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Abstract

This paper considers a frequentist perspective to deal with the class of
correlated binomial regression models (Pires & Diniz, 2012), thus providing
a new approach to analyze correlated binary response variables. Model
parameters are estimated by direct maximization of the log-likelihood
function. We also consider a diagnostic analysis under the correlated
binomial regression model setup, which is performed considering residuals
based on predictive values and deviance residuals (Cook & Weisberg, 1982)
to check for model assumptions, and global in�uence measure based on
case-deletion (Cook, 1977) to detect in�uential observations. Moreover, a
sensitivity analysis is carried out to detect possible in�uential observations
that could a�ect the inferential results. This is done using local in�uence
metrics (Cook, 1986) with case-weight, response, and covariate perturbation
schemes. A simulation study is conducted to assess the frequentist properties
of model parameter estimates and check the performance of the considered
diagnostic metrics under the correlated binomial regression model. A data
set on high-cost claims made to a private health care provider in Brazil is
analyzed to illustrate the proposed methodology.
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Resumen

Este artículo considera una perspectiva frecuentista para tratar con la
clase de modelos de regresión binomial correlacionada (Pires & Diniz, 2012),
proporcionando así un nuevo enfoque para analizar variables de respuesta
binaria correlacionadas. Los parámetros del modelo se estiman mediante
la maximización directa de la función de log-verosimilitud. También
consideramos un análisis de diagnóstico bajo la con�guración del modelo de
regresión binomial correlacionada, que se realiza considerando los residuos
basados en valores predictivos y los residuos de desviación (Cook &Weisberg,
1982) para veri�car los supuestos del modelo y la medida de in�uencia
global basada en la eliminación de casos (Cook, 1977) para detectar
observaciones in�uyentes. Además, se realiza un análisis de sensibilidad para
detectar posibles observaciones in�uyentes que podrían afectar los resultados
inferenciales. Esto se hace utilizando métricas de in�uencia local (Cook,
1986) con esquemas de perturbación de covariable, variable respuesta y
ponderación de casos. Se realiza un estudio de simulación para evaluar las
propiedades frecuentistas de los estimadores de parámetros del modelo y
veri�car el rendimiento de las métricas de diagnóstico consideradas bajo
el modelo de regresión binomial correlacionada. Se analiza un conjunto
de datos sobre un plan de salud de un operador brasileño para ilustrar la
metodología propuesta.

Palabras clave: Distribución binomial generalizada; Plan de salud;
In�uencia; Sobredispersión; Regresión; Residuos.

1. Introduction

In real practical situations, the observed data may feature a response variable
representing the sum of dependent Bernoulli random variables. McCullagh &
Nelder (1989, p. 125) argue that, unless there are good reasons for relying on the
binomial assumption, a more prudent approach would be to assume overdispersion
to be present in this type of data. Overdispersion is a phenomenon that occurs
when a higher variability than that assigned to the usual binomial model is
observed in the data and it can be attributed to several causes, such as correlation
between the binary responses, absence of relevant explanatory variables, and
others.

An alternative to overcome extra-binomial variation is to consider a
distribution that generalizes the usual binomial distribution. Among a number of
distributions that have been proposed as alternatives to model binary data subject
to overdispersion (e.g., the well-known beta-binomial distribution of Skellam
(1948), the additive and multiplicative binomial distributions of Altham (1978),
and the double-binomial distribution of Efron (1986), among others), we center
our attention on the generalized binomial distribution proposed by Luceño (1995).
For a detailed discussion on this distribution, see Diniz et al. (2010).

Pires & Diniz (2012) derived a new class of correlated binomial regression
models based on the generalized binomial distribution (Luceño, 1995). The authors
used a data augmentation scheme to overcome the complexity of the mixture
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likelihood and a full Bayesian methodology was proposed for model parameter
estimation, as well as for model diagnostics.

In this paper, we propose a frequentist model formulation as an alternative
approach to the class of correlated binomial regression models with parameters
estimated by direct maximization of the log-likelihood function. The methodology
presented in this paper circumvents the latent variable setup of Pires & Diniz
(2012). The frequentist formulation does not require speci�cation or derivation of
prior distribution. Therefore, inference and diagnostics can be performed by means
of a well-known, easy-to-implement, and quickly computable optimal procedure
when prior information is not available. Moreover, for the data set considered in
this paper, if a statistical analysis were to be carried out to study the occurrence of
high-cost health services claims by workers made to private health care providers,
regulatory agencies would demand objective and standardized procedures where
the e�ect of �ones' opinion� on the outcome is nonexistent, i.e., the analyst's prior
(subjective) information on the matter would not be accepted. In this setting,
the results provided by the frequentist formulation are much more likely to be
preferable, as it is both objective and optimal.

Besides, it is well known that statistical modeling procedures are usually based
on initial model assumptions and can be misleading if the �tted model is not
plausible enough. Therefore, this paper aims not only to propose a frequentist
estimation method for the class of correlated binomial regression models, but also
to consider frequentist metrics of model diagnostics. Speci�cally, we use residuals
based on predictive values and deviance residuals (Cook & Weisberg, 1982) to
check model assumptions. Furthermore, case-deletion in�uence diagnostic metrics
(Cook, 1977; Cook & Weisberg, 1982), namely the Cook's generalized distance
and the likelihood distance, are considered to detect in�uential observations on
parameter estimates. We also perform a sensitivity study to detect in�uential
cases a�ecting the obtained inferential results by means of local in�uence measures
(Cook, 1986) based on case-weight, response, and covariate perturbation schemes.
Two predictive model selection criteria, the Akaike's information criterion (AIC;
Akaike 1974) and the Bayesian information criterion (BIC; Schwarz 1978), are
used for model selection.

The remainder of the paper is organized as follows. In Section 2, we describe
the real data set used in our work. In Section 3, we review the class of
correlated binomial regression models proposed by Pires & Diniz (2012). In
Section 3.1, we present a discussion on the link function considered for modeling
the probability of success parameter and the dependence parameter, and we also
discuss the inferential procedure used to conduct parameter estimation for the class
of correlated binomial regression models. In Section 4, we develop some diagnostic
methods, which consist of two types of residuals (Section 4.1), two metrics of
global in�uence based on case-deletion (Section 4.2), and a local in�uence metric
(Section 4.3). In Section 5, we present results based on simulated data sets to assess
the frequentist properties of the estimation procedure and check the performance
of the considered diagnostic metrics. Section 6 deals with the illustration of the
proposed frequentist methodology for correlated binomial regression models, by
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considering a data set from a private health care provider in Brazil. Finally, in
Section 7, some conclusions are drawn.

2. Health Care Provider Data Set

As a motivational example of overdispersed binomial data analysis using the
correlated binomial regression model with parameter estimation and diagnostics
both performed under the frequentist perspective, we consider a data set from
a private health care provider in Brazil. This data set comprises a portfolio of
companies (clusters) for which the occurrence or not of high-cost health services
- such as oncological surgery, prosthesis, chemotherapy and hemodialysis - is
observed for each employee. The data set is available at http://www.ufscar.

br/~des/docente/carlos/Dados/Dados2.txt. Information on private health
care providers in Brazil are available at http://www.ans.gov.br/, the site 1 of
the Brazilian Agência Nacional de Saúde Suplementar (ANS, freely translated
as National Supplementary Health Agency), which is the regulatory agency
responsible for the regulation and oversight of privately run health care providers
in Brazil.

The available data for the i-th company with ni employees, i = 1, 2, . . . , 160,
consist of Wi1,Wi2, . . . ,Wini , each one assuming value 0 or 1, depending on the
status of the employee (0 = not occurrence; 1 = occurrence). Thus, the response
variable for the i-th company, Yi =

∑ni
j=1Wij , assumes values in {0, 1, . . . , ni}

according to the number of employees who have used high-cost health services. For
this particular data set, a dependence structure between the Bernoulli variables
inside the same company (cluster) could be assumed and explained by the fact that
it is reasonable to consider employees within the same company to be exposed
to the same environment conditions. This data set also contains the following
covariates: average number of medical appointments per employee; average cost
of a medical test; occurrence of surgical procedure; number of therapies; number
of emergency procedures; number of days between the beginning of the plan
period and the �rst high-cost health service occurrence per each employee; and
speci�c information about the companies (size, number of employees, business
activity). From the private health care provider's point of view, the main interest
while analyzing this data set would be to �t a regression model able to precisely
determine the probability of a high-cost health service occurrence in a company,
which would be taken into consideration at the time of renewing - or not - the
contract with the company.

3. Correlated Binomial Regression Model

Assume Y1, Y2, . . . , Ym are independent random variables such that each Yi
follows a correlated binomial distribution, denoted by Yi ∼ CB(ni, pi, ρi), for
i = 1, 2, . . . ,m. The correlated binomial distribution (Luceño, 1995) provides

1The site is in Portuguese with no translation option.
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a suitable way to represent the distribution of sums of equicorrelated Bernoulli
random variables. This distribution is given by the mixture of the distributions
of two random variables, with one of them following a binomial distribution,
B(ni, pi), with a mixing probability (1 − ρi), and the other one following a
modi�ed Bernoulli distribution, MBern(pi), taking values 0 or ni (Fu & Sproule,
1995) (rather than the conventional values 0 or 1), with a mixing probability ρi.
Taking this information into account, Yi, the number of successes in ni trials of
Bernoulli, i = 1, 2, . . . ,m, is the sum of equicorrelated binary responses with a
constant probability of success pi and a common correlation coe�cient equal to
ρi. Thus, Yi =

∑ni
j=1Wij , where Wij is a binary (0, 1) variable with E (Wij) = pi,

Var (Wis) = Var (Wit) = pi (1− pi) and Corr (Wis,Wit) = ρi, for all s and t, s 6= t.
The probability distribution of Yi, given ni, pi and ρi, is then given by

P (Yi = yi | ni, pi, ρi) =

(
ni
yi

)
pyii (1− pi)ni−yi (1− ρi) IA1i

(yi)

+ p
yi
ni
i (1− pi)

ni−yi
ni ρiIA2i

(yi) ,

where A1i = {0, 1, . . . , ni}, A2i = {0, ni}, ni ∈ N−{0}, 0 < pi < 1 and 0 ≤ ρi ≤ 1.

The mean and variance of Yi are nipi and pi (1− pi) {ni + ρini (ni − 1)},
respectively. Note that the binomial model is a particular case of the CB (ni, pi, ρi)
model when ρi = 0. This distribution can be interpreted as a zero-ni in�ated
distribution (Lambert, 1992). The zero and ni values, which occur with greater
frequency than expected under the binomial distribution, are captured by the
modi�ed Bernoulli distribution. The occurrence of many zero and ni values can
be explained by the positive correlation between the individuals inside the cluster.

We note that observations Y1, Y2, . . . , Ym are mutually independent and that
correlation takes place among the Wij 's, j = 1, 2, . . . , ni, inside the cluster i,
i = 1, 2, . . . ,m.

3.1. Inference

Let y = (y1, y2, . . . , ym)> be a set of observed values of response variables
Y = (Y1, Y2, . . . , Ym)>, and n = (n1, n2, . . . , nm)> a vector with the cluster
sizes. Then, the likelihood function of p = (p1, p2, . . . , pm)>, the vector of

success probabilities for each cluster, and ρ = (ρ1, ρ2, . . . , ρm)
>
, the vector of

the correlation between any two individuals within the cluster, may be written as

L (p,ρ | m,n,y) =

m∏
i=1

{
ai

(
(1− pi)ni (1− ρi) + (1− pi) ρi

)

+ bi

(
pnii (1− ρi) + piρi

)

+ (1− ai − bi)

((
ni
yi

)
pyii (1− pi)ni−yi (1− ρi)

)}
,

(1)
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where ai = 1 if yi = 0, and ai = 0 otherwise; bi = 1 if yi = ni, and bi = 0
otherwise. Note that ai and bi are known values, i = 1, 2, . . . ,m.

In order to de�ne the class of correlated binomial regression models, the success
probability, pi, and the correlation parameter, ρi, are jointly modeled using the
sets of covariates available for the clusters and for the individuals inside the
clusters. Thus, the pi's are modeled using the link functions Qi's speci�ed in
Table 1, where Φ (·) denotes the standard normal cumulative distribution function,

and ηi =
∑k
r=0 βrxir. The coe�cients β0, β1, . . . , βk are unknown regression

parameters to be estimated; xi0 = 1, for all i; and xi1, xi2, . . . , xik represent the
values of the k covariates for the i-th cluster.

Table 1: Some link functions used to model pi.

Link function Qi

Logit exp {ηi} / (1 + exp {ηi})
Log-log exp {− exp {−ηi}}
Complementary log-log 1− exp {− exp {ηi}}
Probit Φ (ηi)

The correlation structure is parameterized considering a speci�c function of
available covariates, which is able to relate the dependence between individuals
inside the cluster. In general, the correlation structure can be written as

Ri = h (v (ri) , γ) ,

where h(v(ri), γ) is a suitable nonlinear, monotonic and di�erentiable function,
representing the correlation between any two individuals inside the i-th cluster;
v (ri) is a function of the individual covariate values, assuming positive values;
ri = (ri11, . . . , ri1ni , ri21, . . . , ri2ni , riq1, . . . , riqni)

>, with rilj representing the
value of the l-th covariate for the j-th individual within the i-th cluster, i =
1, 2, . . . ,m, l = 1, 2, . . . , q and j = 1, 2, . . . , ni; γ is the parameter determining the
rate of decay of the correlation as a function of v (ri) (Sherman, 2011). Using
spatial ideas of correlation structures, the possible choices for v(ri) can be made
considering, for instance, continuous functions of some distance between position
vectors or between other available vectors which enable us to characterize the
relationship among the individuals within the cluster (Sherman, 2011). Hence,
candidates for v (ri), using only the covariates ri1 and ri2, could be the Euclidean

distance measure, de�ned as
√∑

l=1,2

∑
s

∑
s<t (rils − rilt)2; the Manhattan

distance, de�ned as
∑
l=1,2

∑
s

∑
s<t |rils − rilt|; the maximum distance, de�ned

as maxs,t |ri1s − ri1t|; and the minimum distance, de�ned as mins,t |ri2s − ri2t|,
s, t = 1, 2, . . . , ni.

It is worth pointing out that the dependence between the Bernoulli trials is
aggregated into the function of individual covariates of the correlation structure.
In other words, after determining a speci�c function which summarizes the
dependence between the individuals, then the observations within the cluster are
mutually independent.
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Therefore, the likelihood for the correlated binomial regression model can be
rewritten as a function of the regression coe�cients β0, β1, . . . , βk, associated with
the covariates, and of the coe�cient γ, associated with the correlation structure.
Let the observed data set be D = (m,n,y,x, r)

>
, where n = (n1, n2, . . . , nm)

>
,

y = (y1, y2, . . . , ym)
>
, x = (x1,x2, . . . ,xm)

>
, xi = (xi0, xi1, xi2, . . . , xik)

>
,

r = (r1, r2, . . . , rm)
>
, ri = (ri11, . . . , ri1ni , ri21, . . . , ri2ni , riq1, . . . , riqni)

>. Using
a link function Qi and a correlated structure Ri, the likelihood function (1) can

be expressed as a function of θ = (β0, β1, . . . , βk, γ)
>
. Thus,

L(θ | D) =

m∏
i=1

{
ai

(
(1−Qi)ni (1−Ri) + (1−Qi)Ri

)

+ bi

(
Qnii (1−Ri) +QiRi

)

+ (1− ai − bi)

((
ni
yi

)
Qyii (1−Qi)ni−yi (1−Ri)

)}
,

(2)

where ai = 1 if yi = 0, and ai = 0 otherwise; bi = 1 if yi = ni, and bi = 0
otherwise, with i = 1, 2, . . . ,m. When Ri assumes zero value, we need to consider
Ri = ζ, where ζ is a �xed value very close to zero.

Maximum likelihood estimates (MLEs) can be obtained by direct maximization
of the log-likelihood function (`(θ | D) = logL(θ | D)) using, for instance, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Nocedal & Wright, 2006).
The advantage of this procedure is that it runs easily from statistical packages
such as R (R Development Core Team, 2007). The code implemented in R and
used in this paper is available upon request or at http://www.ufscar.br/~des/
docente/carlos/Dados/MRBC_EMV.txt.

Under some regularity conditions (Lehmann & Casella 1998, Theorem 5.1,

p.463), the asymptotic distribution of
√
n(θ̂ − θ) is a multivariate normal

distribution Nk+2

(
θ, I−1(θ)

)
, where I (θ) is the Fisher information matrix which

can be approximated by the (k + 2)× (k + 2) observed information matrix, J(θ̂),
de�ned as

J(θ̂) = −∂
2` (θ | D)

∂θθ>

∣∣∣∣∣
θ=θ̂

. (3)

The �rst-order partial derivatives (score functions) and the second-order partial
derivatives (Hessian) of the log-likelihood function are given in the appendix.

The asymptotic con�dence interval (ACI), at a con�dence level 100 (1− α) %,
for the w-th component of the parameter vector θ, θw, w = 1, 2, . . . , k+ 2, can be
computed by

θ̂w ±Zα/2
√
J−1(w)(θ̂) ,
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where Zα/2 is the (α/2)-th superior quantile value of the standard normal

distribution and J−1(w)(θ̂) is the w-th element of the diagonal of the inverse of

J(θ̂), which corresponds to the variance estimate of the w-th parameter estimate.

4. Diagnostics

Diagnostic analysis in the correlated binomial regression model previously
described shall be performed by considering two di�erent types of residuals
(the standardized residual and the deviance residual), two global in�uence
measures (the generalized Cook's distance and the likelihood distance), and
local in�uence measures based on three perturbation schemes (namely, the case-
weight perturbation, the response perturbation and the covariate perturbation).
Residual diagnostics are useful to check for model misspeci�cation and for outlier
observation. Global and local in�uence measures are tools designed to assess
in�uential observations.

To check the underlying model assumptions or, in other words, to verify if
the response variables follow a correlated binomial distribution, CB (ni, pi, ρi),
with positive correlation between the Bernoulli variables in the cluster (that is,
ρi > 0), the signi�cance of the correlation structure parameter γ is observed using
con�dence intervals obtained in the inferential process. If γ = 0 or γ = 1, the
usual binomial regression model can be considered in the analysis.

4.1. Residuals

The standardized residual for the correlated binomial regression model is
de�ned as

ri =
yi − nip̂i√

p̂i (1− p̂i) {ni + ρ̂ini(ni − 1)}
, i = 1, 2, . . . ,m, (4)

and the deviance residual for the correlated binomial regression model is de�ned
as

rdi = sign (yi − nip̂i)
√

2` (yi | Di, γ̂)− 2`
(
β̂ | Di, γ̂

)
, i = 1, 2, . . . ,m. (5)

For both (4) and (5), p̂i = Q̂i, ρ̂i = R̂i and γ̂ and β̂ are the MLEs of the
parameters γ and β, respectively.

In expression (5), sign(·) is the signal function; Di = (ni, yi,xi, ri)
>
;

` (yi | Di, γ̂) is the saturated log-likelihood function, with p̂i = yi/ni and the

correlation structure parameter γ replaced by the MLE γ̂; and `
(
β̂ | Di, γ̂

)
is

the log-likelihood function evaluated at the MLE β̂.

For a discussion on residuals for models under the generalized linear models
framework, such as the correlated binomial regression model addressed in this
paper, we refer the interested reader to (Agresti, 2015, Section 4.4.6).
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4.2. Global In�uence

In order to assess the in�uence of observations on parameter estimates of the
correlated binomial regression model, we consider the generalized Cook's distance
and the likelihood distance (Cook, 1977; Cook & Weisberg, 1982; Zhu et al., 2001).
Both the generalized Cook's distance and the likelihood distance can be used to
quantify the impact of the i-th observation on the MLE θ̂ of θ by measuring the
distance between θ̂ and θ̂(−i), where θ̂(−i) is the MLE of θ based on L(θ | D) with

the i-th observation (ni, yi,xi, ri)
>

deleted from the data set. However, these
methodologies are only e�ective when there is a single outlier in the data set (She
& Owen, 2011).

The generalized Cook's distance (Cook, 1977; Cook & Weisberg, 1982) is
de�ned as

Ci =
(
θ̂(−i) − θ̂

)>
J(θ̂)

(
θ̂(−i) − θ̂

)
, (6)

where J(θ̂) is the observed Fisher information matrix given by (3).

The likelihood distance (Zhu et al., 2001) is de�ned as

LDi = 2
{
`
(
θ̂ | D

)
− `
(
θ̂(−i) | D

)}
, (7)

where `
(
θ̂ | D

)
and `

(
θ̂(−i) | D

)
are the log-likelihood functions evaluated at the

usual MLE, θ̂, and at the MLE with the i-th observation (ni, yi,xi, ri)
>
deleted,

θ̂(−i), respectively. Since ` (θ | D), for �xed D, is maximized at θ = θ̂, then, for

whatever any other θ 6= θ̂, ` (θ | D) will be less than `
(
θ̂ | D

)
; thus, expression (7)

is always positive.

When the number of clusters, m, is large, Cook & Weisberg (1982) suggested

the following approximation for θ̂(−i) in (6) and (7):

θ̂(−i) = θ̂ + J−1(θ̂)U
(
θ̂(−i)

)
,

where

U
(
θ̂(−i)

)
=
∂`
(
θ | D(−i)

)
∂θ(−i)

∣∣∣∣∣
θ(−i)=θ̂(−i)

is a (k + 2)-dimensional score vector of the log-likelihood function with the i-th
observation deleted.

The i-th observation is regarded as an in�uential case if the value of its
generalized Cook's distance or likelihood distance is large. This value can be
compared to the critical points of the chi-square distribution with (k + 2) degrees
of freedom, χ2

k+2.

4.3. Local In�uence

In�uence diagnostics relying on case-deletion can be regarded as global
measures of in�uence since they are designed to measure global change over
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the sample space. However, as argued by Cook (1986), single case-deletion
diagnostic metrics can experience a kind of masking. Therefore, local in�uence
diagnostic analysis should be conducted to minimize the incorrect inference about
case in�uences. Cook's local in�uence metrics are designed to investigate model
sensibility to minor perturbations in the data set.

Following Cook (1986), let ` (θ | D) be the log-likelihood function of the
postulated model, and let ω be a k-dimensional perturbation vector belonging to
the perturbation space Ω ⊂ <q. Denote by ` (θ | D,ω) the log-likelihood function
of the perturbed model, and assume ω0 ∈ Ω to be the non-perturbation vector
such that ` (θ | D,ω0) = ` (θ | D). Thus, the in�uence of the perturbation ω on
model parameter estimates may be evaluated through the likelihood displacement
de�ned by

LD (ω) = 2
{
`
(
θ̂ | D

)
− `
(
θ̂ω | D

)}
, (8)

where θ̂ is the MLE of θ under ` (θ | D), and θ̂ω is the MLE of θ under ` (θ | D,ω).

As a means to assess local in�uence, Cook (1986) suggested the study of LD (ω)
in (8) around ω0 using the normal curvature of LD (ω0 + td), with t ∈ < and d a
unit-norm direction, which is de�ned as

Cd (θ) = 2
∣∣∣d>∆>J−1(θ̂)∆d

∣∣∣ ,
where ‖d‖ = 1, J(θ̂) is the observed information matrix, and ∆ =

∂` (θ | D,ω) /∂θ∂ω> evaluated at θ̂ and ω0. The direction dmax, which
corresponds to the largest curvature, may be used to assess in�uential observations
by means of an index plot. The largest curvature, Cdmax , is given by the largest

eigenvalue of ∆>J−1(θ̂)∆ and dmax corresponds to its eigenvector.

Under the correlated binomial regression model presented in Section 3, ∆ is a
(k + 2)× q matrix of partial derivatives, which may be written as

∆ =

(
∆β

∆γ

)
=


∂2` (θ | D,ω)

∂β∂ω>

∂2` (θ | D,ω)

∂γ∂ω>


∣∣∣∣∣∣∣∣
θ=θ̂,ω=ω0

. (9)

In this paper, we consider case-weight, response and covariate perturbation
schemes. In case-weight perturbation, the log-likelihood function of the perturbed
model is obtained from

` (θ | D,ω) =

m∑
i=1

ωi`i (θ | Di) ,

with ω0 = 1m the vector of no perturbation, and Di = (ni, yi,xi, ri)
>
, i =

1, 2, . . . ,m.
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In the response perturbation scheme, y is replaced by yω, where yωi = yi+ωi,
i = 1, 2, . . . ,m, and ω0 = 0m. Then, the log-likelihood function is given by

` (θ | D,ω) =

m∑
i=1

` (θ | Dωi) ,

with Dωi = (ni, yωi ,xi, ri), i = 1, 2, . . . ,m.

Under case-weight and response perturbation schemes, the matrix ∆β in (9) is
a (k + 1)×m matrix whose elements are

∆βij =
∂2

∂βj∂ωi
` (θ | D,ω) =

∂2` (θ | D,ω)

∂Qi∂ωi

∂Qi
∂βj

,

for j = 0, 1, . . . , k and i = 1, 2, . . . ,m, and the matrix ∆γ in (9) is a 1×m matrix
with elements

∆γi =
∂2

∂γ∂ωi
` (θ | D,ω) =

∂2` (θ | D,ω)

∂Ri∂Qi

∂Qi
∂ωi

,

for i = 1, 2, . . . ,m.

Covariate perturbation is obtained by de�ning xωi , where xωik = xik + ωi,
i = 1, 2, . . . ,m, and setting ω0 = 0m. The log-likelihood function is given by

` (θ | D,ω) =

m∑
i=1

` (θ | Dωi) ,

with Dωi = (ni, yi,xωi , ri), i = 1, 2, . . . ,m.

In this case, the matrix ∆ in (9) has elements

∆βij =
∂2` (θ | D,ω)

∂Qi∂ωi

∂Qi
∂βj

∂Qi
∂ωi

+
∂` (θ | D,ω)

∂Qi

∂2Qi
∂βj∂ωi

and

∆γi =
∂2` (θ | D,ω)

∂Ri∂Qi

∂Qi
∂ωi

∂Ri
∂γ

,

for j = 0, 1, . . . , k and i = 1, 2, . . . ,m.

To perform local in�uence diagnostics for a partition of the vector of
parameters, say β in θ = (β, γ)

>
, the normal curvature is written as

Cd (β) = 2
∣∣∣d>∆>

(
J−1(θ̂)− J22

)
∆d
∣∣∣ ,

with J22 =

[
0 0

0 J−1(γ)

]
and J (γ̂) = − ∂2

∂γ2 ` (θ | D)
∣∣∣
β=β̂

. Thus, the direction

dmax, that is, the eigenvector of ∆>
(
J−1(θ̂)− J22

)
∆ evaluated at β̂ and w0,

is used to asses in�uential observations on β. Similarly, we can use this same
procedure to assess local in�uential observations on γ.
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5. Simulation Results

In this section, we present results based on simulated data sets to assess the
quality of MLEs of model parameters and check the performance of the considered
diagnostic metrics under the correlated binomial regression model described in
Section 3.

In order to verify the frequentist properties of MLEs under the correlated
binomial regression model, 1000 samples/data sets were simulated assuming m =
500 clusters with each response variable Yi following a CB (ni, pi, ρi) distribution,
i = 1, 2, . . . ,m. The number of trials per cluster, ni, was generated from a
B (45, 0.5) distribution. We consider two covariates to be available, with xi1
and xi2 drawn from N (0, 2) and N (0, 1) distributions, respectively, and v(ri)
was simulated from a Uniform (0, 1) distribution. We assume the link functions
of Table 1 for pi and the autoregressive (AR) correlation structure for ρi. The
parameter values of γ, β0, β1 and β2 are shown2 in the third column of Table 2.

Table 2: Simulation results.

Fitted model Parameter True value Mean Bias MSE Coverage probability

γ 0.2 0.2012 0.0012 0.0008 0.95

CB-LOG-AR β0 -2 -2.0023 -0.0023 0.0034 0.96

β1 0.5 0.5013 0.0013 0.0006 0.95

β2 -2 -2.0018 -0.0018 0.0043 0.94

γ 0.1 0.1002 0.0002 0.0003 0.95

CB-LL-AR β0 3 3.0051 0.0051 0.0043 0.95

β1 0.1 0.1017 0.0017 0.0006 0.94

β2 -0.5 -0.5009 -0.0009 0.0025 0.95

γ 0.3 0.3019 0.0019 0.0010 0.95

CB-CLL-AR β0 -1.5 -1.5023 -0.0023 0.0010 0.94

β1 0.5 0.5014 0.0014 0.0002 0.95

β2 0.5 0.5010 0.0010 0.0007 0.94

γ 0.05 0.0477 -0.0023 0.0003 0.89

CB-PRO-AR β0 0.01 0.0092 -0.0008 0.0007 0.94

β1 0.8 0.7957 -0.0043 0.0006 0.93

β2 -0.7 -0.6953 0.0047 0.0009 0.94

Simulation results are presented in Table 2, where the �rst column indicates
the regression model �tted to the data sets. In this case, CB-LOG-AR denotes
the correlated binomial regression model with logit link function for pi and
AR correlation structure for ρi, CB-LL-AR represents the correlated binomial
regression model with log-log link function for pi and AR correlation structure
for ρi, CB-CLL-AR denotes the correlated binomial regression model with

2It is worth commenting here that we have also considered xi1 ∼ Uniform(0, 1) and
xi2 ∼ Uniform(0, 2), as well as di�erent values of parameters γ, β0, β1 and β2, however, we
didn't �nd any signi�cant di�erence in the results obtained (not presented here).
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complementary log-log link function for pi and AR correlation structure for ρi,
and CB-PRO-AR is the correlated binomial regression model with probit link
function for pi and AR correlation structure for ρi. The fourth column of Table 2
provides the mean value of the obtained MLEs from each simulated data set, the
�fth column shows the mean value of the bias computed for each MLE from each
data set, the sixth column provides the computed mean MSE of MLEs, and the
seventh column gives the estimated coverage probability based on 95% ACIs.

To summarize, the results shown in Table 2 give evidence that MLEs of the
considered correlated binomial regression models have good frequentist properties.
It can be noticed that both the mean bias and mean MSE are small, and
the coverage probability approaches the expected nominal one of 95% for all
model parameters. However, it is worth mentioning that the estimated coverage
probability for γ under CB-PRO-AR model is smaller than those observed for this
same parameter in the other three models.

In order to assess if the diagnostic metrics are able to correctly detect outliers
and/or in�uential case, we simulated data sets assuming m = 100 clusters with
Yi ∼ CB (ni, pi, ρi), i = 1, 2, . . . ,m, and the number of trials per cluster, ni,
was generated from a B (50, 0.3) distribution. We consider two covariates to be
available, with xi1 ∼ N (0, 2) and xi2 ∼ N (0, 1), and v(ri) was simulated from
a Uniform (0, 1) distribution. For illustration purposes, we present the results
obtained assuming the logit link function for pi and the AR correlation structure
for ρi, with parameter values β0 = −1.5, β1 = 0.5, β2 = 0.5 and γ = 0.1. However,
we note that similar results were obtained from the other link functions shown in
Table 1.

Prior to generating the values of the response variable, case #7 was deliberately
perturbed by transforming the observation of covariate x2 of case #7 into an
atypical one by adding 3 times the standard deviation of x2 to its original value,
namely x7,2 = x7,2+3∗sd(x2). After simulating the observed values of the response
variable, case #40 of y was perturbed by the relation y40 = y40 + 2 ∗ sd(y); since
y40 must be an integer, we take the rounded value of the transformation.

The model �t summary is shown in Table 3. Although the 95% ACIs of model
parameters β0, β1 and β2 contain their true values, their MLEs are not as precise
as it would be expected for a large sample size. On the other hand, the MLE of γ
does not appear to be a�ected by the perturbation in the data set.

Table 3: Model �t summary for the simulated perturbed data set: MLEs and 95% ACIs
of the model parameters γ, β0, β1 and β2.

Parameter γ β0 β1 β2

True value 0.1 -1.5 0.5 0.5

MLE 0.108 -1.369 0.454 0.379

95% ACI (0.027, 0.190) (-1.573, -1.166) (0.367, 0.540) (0.238, 0.520)

Standardized residuals and deviance residuals are presented in Figure 1(a) and
Figure 1(b), respectively. The standardized residuals do not indicate observation
#40 as an outlier, but they indicate observations #22 and #46 as possible outliers.
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In Figure 1(b), the deviance residuals indicate only observation #40 as an outlier.
We note that this behavior of the standardized residuals and deviance residuals
was observed for other simulated samples as well, and, while the former ones tend
to indicate non-outlier cases as possible outliers the latter ones seem to be a more
robust choice for the correlated binomial regression model. From Figures 2(a) and
2(b), we notice that both the Cook's generalized distance and likelihood distance
show only case #40 as being in�uential. Local in�uence metrics are depicted in
Figures 3 and 4, which reveal case #40 as being locally in�uential only on β̂, in
addition to case #7 under the covariate x2 perturbation scheme (Figure 3(d)). We
note that, if a case is locally in�uential then it is globally in�uential, however the
inverse relation is not always true.
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Figure 1: Simulated perturbed data set: (a) standardized residuals versus predicted
values; (b) deviance residuals versus predicted values.
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Figure 2: Simulated perturbed data set: (a) Cook's generalized distance; (b) likelihood
distance.

In order to assess the sensitivity of MLEs when in�uential observations are
present in the data set, we also �tted the correlated binomial regression model
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to the data set without case #7, case #40 and cases #7 and #40, which were
identi�ed as in�uential for the MLE of β. Table 4 shows the relative di�erence,
|(θ̂w − θ̂w(−i))/θ̂w| × 100%, between MLEs obtained using the perturbed data set
and MLEs obtained using the simulated data set after removing the observations.
In the �rst scenario, when we remove only observation #7, the MLE of γ seems to
become less precise and there is not a pronounced di�erence in the MLE of β. In
the second option, when we remove only case #40, we notice that the MLE of β2
is greatly a�ected. Removing case #40 also has a small impact on the MLE of γ.
Finally, the removal of both cases #7 and #40 only seems to have a pronounced
e�ect in the MLE of β2.
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Figure 3: Simulated perturbed data set: index plot of |dmax| for β under: (a) case-
weight perturbation; (b) response perturbation; (c) covariate x1 perturbation;
(d) covariate x2 perturbation.
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Table 4: Simulated perturbed data set: MLEs of complete data set and data sets with
case #7, case #40 and cases #7 and #40 deleted, and their relative changes.

Parameter γ β0 β1 β2
True value 0.1 -1.5 0.5 0.5

MLE 0.108 -1.369 0.454 0.379

MLE (#7) 0.115 -1.364 0.452 0.377

Relative change (%) 6.48 0.40 0.36 0.48

MLE (#40) 0.098 -1.480 0.467 0.510

Relative change (%) 9.84 8.04 2.83 34.77

MLE (#7, #40) 0.105 -1.476 0.466 0.508

Relative change (%) 3.55 7.80 2.63 34.12
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Figure 4: Simulated perturbed data set: index plot of |dmax| for γ under: (a) case-
weight perturbation; (b) response perturbation; (c) covariate d perturbation.

6. Application

Next, we analyze the motivational example presented in Section 2 to illustrate
the proposed methodology. We also compare the correlated binomial regression
models with the beta-binomial regression model (Prentice, 1986), the negative

Revista Colombiana de Estadística - Applied Statistics 44 (2021) 253�278



In�uence Diagnostics for Correlated Binomial Regression Models 269

binomial regression model, the Poisson regression model and the usual binomial
regression model.

The beta-binomial distribution (Skellam, 1948) is derived by regarding the
probability of success parameter p to arise from the beta distribution, Beta(α1, α2),
α1 > 0 and α2 > 0. Thus, under the parameterization p = α1/(α1 + α2) and
ρ = 1/(α1 +α2 + 1), such that α1 = p/ζ and α2 = (1− p)/ζ, where ζ = ρ/(1− ρ),
the beta-binomial distribution can be written as

P (Y = y | n, p, ζ) =

(
n

y

) y−1∏
j=0

(p+ ζj)

n−y−1∏
j=0

((1− p) + ζj)

n−1∏
j=0

(1 + ζj)

−1 ,
where

∏x
j=0 cj = 0, for any x < 0, y = 0, 1, . . . , n, n ∈ N − {0}, 0 < p < 1

and −1 ≤ ρ ≤ 1. The mean and variance of this model are E (Y ) = np and
Var (Y ) = np (1− p) {1 + (n− 1)ρ} (Prentice, 1986).

Let y1, y2, . . . , ym be a set of observed values of Y1, Y2, . . . , Ym. Then, the
log-likelihood function is given by

`BB (p, ζ | m,n,y) =

m∑
i=1

{
log

(
ni
yi

)
+

yi−1∑
j=0

log (pi + ζij)

+

ni−yi−1∑
j=0

log ((1− pi) + ζij)−
ni−1∑
j=0

log (1 + ζij)

}
,

(10)

where pi = Qi and ρi = Ri. The MLEs for the beta-binomial regression model
can be obtained by direct maximization of the log-likelihood function (10). We
refer the reader to Prentice (1986) for a detailed description of the observed Fisher
information matrix, as well as for the asymptotic results for parameter estimates
in the beta-binomial regression model.

For the correlated binomial regression model, we considered the link functions
of Table 1 for p and the AR correlation structure for ρ. For the beta-binomial
regression model, we also considered the link functions of Table 1 for p and the AR
correlation structure for ζ. The negative binomial and binomial regression models
were �tted using the link functions of Table 1 for p, and the Poisson regression
model was �tted with log link function for p.

To model the probability of success of the Bernoulli trials, two covariates are
considered: the average number of medical appointments per employee, x1, and
the average cost of a medical test, x2. The covariate: number of days between the
beginning of the plan period and the �rst high-cost health service occurrence per
each employee, rij , is used to account for the dependence between the Bernoulli
variables inside the company. In fact, we consider the variable mins,t |ris − rit|,
that is, the minimum of days between the employee s and t, which assumes values
between zero, when both employees use the service on the same day, and 365, when
there is no use of the plan either by employee s or t. This variable is standardized in
the interval [0, 1] using the transformation mins,t |ris− rit| = mins,t |ris− rit|/365.
It is intuitive to assume that the greater the di�erence between the times of using
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the plan, the lower the relation between the use of the service. For this reason, the

continuous AR correlation structure given by Ri = γ
mins,t |ris−rit|

365 , i = 1, 2, . . . ,m
and s, t = 1, 2, . . . , ni, is considered in the analysis.

The obtained values of AIC and BIC for each model �tted to the health
care provider data set are shown in Table 5. From the AIC and BIC values
of all models �tted to the data set, it can be seen that the correlated binomial
regression model with complementary log-log link function is identi�ed as the best
modeling choice. Therefore, in Table 6 we present the model �t summary for the
correlated binomial regression model with complementary log-log link function
for p and AR correlation structure for ρ. From the 95% ACI of the correlation
structure parameter, γ, presented in this table, it can be observed that the zero
value is not contained in such an interval, thus providing evidence that the data
is overdispersed and that the correlated binomial regression model can be used to
analyze the health care provider data set.

Table 5: Health care provider data set: AIC and BIC values for all regression models
�tted with di�erent link functions †.

Model Link function for p AIC BIC

Correlated Binomial Logit 397.861 410.161

Log-log 398.390 410.691

Complementary log-log 397.811 410.112

Probit 398.143 410.444

Beta-Binomial Logit 440.544 452.844

Log-log 440.518 452.819

Complementary log-log 440.545 452.846

Probit 440.530 452.830

Negative Binomial Logit 466.482 478.783

Log-log 466.661 478.961

Complementary log-log 466.431 478.731

Probit 466.561 478.862

Binomial Logit 538.471 547.696

Log-log 554.946 564.172

Complementary log-log 538.495 547.720

Probit 538.242 547.468

Poisson Log 668.343 677.569

† Correlated binomial regression models were �tted with AR correlation structure for ρ

and beta-binomial regression models were �tted with AR correlation structure for ζ.

Table 6: Model �t summary for the health care provider data set: MLEs and 95% ACIs
of model parameters γ, β0, β1 and β2.

Parameter γ β0 β1 β2

MLE 0.223 -3.833 0.206 0.322

95% ACI (0.121, 0.325) (-4.411, -3.254) (0.032, 0.381) (0.161, 0.484)
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The assumption of independence and the presence of outliers may be observed
by examining the residuals plotted in time order, if the order was available.
Moreover, residuals can also be used to check for model misspeci�cation and for
outliers. This can be done by examining the residuals plotted against the predicted
values. The standardized residuals based on the predicted values of Yi, and the
deviance residuals based on the log-likelihood function, are presented in Figure 5.
Both the standardized residuals, in Figure 5(a), and the deviance residuals, in
Figure 5(b), indicate a good speci�cation of the model.
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Figure 5: Health care provider data set: (a) standardized residuals versus predicted
values; (b) deviance residuals versus predicted values.
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Figure 6: Health care provider data set: (a) Cook's generalized distance; (b) likelihood
distance.

The Cook's generalized distance and the likelihood distance are shown in
Figure 6(a) and Figure 6(b), respectively. Both metrics indicate case #36 and case
#85 as in�uential. Local in�uence metrics are depicted in Figure 7. Based on case-
weight perturbation (Figure 7(a)), observation #85 appears as in�uential. Under
the response perturbation (Figure 7(b)), covariate x1 perturbation (Figure 7(c))
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and covariate x2 perturbation (Figure 7(d)) schemes, no observation is highlighted

as in�uential on β̂. Notice also, from Figure 8, that there is no in�uential
observation on γ̂ under any perturbation scheme.
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Figure 7: Health care provider data set: index plot of |dmax| for β under: (a) case-
weight perturbation; (b) response perturbation; (c) covariate x1 perturbation;
(d) covariate x2 perturbation.

In Table 7, we present the relative di�erence between MLEs obtained using the
complete data set and MLEs obtained using the data set without case #36, case
#85 and cases #36 and #85, which were identi�ed as in�uential for the MLE of
β. We notice that, when we remove only the globally in�uential observation #36,
there is a pronounced di�erence in the MLE of β1. When the locally in�uential
case #85 is removed, the MLE of β1 is greatly a�ected and the di�erence in the
MLE of β2 is also noticeable. If both cases #36 and #85 are removed, there is a
moderate e�ect in the MLEs of β1 and β2.

In Table 8, we show the model �t summary for the correlated binomial
regression models with complementary log-log link function for p and AR
correlation structure for ρ �tted to the data set without case #36, case #85
and cases #36 and #85. It can be seen that removing case #36 does not a�ect
which model parameters are statistically signi�cant at a 95% con�dence level. On
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the other hand, removing case #85 or cases #36 and #85 makes the zero value to
be contained in the 95% ACI of parameter β1.
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Figure 8: Health care provider data set: index plot of |dmax| for γ under: (a) case-
weight perturbation; (b) response perturbation; (c) covariate d perturbation.

Table 7: Health care provider data set: MLEs of complete data set and data sets with
case #36, case #85 and cases #36 and #85 deleted, and their relative changes.

Parameter γ β0 β1 β2

MLE 0.223 -3.833 0.206 0.322

MLE (#36) 0.222 -4.031 0.260 0.317

Relative change (%) 0.44 5.19 25.88 1.58

MLE (#85) 0.225 -3.572 0.117 0.245

Relative change (%) 0.96 6.79 43.18 24.00

MLE (#36, #85) 0.225 -3.774 0.173 0.240

Relative change (%) 0.67 1.53 16.40 25.41
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Table 8: Model �t summary for the health care provider data set: MLEs and 95% ACIs
of model parameters γ, β0, β1 and β2 with in�uential observations removed.

Removed cases Parameter γ β0 β1 β2

(#36)
MLE 0.222 -4.031 0.260 0.317

95% ACI (0.120, 0.324) (-4.610, -3.453) (0.086, 0.434) (0.156, 0.478)

(#85)
MLE 0.225 -3.572 0.117 0.245

95% ACI (0.123, 0.328) (-4.151, -2.994) (-0.057, 0.291) (0.083, 0.406)

(#36, #85)
MLE 0.225 -3.774 0.173 0.240

95% ACI (0.123, 0.327) (-4.352, -3.196) (-0.002, 0.347) (0.079, 0.402)

Since we are dealing with a real data set, the removal of in�uential cases
(observations) should not be decided lightly. We notice, for instance, that
the collection of more data could reveal the pronounced cases as not being
in�uential. On the other hand, the researcher needs to be made aware that
his/her data set contains observations that have been indicated to have a more
predominant in�uence in model parameter estimates. Therefore, based on the
analysis conducted in this work and considering the complete data set, the decision
regarding the renewal of contracts establishes that the probability of high-cost
health service in the i-th company, for this real data set, is given by

p̂i = 1− exp {− exp {−3.833 + 0.206xi1 + 0.322xi2}} ,

with xi1: average number of medical appointments per employee, and xi2: average
cost of medical tests. The correlation between any two individuals within the
i-th company, for this real data set, is given by ρ̂i = 0.223v(ri), with v(ri): the
minimum of days between the employees / 365. We note that the choice of variables
to model the probability of success p and the correlation ρ was made based on
the covariates provided in the data set that were statistically signi�cant at a 95%
con�dence level.

7. Conclusions

In this paper, we presented a frequentist approach for the correlated binomial
regression model, which is a useful tool to model binomial data subject to
overdispersion. Model parameters were estimated by direct maximization of the
log-likelihood function. The class of correlated binomial regression models can
simultaneously model the probability of success parameter p and the correlation
parameter ρ. Therefore, we have considered di�erent link functions for the
regression structure of p and the AR correlation structure was assumed for ρ.

The results based on simulated data sets indicated good asymptotic properties
of model parameter estimates. Sensitivity of MLEs under di�erent perturbation
schemes was assessed using simulated perturbed data sets and the considered
regression diagnostic metrics were indicated to have a good performance under
the correlated binomial regression framework.

A real data set on a health care provider in Brazil was analyzed to illustrate the
proposed methodology. MLEs of model parameters were computed and diagnostic
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metrics were used to detect outlier observations as well as globally and locally
in�uential observations with a more pronounced e�ect in parameter estimation.
For this application, the correlated binomial regression model was shown to be
a good modeling choice. Moreover, assuming the response variable to follow a
correlated binomial distribution provides a more realistic approach to the data,
since employees within the same company can be regarded as not necessarily
independent. [

Received: March 2020 � Accepted: March 2021
]
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Appendix. First- and Second-Order Partial

Derivatives of the Log-Likelihood Function

In this appendix, we �rst show the score functions of the log-likelihood function
`(θ | D) = logL(θ | D), where L(θ | D) is given by (2). These quantities are
obtained as follows:

U(βr) =
∂`(θ | D)

∂βr
=

m∑
i=1

{
∂g−1(ηi)

∂βr

[
C

[
yi
(
g−1(ηi)

)−1 − (ni − yi)
(
1− g−1(ηi)

)−1
]

+D

[
yi

ni

(
g−1(ηi)

)−1 −
(ni − yi)

ni

(
1− g−1(ηi)

)−1
]]

(C +D)−1

}
,
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for r = 0, 1, . . . , k, and

U(γ) =
∂`(θ | D)

∂γ
=

m∑
i=1

{
∂h (v (ri) , γ)

∂γ
· (−A+B)

(C +D)

}
.

In addition, the second-order partial derivatives (Hessian) of the log-likelihood
function are as follows:

∂2`(θ | D)
∂γ2

=

m∑
i=1

{
∂2h (v (ri) , γ)

∂γ2
· (−A+B)

(C +D)
−
(
∂h (v (ri) , γ)

∂γ

)2

· (−A+B)2

(C +D)2

}
,

∂2`(θ | D)

∂βr∂γ
=

m∑
i=1

{[
∂h (v (ri) , γ)

∂γ

[
A
[
−yi

(
g−1(ηi)

)−1
+ (ni − yi)

(
1− g−1(ηi)

)−1
]

+B

[
yi

ni

(
g−1(ηi)

)−1 −
(ni − yi)

ni

(
1− g−1(ηi)

)−1

] ]
∂g−1(ηi)

∂βr
(C +D)−1

− (C +D)−2

[
∂g−1(ηi)

∂βr

[
C
[
yi
(
g−1(ηi)

)−1 − (ni − yi)
(
1− g−1(ηi)

)−1
]

+D

[
yi

ni

(
g−1(ηi)

)−1 −
(ni − yi)

ni

(
1− g−1(ηi)

)−1

] ] [
∂h (v (ri) , γ)

∂γ
(−A+B)

] ]}

and

∂2`(θ | D)

∂βr∂βs
=

m∑
i=1

{[
∂g−1(ηi)

∂βr
·
∂g−1(ηi)

∂βs

[
C

[
y
2
i

(
g
−1

(ηi)
)−2
− yi

(
g
−1

(ηi)
)−2

− 2yi(ni − yi)
(
g
−1

(ηi)
)−1 (

1− g−1
(ηi)

)−1
+ (ni − yi)2

(
1− g−1

(ηi)
)−2

− (ni − yi)
(
1− g−1

(ηi)
)−2

]
+D

[
y2i
n2
i

(
g
−1

(ηi)
)−2
−
yi

ni

(
g
−1

(ηi)
)−2

− 2
yi

n2
i

(ni − yi)
(
g
−1

(ηi)
)−1 (

1− g−1
(ηi)

)−1
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(ni − yi)2

n2
i

(
1− g−1

(ηi)
)−2

−
(ni − yi)

ni

(
1− g−1

(ηi)
)−2

]]
+
∂2g−1(ηi)
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C

[
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(
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−1
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)−1
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(ηi)
)−1

]
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(
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)−1
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−1 −

[
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(
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−1
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)−1
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(
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+D

[
yi

ni

(
g
−1

(ηi)
)−1
−

(ni − yi)
ni

(
1− g−1

(ηi)
)−1

] ]2
∂g−1(ηi)

∂βs

]
(C +D)

−2

}
,

Revista Colombiana de Estadística - Applied Statistics 44 (2021) 253�278



278 Carlos Diniz, Rubiane Pires, Carolina Paraíba & Paulo Ferreira

for r, s = 0, 1, . . . , k, where

A =

(
ni
yi

)(
g−1(ηi)

)yi (
1− g−1(ηi)

)ni−yi
,

B =
(
g−1(ηi)

) yi
ni
(
1− g−1(ηi)

)ni−yi
ni IA2i

(yi),

C =

(
ni
yi

)(
g−1(ηi)

)yi (
1− g−1(ηi)

)ni−yi
(1− h (v (ri) , γ)) and

D =
(
g−1(ηi)

) yi
ni
(
1− g−1(ηi)

)ni−yi
ni h (v (ri) , γ) IA2i(yi).

The explicit formulae of the related derivatives are given in Tables A1 and A2
for some link functions and correlation structures, respectively.

Table A1: First- and second-order derivatives of each link function with respect to β.

Link function
∂g−1(ηi)

∂βr

∂2g−1(ηi)

∂βr∂βs

Logit xir exp
{
ηi

} [
1 + exp

{
ηi

}]−2 −xirxis exp
{
ηi

}
[exp

{
ηi

}
− 1]

[
1 + exp

{
ηi

}]−3

Log-log xir exp
{
−ηi − exp

{
−ηi

}}
−xirxis[exp

{
−ηi − exp

{
−ηi

}}
− exp

{
−2ηi − exp

{
−ηi

}}
]

Complementary
log-log

xir exp
{
ηi − exp

{
ηi

}}
xirxis[exp

{
ηi − exp

{
ηi

}}
− exp

{
2ηi − exp

{
ηi

}}
]

Probit xirφ
(
ηi

)
* −(2π)

− 1
2 xirxisηi exp{−η2i /2}

* φ(·) is the standard normal probability density function.

Table A2: First- and second-order derivatives of some correlation structures with
respect to γ.

Correlation structure
∂h (v (ri) , γ)

∂γ

∂2h (v (ri) , γ)

∂γ2

Exponential −v (ri) exp{−γv (ri)} [v (ri)]
2 exp{−γv (ri)}

Gaussian −2γ [v (ri)]
2 exp{− [γv (ri)]

2}
2 [v (ri)]

2 exp{− [γv (ri)]
2}(

2 [γv (ri)]
2 − 1

)−1

AR v (ri)λ
v(ri)λ−1 γv(ri)−2v (ri) [v (ri)− 1]

Revista Colombiana de Estadística - Applied Statistics 44 (2021) 253�278


	Introduction
	Health Care Provider Data Set
	Correlated Binomial Regression Model
	Inference

	Diagnostics
	Residuals
	Global Influence
	Local Influence

	Simulation Results
	Application
	Conclusions

