibbs sampling to draw random
samples from posterior distribution. When the priors carry inaccurate information
about the parameters, Bayesian estimates should be processed with caution
(Samaniego & Reneau, 1994; Jiang et al., 2014). Di�erential item functioning
(DIF) occurs when an item has di�erent likelihood of being endorsed or answered
correctly by individuals from di�erent groups (e.g. age or racial groups) even
though the individuals have the same factor score on the construct the item is
designed to measure (Drasgow, 1987). DIF analysis is critical for PROs, as health
disparities due to race/ethnicity may a�ect PRO results when minority groups
are involved in a study, and DIF can interfere with our ability to quantify these
disparities. For example, a QOL item may function di�erentially for a certain
minority group by eliciting overly optimistic responses from members of that group
relative to non-minority individuals with the same level of QOL, perhaps because
a word in the item has a di�erent shade of meaning in the minority group's culture.
If members of the group tend to have lower QOL due to some disparity in access
to health services, the systematic bias in the item could make it more di�cult to
detect the e�ects of this disparity.

Several psychometric methods have been proposed for DIF analysis (e.g.
Mantel-Haenszel [MH], Wainer & Braun (1988); the item response theory-
likelihood ratio method [IRT-LR], Thissen (1988); logistic regression [LR],
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Swaminathan & Rogers (1990); and the multiple indicators-multiple causes
method [MIMIC], Jöreskog & Goldberger (1975)). But these methods either do
not account for measurement error (e.g. CTT methods including LR and MH), or
require larger sample sizes (LRT-LR, MIMIC).

We propose a Bayesian Hierarchical (Gelman et al., 2013) Factor Analysis (BH-
FA) method for assessing DIF. Bayesian hierarchical modeling can be extended
to multilevel data (Gelman et al., 2012), which makes BH-FA appealing in that
potential DIF may exist when there are multiple racial/ethnic groups present in
the sample. Bayesian hierarchical modeling has been widely used in research
studies in various �elds (e.g. Kemp et al., 2007; Gajewski et al., 2019). In most
cases the hierarchical model has been applied to account for clustering within
sites or providers (Kwok & Lewis, 2011), in contexts where clustering is viewed
as a nuisance. Here we examine a context where the clusters are racial/ethnic
groups, and we want to make inferences regarding speci�c clusters. BH-FA could
be especially valuable when the population is small and/or heterogeneous. To
the best of our knowledge, no literature has examined the advantages of the
Bayesian hierarchical approach for estimating di�erential item functioning across
racial/ethnic groups in factor analysis. Our purpose is to �ll this gap in the
literature, by conducting a simulation study. We want to examine the advantages
of BH-FA in assessing DIF in an instrument, and also accommodate small sample
size and convergence problem in latent factor analysis.

2. Method

Our motivation comes from a study where the Patient Assessment of
Mammography Services (PAMS) survey was administered to a sample that
included ethnic minority women (Ndikum-Mo�or et al., 2013). The PAMS
instrument was developed by researchers in a Midwestern academic medical center
to assess patients' satisfaction with mammography services. The full PAMS
instrument comprises 20 items designed to load on four factors, and the PAMS
short form comprises 7 items designed to measure one factor (Engelman et al.,
2010). Participants came from four racial/ethnic groups: White, Hispanic, African
American, and American Indian.

Table 1: PAMS questions.

Item 1 Overall, how would you rate the appointment scheduling process?

Item 2 Overall, how would you rate your level of comfort during the exam?

Item 3 Overall, how would you rate the comfort of the mammography facility?

Item 4 Overall, how would you rate the convenience of the mammography facility?

Item 5 Overall, how would you rate the mammography technologist?

Item 6 Overall, how would you rate the way you received your mammography test results?

Item 7 Overall, how would you rate your entire mammography experience?

Motivated by the PAMS study, we want to use a simulation study to
examine the di�erences and similarities between three di�erent possible models
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for analyzing the data: a homogeneous model, an independent model, and the
BH-FA model. The simulation study also allowed us to calibrate the BH-FA
model for application to the PAMS dataset. We then compare the models on the
original dataset. Inspired by the PAMS study, we simulated data for a one factor
model with 7 items and 4 race groups (Figure 1). Data were simulated from two
versions of the true model: one with group di�erences (independent model) and
one without (homogeneous model). Our purpose was to properly calibrate the
priors in the BH-FA model through simulation.

Figure 1: CFA model.

Data were generated within Mplus. Continuous item scores were simulated
from a multivariate normal distribution. Simulation conditions included: sample
size (50, 100, 500 in each racial/ethnic group), intercept di�erence between groups
(0 indicates no group di�erence, 1 indicates a group di�erence), and slope that
represents the correlation between the items and the latent factor (.2, .4, .6,
.8). Additionally, in order to examine the e�ect of combined intercept and slope
di�erence, we added a condition to the slope parameter when intercept di�erence
is 1 to represent each group has both di�erent intercepts and di�erent slopes (.2,
.4, .6, .8 in each group respectively). Altogether there are 3 × 2 × 4 + 3 = 27
di�erent conditions simulated. Each condition was iterated 200 times, and
altogether there were 5,400 datasets simulated. Each dataset was analyzed using
the homogeneous model, the independent model, and the hierarchical model.
Altogether 5, 400 × 3 = 16, 200 analyses were performed. The homogeneous and
independent models were �tted in Mplus, and the hierarchical model was �tted in
WinBUGS.
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2.1. Con�rmatory Factor Analysis Model

We simulated data from the following model:

yijk = αjk + βjkfi + εijk

i = 1, . . . , N ; j = 1, . . . , 7; k = 1, . . . , 4
(1)

where yijk denotes the observed response for the ith person to the jth item, k
denotes the group (e.g., race) to which the ith person belongs, αjk is the mean
response to the jth item in the kth group, fi is the standard normal latent factor
score for the ith person, fi N(0, 1), βjk is the factor loading representing the
strength of the relationship between fi and the observed response to the jth item
for participants in the kth group, and εijk is the measurement error or residual
for the ijkth response, εijk N(0, σ2

jk). Thus the distribution of the responses is

yijk N(αjk, β
2
jk + σ2

jk). The likelihood function to estimate the model is:

L(αjk, βjk | y1jk, . . . , yNjk) =
N∏
i=1

p(yijk | αjk, βjk)

=
(
2π(β2

jk + σ2
jk)
)−n

2

× exp

{(
− 1

2(β2
jk + σ2

jk))

)
N∑
i=1

(yijk − αjk)2
} (2)

2.2. Homogenous Model

In this model, αj and βj are estimated for each item without regard to group
information. In other words, we assume there is no DIF: αj = αj1 = · · · = αjk
and βj = βj1 = · · · = βjk. Bayesian factors analysis is sensitive to the choice of
priors, since there is substantial uncertainty about the true values of the factor
loadings and error variances a priori (Ghosh & Dunson, 2008).

The homogeneous model was �tted in Mplus. We used the default, non-
informative priors in Mplus. The priors used for αj , βj and σ

2
j were:

αj ∼ N(0,∞), βj ∼ N(0,∞), σ2
j ∼ IG(−1, 0)

2.3. Independent Model

The independent model is more �exible in that αjk and βjk are allowed to vary
across groups, as well as items, and are estimated for each item and independently
for each group, thereby allowing for DIF. The independent model was �tted in
Mplus, again with default, non-informative priors. The priors used for αjk, βjk
and σ2

jk were:

αjk ∼ N(0,∞), βjk ∼ N(0,∞), σ2
jk ∼ IG(−1, 0)
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2.4. Hierarchical Model (BH-FA)

In the BH-FA model, αjk and βjk are estimated for each item and for each
group as in the independent model, but here the parameters for the di�erent
groups are not independent, as they are related to each other through shared
hyperparameters. In BH-FA we assign common hyperpriors to the parameters in
the intercept and slope priors. The priors used in the hierarchical models were:

αjk ∼ N(µα, σ
2
α), βjk ∼ N+(µβ , σ

2
β),

1

σ2
jk

∼ Unif(0, 10)

Additionally, each of the hyperparameters was assigned its own hyperprior:

µα ∼ N(3, 1),
1

σ2
α

∼ Unif(0, 10), µβ ∼ N+(1, 100),
1

σ2
β

∼ Unif(0, 10)

The small-scale parameters in the hyperpriors were chosen to help shrink the
inverse variance parameters toward zero, thus yielding vague priors for alpha and
beta (Gelman et al., 2006). The hierarchical model was �tted within WinBUGS
(Lunn et al., 2000) through R2WinBUGS (Sturtz et al., 2005) because WinBUGS
is technically more �exible Muthén & Asparouhov (2012), and can accommodate
hyperpriors for the intercept and slope priors. We used two parallel chains with a
burn-in of 2000 iterations.

2.5. Evaluation of the Model

For all three models, we �rst evaluated bias for each parameter estimated under
each condition. Bias is reported as a measure for recovery of true item parameters
and can be calculated as:

Bias =

∑N
i=1(X̂i −Xi)

N
(3)

where Xi indicates a parameter in the model. The root mean squared error
(RMSE) was calculated for each condition as well for evaluation of model �t. For
the homogeneous model, overall RMSE was calculated for the intercept parameter
and the slope parameter. For the independent model and the hierarchical model,
sub-group RMSEs based on racial/ethnic group were calculated separately for the
intercept parameter and the slope parameter respectively. RMSE represents the
square root of the squared di�erence between an estimated parameter and its true
value. A smaller value for RMSE indicates the model �ts the data better. RMSE
can be calculated with the following formula:

RMSE =

√∑N
i=1(X̂i −Xi)2

N
(4)
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3. Results

The parameter recovery was in general very good, both when the true model
was the homogeneous model (intercept/α di�erence = 0) and when it was the
independent model (intercept/α di�erence = 1) (Table 1). Bias of the intercept
parameter estimates was only 0 or −.01, and bias in slope parameter estimates
ranged from 0 to 0.06 in either direction. Bias seem to be larger when slope was
small at .2. Overall, the bias was virtually zero when the slope was larger than .2.
Sample size did not have a substantial impact on the bias for either the intercept
parameter α or the slope parameter β.

Table 2: Bias (parameter recovery) in the simulation study.

Group n αT di�erence βT α β

50

0

0.2 0.00 -0.04

0.4 0.00 0.00

0.6 0.00 0.01

0.8 -0.01 0.01

1

0.2 0.00 -0.02

0.4 0.00 -0.01

0.6 0.00 0.03

0.8 -0.01 0.06

.2 .4 .6 .8 -0.01 0.02

100

0

0.2 0.00 -0.03

0.4 0.00 0.00

0.6 0.00 0.00

0.8 0.00 0.01

1

0.2 0.00 -0.04

0.4 0.00 -0.01

0.6 0.00 0.02

0.8 0.00 0.03

.2 .4 .6 .8 0.00 0.00

500

0

0.2 0.00 -0.01

0.4 0.00 0.00

0.6 0.00 0.00

0.8 0.00 0.00

1

0.2 0.00 -0.03

0.4 0.00 0.00

0.6 0.00 0.00

0.8 0.00 0.00

.2 .4 .6 .8 0.00 -0.01

Note: αT indicates true intercept parameter;

βT indicates true slope parameter.
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In Figure 2, RMSE values under di�erent sample sizes are plotted against
the intercept/α parameter (top panel) and the slope/β parameter (bottom panel)
when the true model was the homogeneous model (intercept/α di�erence = 0, left
panel) or the independent model (intercept/α di�erence=1, right panel). RMSE
values are shown for all three estimating models: the homogeneous model (pink
dashed line), the independent model (green dashed line), and the BH-FA model
(blue solid line).

Note: Homogeneous model as true model (intercept di�erence = 0); Independent model as true
model (intercept di�erence = 1); Slope = M indicates slope is di�erent for each group (.2, .4,
.6, .8); homog = homogeneous model, Ind = independent model, hier = BH-FA model.

Figure 2: RMSE for simulated data.

When the homogeneous model was the true model (no DIF/group di�erence),
�tting a homogenous model was best in accuracy of the intercept and the slope,
followed by the BH-FA model and then the independent model. RMSE decreased
as sample size increased. It is worth noting that the BH-FA model outperformed
even the homogeneous model (the true model) in terms of accuracy of the slope
estimation when the slope was relatively �at at .2 with sample size of 100 or less.

On the other hand, when the true model was the independent model (presence
of DIF/group di�erence), the BH-FA model �t as well as or better than the
independent model. The homogeneous model performance was very poor under
this condition. When there were both intercept and slope di�erences (DIF)
between groups, the independent model and the BH-FA model �t equally well,
while the homogeneous model �t very poorly. Sample size did not have a large
e�ect on RMSE estimates when the true model was the independent model.
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3.1. Empirical Example: PAMS Study

We fit the homogeneous model, the independent model, and the BH-FA model to
the PAMS data with the priors in the simulation study. We plotted the median and
the equal-tailed 95% credibility interval (CI) for the intercept parameter (Figure 3)
and the slope parameter (Figure 4) estimates for the 7 PAMS questions, stratified
by group (White, Hispanic, African American, and American Indian). In the PAMS
case, it was clear that the population was heterogeneous with 4 racial/ethnic groups.
When group sample size was large, all three models produced similar estimates for
the intercept and the slope, as well as their CIs, as seen in the White group. On
the other hand, when sample size was small, as in the Hispanic and the AI groups,
the CIs were much larger under the independent and the BH-FA models.

In the PAMS case, the homogeneous model produced falsely similar estimates for
all four groups, as well as overly narrow credibility intervals. This was not surprising
as the homogeneous model ignored the differences across groups. When we used the
independent model or the BH-FA model, the estimates for the intercept and the
slope were different for each group, and the BH-FA estimates were very similar to
the independent model estimates. The pattern was the same with the estimates of
the CI of the parameters, the BH-FA model produced narrower CI. Specifically, the
CI was the smallest for the White group due to its large sample size, and largest for
the Hispanics and the AI because of small sample size. Between the independent
model and the BH-FA model, the BH-FA model had narrower CI due to the hyper
parameter imposed. This was consistent with our simulation study findings, and
suggested an advantage of using the BH-FA model when data are heterogeneous
across groups and DIF may be present.

4. Conclusions and Future Work

PROs are important measures in health and clinical research. And it is very
common to have data collected from multiple sites or nested multilevel data. Under
some situations, such as in studies of a rare disease, small sample size is unavoidable.
Under these circumstances, fitting the BH-FA model is an optimal solution because
the BH-FA model fits the data well regardless of the data structure. Motivated
by the PAMS study we used a simulation study to calibrate the hyper parameters
in the BH-FA model, and assessed its performance with and without the presence
of DIF in the PRO instrument used. Our conclusion is the BH-FA can facilitate
the potential DIF effect, and thus provide better PRO score estimates. This, in
turn, may improve our ability to identify health disparities with a note of statistical
methods can only be helpful when the content validity of the instrument has been
established.

The study has its limitations. We only examined the RMSE for model evaluation
and did not examine effects of missing data. Given our findings, future work can
explore the BH-FA for use in PRO instrument development and sample size smaller
than 50 such as in the case of rare diseases. If necessary, informative priors can be
added to the model with well knowledge about the population parameter.
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Note: homog = homogeneous model, Ind = independent model, hier = BH-FA model, CI =
credibility interval, AI = American Indian

Figure 3: RMSE median and credibility interval for the PAMS items intercepts
estimated with the homogeneous model, independent model and the
hierarchical model.
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Note: homog = homogeneous model, Ind = independent model, hier = BH-FA model, CI =
credibility interval, AI = American Indian

Figure 4: RMSE median and credibility interval for the PAMS items slopes estimated
with the homogeneous model, independent model and the hierarchical model.
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