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Abstract

Complex dynamic phenomena in which dynamics is related to events
(modes) that cause structural changes over time, are well described by the
switching linear dynamical system (SLDS). We extend the SLDS by allowing
the measurement noise to be mode-specific, a flexible way to model non
stationary data. Additionally, for models that are functions of explanatory
variables, we adapt a variable selection method to identify which of them
are significant in each mode. Our proposed model is a flexible Bayesian
nonparametric model that allows to learn about the number of modes and
their location, and within each mode, it identifies the significant variables and
estimates the regression coefficients. The model performance is evaluated by
simulation and two application examples from a dataset of meteorological
time series of Barranquilla, Colombia are presented.

Key words: bayesian filtering and smoothing; dirichlet process; hierarchical
model; state-space model.

Resumen

Fenómenos dinámicos complejos en los que la dinámica está relacionada
con eventos (modos) que provocan cambios estructurales a lo largo del
tiempo, se aproximan mediante un sistema dinámico lineal de cambio de
régimen (SDLR). Extendemos el SDLR al permitir que el error de medición
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sea específico del modo, una forma flexible de modelar datos no estacionarios.
Además, para los modelos que son funciones de variables explicativas,
adaptamos un método de selección de variables para identificar cuáles de
ellas son significativas en cada modo. El modelo propuesto es un modelo
bayesiano no paramétrico flexible que permite conocer el número de modos
y su ubicación, y dentro de cada modo, identifica las variables significativas
y estima los coeficientes de regresión. El desempeño del modelo se evalúa
mediante simulación y se presentan dos ejemplos de aplicación de un conjunto
de datos de series de tiempo meteorológicas de Barranquilla, Colombia.

Palabras clave: filtrado y suavizamiento bayesianos; modelos de espacio-
estado; modelos jerárquicos; procesos Dirichlet.

1. Introduction

The dynamic nature of many phenomena in fields such as finance and economics
(Kim, 1994; Carvalho & Lopes, 2007; West, 2013; Zeng & Wu, 2013; McAlinn
& West, 2016), human motion (Bregler, 1997, June; Pavlović et al., 2001), and
environment (Lamon III et al., 1998; Huerta et al., 2004; Velasco-Cruz et al.,
2012), has motivated the development of flexible methods in order to be able to
handle changing conditions in the environment of the phenomena through time.
For instance, several changes may occur in an endemic disease that may trigger an
epidemic, or become highly contagious and thus trigger a pandemic; as a result, its
rate of occurrence might change dramatically. The economic system of a country
may change from a command-based economy to a market-based economy, or to
a green economy, and then modify its economic activity. In modeling the rate
of occurrence of a desease or the economic activity of a country through time,
different states or modes account for changes the phenomena exhibit. Each mode is
associated by an event (endemic, epidemic, pandemic; command economy, market
economy, green economy), and the time series within each mode can be modeled
by a linear dynamic system, such that the complex dynamics of the whole series
can be approximated as switches among conditionally linear dynamical modes,
known as Switching Linear Dynamical System (SLDS).

The SLDS can be viewed as a combination of the Hidden Markov Model (HMM)
with a set of Linear Dynamical Systems (LDSs). In the HMM, the observations,
which can be either discrete or continuous, are conditionally independent given a
sequence of unobserved (hidden) discrete-valued modes that satisfy the Markov
property. The LDS is considered an extension of the HMM with a linear
structure on continuous latent (hidden) variables, most commonly Gaussian. The
assumption of linearity and Gaussianity is specific to the LDS, but the dependence
structure of the observations on the hidden variables is part of the definition of
a general state-space model (Kalman, 1963, 1960). The SLDS is then formed by
multiple Markov chains of continuous linear-Gaussian latent variables, each one
associated with a value of the hidden discrete variable, such that the dynamics of

Revista Colombiana de Estadística - Theoretical Statistics 45 (2022) 231–263



Variable Selection in Switching Dynamic Regression Models 233

a phenomenon is modeled by switching linear models, according to the underlying
mode1 sequence.

Inference in both, the HMM and the LDS, involves the quantification of the
uncertainty associated with the unobserved variable at a particular time instance
conditional on a sequence of data. To be explicit, let c be the hidden variable and
y the observed variable, such that yt is assumed conditionally independent of all
other observations given the state ct, for t = 1, 2, . . . , T . The sequence of states
follows a first order Markov chain; if c is discrete-valued the process is a HMM, but
if c is linear-Gaussian the process is a LDS. We use the notation x1:t to compactly
represent the sequence {x1, . . . , xt}. The main inference problem resides in the
computation of p(c1:T |y1:T ). Since computing the full joint distribution of the
states at all time steps is computationally very inefficient, it is more convenient
to compute the marginal distribution p(ct|y1:l). Three different conditions are
identified depending on l and t. If l < t then it is known as prediction; if l = t
then it is referred to as filtering; and if l > t then it is the smoothing problem. A
recursive algorithm known as the forward-backward algorithm is commonly used
to solve the inference problems. Since the LDS is a linear-Gaussian model, the
joint distributions, as well as the marginals and conditionals, are Gaussians. It is
well-known that the filtering-smoothing problems for the LDS are solved by the
Kalman filter (Kalman, 1960) and Kalman smoother (Rauch et al., 1965).

The HMM can be viewed as a mixture model. The observations are regarded
as being drawn independently from a mixture of distributions F (θ), such that
yt|θt ∼ F (θt), where θt are the parameters of the mixture component to which yt
belongs, and F (·) represents the distribution of the mixture. In this context, the
discrete variable ct indexes the parameters of the mixture component generating
observation yt as yt|{θk}∞k=1, ct ∼ F (θct). If two data points, yt and yl, belong
to the same component (cluster), their component parameters will be identical,
θt = θl. In the Bayesian nonparametric context, a Dirichlet Process (DP; Ferguson
1973) is used as a prior over the parameters of the mixture components. The
resulting model is known as Dirichlet Process Mixture Model (DPMM; Antoniak
1974), which is used in a variety of clustering applications where the number of
clusters is not known a priori.

In defining the SLDS, the DPMM in its hierarchical extension, proposed by Teh
et al. (2006), and the LDS are fundamental. Fox et al. (2011a) develop a sampling
algorithm that combines a truncated approximation of the DP (see Ishwaran &
James, 2001, 2002; Ishwaran & Zarepour, 2002b) with an efficient joint sampling
of the mode (due to the hidden Markov model) and states sequences (due to
the linear dynamical system). The model is developed for time series exhibiting
dynamical behaviors with the dynamics of the latent state process being mode-
specific, only. Additionally, the model does not relate the time series to any
explanatory variables other than intercept. In this paper we present an extension
of the SLDS of Fox et al. (2011a), consisting of making the measurement model
mode-specific. More precisely, the variance of the noise of this model is mode-

1The term state has a generic use in the state-space models. To avoid confusion, the continuous
hidden variables are referred to as states, while the discrete hidden variables are referred to as
modes.
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specific. Also, the time series is described in terms of a regression model with
explanatory variables. Furthermore, we include a variable selection method based
on the formulation of Kuo & Mallick (1998). An important implication of it is that
the design matrix is mode-specific, which is an element to distinguish between the
distributions in the mixture. By employing a changing design matrix allows us
to describe changing relationships between variables as time evolves. As a result,
our proposed model is a flexible dynamic regression model for learning about the
number of component distributions, for identifying the important variables, for
determining where the mode changes originate, and for estimating the regression
coefficients.

The outline of the paper is as follows. In Section 2 we provide some basic
background on the forward-backward procedure, the DPMM, the hierarchical
DPMM, and the sticky hierarchical DPMM (Fox et al., 2011a). The proposed
model is derived in Section 3. We outline a Gibbs sampler and present results on
synthetic datasets in Section 4. We use the proposed model on two applications by
using a real dataset of meteorological series of Barranquilla, Colombia in Section
5. The paper concludes with a discussion.

2. Preliminaries

2.1. Forward-Backward Procedure

Consider the following general probabilistic state-space model:

ct ∼ p(ct|ct−1)

yt ∼ p(yt|ct), t = 1, . . . , T. (1)

This dynamic model describes the system’s dynamics and its uncertainties by a
Markov chain on the state c, and a measurement model that describes yt as a
function of ct.

The above state-space model is completely specified by the initial distribution
p(c0) as

p(c0:t, y1:t) = p(c0)

t∏
i=1

p(ci|ci−1)p(yi|ci). (2)

From (2) one can derive any other distribution of interest. Because computing
the full joint distribution of the states at all time steps is computationally very
inefficient, the following marginal distributions for each t = 1, . . . , T are considered
instead: filtering distributions p(ct|y1:t); prediction distributions p(ct+n|y1:t), n =
1, 2, . . .; and smoothing distributions p(ct|y1:T ). The two most important examples
of state-space models are the HMM in which the hidden variables are discrete-
valued random variables, and the LDS in which the state variables are Gaussians.
Analytical derivations of the marginal distributions above are straightforward in
both the HMM and the LDS. However, we only provide the resulting distributions
for the LDS. For a review of the inference problems in both the HMM and the
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LDS see Bishop (2006) and Barber (2012) (Meinhold & Singpurwalla, 1983 and
Petris et al., 2009 are excellent references for beginners and practitioners in LDS).

Since the LDS is a linear-Gaussian model, the joint distributions over all latent
and observed variables are Gaussian. The closed form solutions resulting from the
Gaussian assumption allow us to have optimal algorithms for Bayesian filtering
and smoothing. The filtering problem is solved by the well-known Kalman filter
(Kalman, 1960); the corresponding smoothing problem is solved by the Rauch-
Tung-Striebel smoother (RTSS) (Rauch et al., 1965). We briefly outline the
algorithms.

2.1.1. Kalman filter

For the filtering problem, the data are supposed to arrive sequentially in time.
We aim to estimate the current value of the state vector, based on the observations
up to time t, in order to update our estimates and forecasts as new data become
available at time t+1. For a general state-space model defined by (1), the filtering
distribution can be computed as

p(ct|y1:t) =
p(yt|ct, y1:t−1)p(ct|y1:t−1)

p(yt|y1:t−1)
=

p(yt|ct)p(ct|y1:t−1)

p(yt|y1:t−1)
, (3)

where p(ct|y1:t−1) and p(yt|y1:t−1) are the one-step-ahead predictive distributions
for the states and for the measurements, respectively. Specifically for the LDS,
consider the following model:

ct = Atct−1 + et, et ∼ N(0,Σt),

yt = X ′
tct + wt, wt ∼ N(0, rt), (4)

which is a simple linear-Gaussian case of (1) with ct a vector of size p and yt scalar.
The matrix At is known as evolution matrix, and Xt is a vector of explanatory
variables. The evolution error et and the measurement error wt are internally and
mutually independent random variables, such that for all (t, t′), t ̸= t′, et and et′

are independent, wt and wt′ are independent, and et and wt′ are independent (see
West & Harrison, 1997 for an extensive review of LDSs). The model can readily
be extended to the case where yt is a vector.

Using standard results of the multivariate Gaussian distribution to the model
in (4), it follows that the marginal and conditional distributions in (3) are
also Gaussians, which are completely determined by their means and variances.
Assuming that

p(ct−1|y1:t−1) = N(ft−1, Ft−1),
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the solution of the filtering problem for LDS is given by

mt = E(ct|y1:t−1) = E(Atct−1 + et|y1:t−1) = Atft−1

St = Var(ct|y1:t−1) = Var(Atct−1 + et|y1:t−1) = AtFt−1A
′
t +Σt

at = E(yt|y1:t−1) = E(E(yt|ct, y1:t−1)|y1:t−1) = E(X ′
tct|y1:t−1) = X ′

tmt

Qt = Var(yt|y1:t−1) = E(Var(yt|ct, y1:t−1)|y1:t−1) + Var(E(yt|ct, y1:t−1)|y1:t−1)

= rt +X ′
tStXt.

Then, it can be shown that (ct|y1:t) ∼ N(ft, Ft), where:

ft = Ft(Xtr
−1
t yt + S−1

t mt) = mt + StXt(X
′
tStXt + rt)

−1(yt −X ′
tmt)

Ft = (S−1
t +Xtr

−1
t X ′

t)
−1 = St − StXt(X

′
tStXt + rt)

−1X ′
tSt

One can learn about the state sequence c1:T by working sequentially forwards in
time; starting with c0 ∼ p(c0) in order to compute p(c1|y1:1), and then estimating
the filtering distribution p(ct|y1:t), t = 2, . . . , T , as new data become available (see
Petris et al., 2009).

2.1.2. Kalman smoother

For the smoothing, we aim to retrospectively estimate the current value of the
state vector. That is to say, we have observations of a time series up to time T
to compute the conditional distributions of ct given y1:T , for any t < T , using the
backward-recursive algorithm.

For a general state-space model defined in (1), the smoothing distributions can
be computed as

p(ct|y1:T ) = p(ct|y1:t)
∫

p(ct+1|ct)
p(ct+1|y1:t)

p(ct+1|y1:T )dct+1. (5)

Because the distributions in (5) are Gaussians, p(ct|y1:T ) is Gaussian, with
mean and variance given by

bt = E(ct|y1:T ) = E(E(ct|ct+1, y1:T )|y1:T ) = ft + FtA
′
t+1S

−1
t+1(bt+1 −mt+1).

Bt = Var(ct|y1:T ) = Var(E(ct|ct+1, y1:T )|y1:T ) + E(Var(ct|ct+1, y1:T )|y1:T )
= FtA

′
t+1S

−1
t+1Bt+1S

−1
t+1At+1Ft + Ft − FtA

′
t+1S

−1
t+1At+1Ft

= Ft + FtA
′
t+1S

−1
t+1(Bt+1 − St+1)S

−1
t+1At+1Ft.

The algorithm begins with (cT |y1:T ) ∼ N(bT = fT , BT = FT ), and then it
proceeds backward in time to compute p(ct|y1:T ), t = T − 1, . . . , 1 (see Petris
et al., 2009).

2.2. Dirichlet Process Mixture Model

Let (X ,A) be a measurable space such that X is a space and A is a σ-algebra
of subsets of X . Let α̃ = αG0 be a finite non-null measure on (X ,A). Then,
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a stochastic process G, indexed by elements A of A, is said to be a DP on
(X ,A) with parameter α̃ if for any measurable partition (A1, . . . , Ak) of X , the
random vector (G(A1), . . . , G(Ak)) has a Dirichlet distribution with parameter
(α̃(A1), . . . , α̃(Ak)) (Ferguson, 1973), or equivalently, (αG0(A1), . . . , αG0(Ak))
(Rodríguez, 2007). G is a random probability measure on (X ,A), G(∅) is
degenerate at 0, G(X ) is degenerate at 1, and G(A) takes values only in the
interval [0, 1].

An alternative definition of the DP, known as the stick-breaking construction,
is provided in Sethuraman (1994). A random probability measure given by

G =

∞∑
j=1

πjδθj (6)

has a DP(α,G0) prior if θj ∼ G0 i.i.d and πj = wj

∏j−1
k=1(1 − wk) with

wj ∼ Beta(1, α) i.i.d. δθ denotes a probability measure concentrated at θ, and∑∞
j=1 πj = 1 with probability one. This constructive definition of the DP shows

that G is discrete, even if G0 is a continuous distribution. In the context of
mixture models, a DP is used as prior on mixture components; this model is
known as Dirichlet Process Mixture Model (Antoniak, 1974). The model applies to
a sequence of data y1, . . . , yn that are regarded as exchangeable. The distribution
from which the yi are drawn is a mixture of distributions of the form F (θ), with
the mixing distribution over θ being G. The prior for this mixing distribution is
a DP with concentration parameter α and baseline distribution G0. Formally, the
DPMM can be represented by the hierarchical model

G ∼ DP(α,G0)

θi|G ∼ G (7)
yi|θi ∼ F (θi).

Due to
∑∞

j=1 πj = 1 with probability one, π = {πj}∞j=1 can be interpreted
as a random probability measure on the positive integers. Let zi be a indicator
variable that specifies the mixture component associated with the observation yi,
such that zi takes values on {1, 2, . . .}. Then, the model in (7) can be rewritten as

G =

∞∑
j=1

πjδθ⋆
j

π|α ∼ GEM(α)

θ⋆j |G0 ∼ G0 (8)
zi|π ∼ π

yi|zi, {θ⋆j }∞j=1 ∼ F (θ⋆zi),

where GEM(·) denotes a stick-breaking construction. Note that the parameters θi
in the model (7) take on values θ⋆j with probability πj . Each value θ⋆j defines a
state of the system, and zi specifies to which state yi belongs. The variable zi is
also known as state variable.
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Posterior inference of the DPMM is typically carried out using either the
representation of the DP as a Pólya urn (Blackwell & MacQueen, 1973), or
the Blocked Gibbs Sampler (BGS) (Ishwaran & James, 2001), which is based
on approximations of the DP by K finite mixture models. The BGS avoids
marginalizing over the prior, thus allowing the prior to be directly involved in
the Gibbs sampling scheme.

2.3. Hierarchical Dirichlet Process Mixture Model

Let (X ,A) be a measurable space. The hierarchical Dirichlet process (HDP) is
a distribution over a set of random probability measures Gj over (X ,A). Each Gj

is conditionally independent given G0, with distribution Gj ∼ DP(α,G0), where
G0 is a global probability measure distributed as DP(γ,H0) (Teh et al., 2006).
Similar to the DP, the HDP can be used as the prior distribution in a mixture
model. Specifically, it splits the data into a number of groups and inside each
group the data are subdivided into subgroups; however, clusters characteristics
(parameters) are shared among groups. By defining G0 as a drawn from a DP, the
HDP encourages groups to have atoms in common. The model is an immediate
extension of the DPMM known as Hierarchical Dirichlet Process Mixture Model
(HDPMM).

The HDPMM can be represented by the conditional distributions:

G0|γ,H0 ∼ DP(γ,H0) Gj |α,G0 ∼ DP(α,G0) (9a)
θji|Gj ∼ Gj yji|θji ∼ F (θji), (9b)

where j indexes the group and i indexes the observations within a group; θji
specifies the mixture component associated with the observation yji. The HDPMM
assumes that the observations are exchangeable within each group and also at the
group level. Given Gj , the θji are conditionally independent. The baseline H0

provides the prior distribution for the θji, and it can be continuous or discrete.
Given that G0 is itself a draw from a DP, it has a stick-breaking representation

as in (6). Then, the HDP in equation (9a) can be written as

G0 =

∞∑
k=1

λkδθk Gj =

∞∑
k=1

πjkδθk , (10)

where θk is the parameter of the kth mixture component; πj = {πjk}∞k=1 and
λ = {λk}∞k=1 are interpreted as probability measures on the positive integers.
Since G0 is the baseline distribution for each Gj , and G0 places non-zero mass on
the atoms θ = {θk}∞k=1, the atoms of Gj also come from θ. Then, the submodel j
shares the same set of mixture components, but has different mixing proportions
πj . Given that Gj is independent given G0, the weights πj are conditionally
independent given λ, and πj ∼ DP(α,λ) (see Teh et al., 2006 for further details).
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Let zji be mode variables, such that θji = θzji , zji ∈ {1, 2, . . .}, the HDPMM
can be represented by the following conditional distributions:

G0 =

∞∑
k=1

λkδθk λ|γ ∼ GEM(γ)

Gj =

∞∑
k=1

πjkδθk πj |α,λ ∼ DP(α,λ)

θk|H0 ∼ H0 (11)
zji|πj ∼ πj

yji|zji, {θk}∞k=1 ∼ F (θzji).

Placing a DP prior on G0 creates a shared and unbounded support for each of
the group-specific distributions Gj . Posterior inference in the HDPMM is based in
the Pólya urn representation of the DP; Gibbs sampling algorithms are proposed
in Teh et al. (2006) and Wang & Wang (2013).

2.4. Sticky Hierarchical Dirichlet Process Mixture Model

One limitation of the HDP prior is that does not differentiate self-transitions
from moves between different modes; as a result, the sampling algorithms often
create redundant modes and rapidly switch among them. To address this issue,
Fox et al. (2011b) propose to augment the HDP prior to include a parameter for
self-transition bias, and place a separate prior on this parameter. Specifically, they
propose to sample transition distributions πj as follows:

λ|γ ∼ GEM(γ)

πj |α,γ, κ ∼ DP
(
α+ κ,

αλ+ κδj
α+ κ

)
, (12)

where δj is a measure concentrated at j. In equation (12), an amount κ > 0,
named sticky parameter, is added to the jth component of αλ, which increases
the expected probability of self-transition by an amount proportional to κ. That
is, the expected set of weights for the transition distribution πj is given by:

E[πjk|λ, κ] =
α

α+ κ
λk +

κ

α+ κ
δ(j, k), (13)

where δ(j, k) is the Kronecker delta, such that E[πjj |λ, κ] = α
α+κλk + κ

α+κ .
The Sticky Hierarchical Dirichlet Process Mixture Model (sticky HDPMM) is

represented by model (11), replacing the prior on πj by (12).
Two inference algorithms for the sticky HDP are presented in Fox et al. (2011b):

(1) sampling via direct assignments, which marginalizes over the infinite set of
mode-specific transition distributions πk and parameters θk, and sequentially
sampling zt given all other mode assignments z−t = {z1, . . . , zt−1, zt+1, . . . , zT },
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the observations y1:T , and the global transition distribution λ. Each zt is sampled
as if the associated yt was the last observation. That is, the sampler initializes
with z1 given y1, λ, and the hyperparameters; it then samples z2 given z1, y1:2,
λ, and the hyperparameters, and so on. When a sample z1:T is completed, λ and
the hyperparameters are updated. This method is a Pólya urn Gibbs sampler that
uses a one-coordinate-at-a-time updates for the parameters, similar to the update
proposed by Escobar (1988), MacEachern (1994) and Escobar & West (1995) for
DPMM, which suffers from slow mixing (see Ishwaran & James, 2001 to review
several limitations of Pólya urn Gibbs sampling); (2) Blocked sampling of mode
sequence, which jointly samples the mode sequence z1:T given the observations
y1:T , the transition probabilities πk, and the parameters θk. The sampler is based
on a weak limit approximation to the DP prior on λ (Ishwaran & Zarepour, 2000;
2002a; 2002b), which induces a K-finite Dirichlet prior on πk, where K is the
chosen truncation level. The sampling of z1:T is carried out by a forward-backward
procedure that first sample z1 from p(z1|y1:T ,π,θ), then conditioned on this value,
sample z2 from p(z2|z1, y1:T ,π,θ), and so on (see Fox et al., 2011b for more details).

3. The Model

We start with a hierarchical model of the class of LDSs, which relates an
observation yt

2 to a latent state vector βt through the same dynamic structure
and assumptions of model (1):

βt = Aβt−1 + et (14a)
yt = Xtβt + wt, (14b)

where the evolution error et ∼ N(0,Σt) and the measurement error wt ∼ N(0, rt)
satisfy the same independence assumptions of model (4). The evolution matrix At

and the design matrix Xt are assumed known.
The LDS is useful in describing data with dynamic parameters; however,

numerous of such data are structurally more complex, such that they can not be
represented by a single model, but can be well-modeled as switching between a set
of dynamic models. That is to say, the dynamic system is divided into segments,
each one modeled by a potentially different LDS; separated segments could be
described by a single model, but adjacent segments are modeled by different LDSs.
These switches are specified by a discrete latent variable that identifies the state or
mode of the system in each segment. When the latent mode variable is a discrete-
time Markov process, the model is referred to as Switching Linear Dynamical
System (SLDS).

2The general normal LDS is defined for a vector observation.
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In a SLDS, each mode is associated with a linear dynamic process hierarchically
as follows:

zt|zt−1 ∼ πzt−1 (15a)

βt = A(zt)βt−1 + e
(zt)
t (15b)

yt = Xtβt + w
(zt)
t , (15c)

where zt is a Markovian switching variable that specifies which LDS is used, i.e.,
the mode. Given zt, the evolution error e(zt)

t |zt ∼ N(0,Σ(zt)) and the observational
error w

(zt)
t |zt ∼ N(0, r(zt)) exhibit the same independence assumptions as in

the LDS. The LDS and the switching process are related by the dependence
of {A(zt),Σ(zt), r(zt)} on zt. The output at each time, yt, is determined by
stochastically choosing the continuous latent variable, βt, using the mode of the
discrete latent variable as a switch, and then emitting an observation from the
corresponding conditional output distribution.

Similar to the inference problems in the LDS, the inference in the SLDS
involves computing the posterior distribution of βt and zt, given the data
y1:T . Nevertheless, both exact filtered and smoothed inference in the SLDS are
numerically intractable, scaling exponentially with time (see Barber, 2012). Fox
et al. (2011a) propose an extension of the HDPMM of Teh et al. (2006) (described
in Section 2.3) for the SLDS, assuming the latent states are mode-specific, while the
measurement mechanism is not. That is, the βt depends on zt through both the
evolution matrix A(zt) and the evolution error e(zt), while the yt is independent on
zt, such that wt ∼ N(0, r). Additionally, the measurement matrix Xt is a shared
matrix, such that for all t, Xt = C, where C contains fixed intercepts. To carry
out inference, the SLDS of Fox et al. (2011a) is divided into two main components:
the HDPMM and the LDS. The former is approximated by:

G0 =

K∑
k=1

λkδθk λ|γ ∼ Dir(γ/K, . . . , γ/K)

Gj =

K∑
k=1

πjkδθk πj |α,λ, κ ∼ Dir (αλ1, . . . , αλj + κ, . . . , αλK)

θk|H0 ∼ H0 (16)
zt|zt−1 ∼ πzt−1

βt = A(zt)βt−1 + e(zt)
t ,

where θk = {A(k),Σ(k)} and K is the truncation level. As K → ∞, this model
converges in distribution to the HDPMM (when κ = 0) described in Section 2.3,
and to its sticky extension of Section 2.4 (see Ishwaran & Zarepour, 2002b; Teh
et al., 2006). The LDS component uses the state equation as a latent process
instead of being observable. Specifically,

βt = A(zt)βt−1 + e
(zt)
t

yt = Cβt + wt. (17)
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Briefly, the algorithm iterates as follows:

1. Sample (β1:T |z1:T , θk, r).

2. Sample (z1:T |β1:T ,πk, θk).

3. Sample (πk|z1:T ,β1:T , y1:T ).

4. Sample (θk, r|z1:T ,β1:T , y1:T ).

The SDLS model is a way of modeling discontinuous changes over time in
an evolving time series. Those changes are expressed by different values of the
state vectors βt. The discontinuity is due to the DP prior that induces clustering
at the θk values. In this paper, we propose an extension of the SLDS of Fox
et al. (2011a) to allow for dependence of yt on zt through both the design matrix
Xt, by introducing a indicator variable, and the observational error wt. The
model is based on the hypothesis that an explanatory variable can be relevant to a
time segment or mode, but may not be significant to others, due to, for example,
unanticipated event or an event that is not present through the complete time
series. And by making the measurement noise be mode-specific, we allow the
variance to change across modes.

The proposed hierarchical model is summarized in equations (18a)-(18d). The
model has a level for the indicator variable γj , which includes or omits the jth
predictor in the observation equation as described below.

zt|zt−1 ∼ πzt−1
(18a)

γ
(zt)
j ∼ Be(1, pj) (18b)

βt = A(zt)βt−1 + e
(zt)
t (18c)

yt = X
(zt)

′

t βt + w
(zt)
t , (18d)

where X
(zt)

′

t = {1γ(zt)
1 xt1 · · · γ(zt)

p xtp} and γ
(k)
j = {0, 1}, such that if γ(k)

j = 1, then
the jth predictor xtj is included in the model, and it is excluded if γ(k)

j = 0. All of
the other parameters are defined in equation (15a)-(15c). This model, which we
named VS-SLDS, allows us to describe changing relationships between variables
as time evolves, an useful issue in practical applications due to the dynamic nature
of the time series.

To carry out inference, we proceed by dividing the model in two main
components, similar to Fox et al. (2011a). We sample the probability measures
{λ,πk} and the hyperparameters {α, κ, γ} involved in model (16) as in Fox et al.
(2011b). As proposed by Fox et al. (2011a), we consider the Automatic Relevance
Determination (ARD) prior on the dynamic matrix A(k), an inverse-Wishart (IW)
on Σ(k), and an inverse-Gamma (IG) on the measurement noise r(k). We block-
sample the mode and state sequences by using a variant of the forward-backward
algorithm. Blocked samplers (Ishwaran & James, 2001) are based on truncated
approximations of the DP. They are straightforward to code and tend to have
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better mixing rate than marginal samplers. However, we block-sample the mode
sequence by working on a marginal model. Specifically, we use the predictive
distribution of the observations, which involves integration over the state sequence.
By using standard results about the multivariate Gaussian distribution (see Section
2.1), we know the predictive distribution is Gaussian, so that it suffices to compute
the moments by directly applying laws of the iterated expectation:

E(yt+1|y1:t,θ) = E(E(yt+1|βt+1,θ)|y1:t) = X
(zt+1)′
t+1 E(βt+1|y1:t,θ)

= X
(zt+1)′
t+1 ft,t+1 (19a)

Var(yt+1|y1:t,θ) = Var(E(yt+1|βt+1,θ)|y1:t) + E(Var(yt+1|βt+1,θ)|y1:t)

= X
(zt+1)′
t+1 Var(βt+1|y1:t,θ)X

(zt+1)
t+1 + E(r(zt+1)|y1:t)

= X
(zt+1)′
t+1 Ft,t+1X

(zt+1)
t+1 + r(zt+1) (19b)

where

ft,t+1 = A(zt+1)ff
t

Ft,t+1 = Σ(zt+1) +A(zt+1)F f
t A

(zt+1)′.

Note that (19a)-(19b) are analogous to the moments of the one-step-ahead
predictive distribution of the Section 2.1.1. The terms ff

t , F
f
t correspond to the

mean vector and the variance matrix, respectively, of the filtering distribution
p(βt|y1:t,θ) (see Appendix Appendix A for details).

The Kalman filter allows to compute the predictive and filtering distributions
recursively, for t = 1, 2, . . . , T :

1. Compute the one-step-head predictive distribution for βt given {y1:t−1,θ},
based on the filtering distribution p(βt−1|y1:t−1,θ).

2. Compute the one-step-head predictive distribution p(yt|y1:t−1,θ).

3. Compute the filtering distribution p(βt|y1:t,θ) with p(βt|y1:t−1,θ) as the
prior distribution and the likelihood p(yt|βt, ).

We propose using the predictive distribution p(yt|y1:t−1,θ) directly in inference
about the mode sequence. As described in Section 2.4, we use a truncated
approximation of the sticky HDP, and then sample forwards in time each zt from

p(zt|zt−1, y1:T ,π,θ) ∝ p(zt|πzt−1
)p(yt|y1:t−1, zt,θ)mt+1,t(zt),

where,

mt,t−1(zt−1) ∝

{∑
zt
p(zt|πzt−1

)p(yt|y1:t−1, zt,θ)mt+1,t(zt) t ≤ T

1 t = T + 1.

Conditioned on the mode sequence z1:T , the observations y1:T , and the dynamic
parameters θ, we recursively sample each βt as in Fox et al. (2011a) from

p(βt|βt−1, z1:T , y1:T ,θ) ∝ p(βt|βt−1, zt,θ)p(yt|βt, zt,θ)p(yt+1:T |βt, zt+1:T ,θ).
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The zt and βt conditional distributions are based on the conditional independence
assumption of the model. Explicit details on deriving these conditional
distributions are given in appendices Appendix B.1 and Appendix B.2. Another
sample scheme based on marginalizing the state sequence is proposed by Fox et al.
(2011a). This sampler is implemented by sequentially sampling z1:T . Although this
sampler is computationally intensive, periodically interleaving it with the blocked
sampler improve mixing.

Finally, we sample γ
(k)
j using the variable selection method of Kuo & Mallick

(1998). Before describing the sampling scheme, we have to make the following
precisions:

1. γ
(k)
j is determined by the measurements whose mode is k.

2. The index k specifies that the inclusion of the jth predictor is mode-specific.

3. γ
(k)
j , j = 1, . . . , p, are chosen independently, each with Bernoulli prior

distribution, Be(pj), where p + 1 is the size of state vector, and pj is the
probability to include the jth predictor.

4. We let the intercept term be always included, such that there are 2p possible
submodels, and γ

(k)
0 = 1 for all k.

Additionally, we use the following notation:

ϑ
(zt)
tj = βtjγ

(zt)
j , j = 0, 1, . . . , p; t = 1, . . . , T,

ϑ
(zt)
t = (ϑ

(zt)
t0 , ϑ

(zt)
t1 , . . . , ϑ

(zt)
tp )′ = (βt0, βt1γ

(zt)
1 , . . . , βtpγ

(zt)
p )′.

The equation (18d) can then be written as:

yt = X ′
tϑ

(zt)
t + w

(zt)
t .

Based on Kuo & Mallick (1998), we sample variates γ
(k)
j , j = 1, . . . , p, in

random order from Be(p̃
(k)
j ), with p̃

(k)
j = c

(k)
j /(c

(k)
j + d

(k)
j ), where

c
(k)
j = p

(k)
j exp

{
− 1

2r(k)

∑
t : zt=k

(yt −X ′
tϑ

(zt)∗
t )2

}
, (20a)

d
(k)
j = (1− p

(k)
j ) exp

{
− 1

2r(k)

∑
t : zt=k

(yt −X ′
tϑ

(zt)∗∗
t )2

}
, (20b)

where ϑ
(zt)∗
t is ϑ

(zt)
t with γ

(zt)
j = 1, and ϑ

(zt)∗∗
t is ϑ

(zt)
t with γ

(zt)
j = 0. When

{t : zt = k} = {∅}, the update is given by the prior distribution. The sampling
algorithm uses the vector Xt to update γ

(k)
j , and it uses X

(zt)
t to update βt.

Given an initial set {π,λ,θ, z1:T } and after initialization of the parameters, our
Algorithm alternates through the following steps:
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1. For each t = {T, . . . , 1}, sequentially sample zt as in Fox et al. (2011a).

2. Starting with F b
T = 1

r(zT )X
(zT )′
T X

(zT )
T and f b

T = 1
r(zT )X

(zT )′
T yT , for each

t = {T − 1, . . . , 1}, compute F b
t , f

b
t as follows:

F b
t =

1

r(zt)
X

(zt)′
t X

(zt)
t + F−1

t+1,t

f b
t =

1

r(zt)
X

(zt)′
t yt + F−1

t+1,tft+1,t,

where

F−1
t,t−1 = A(zt)

′
Σ(zt)

−1

A(zt) −A(zt)
′
Σ(zt)

−1

(Σ(zt)
−1

+ F b
t )

−1Σ(zt)
−1

A(zt)

ft,t−1 = Ft,t−1(Σ
(zt)

−1

+ F b
t )

−1A(zt)
′
Σ(zt)

−1

f b
t .

3. For each t = {1, . . . , T}, sample βt:

βt ∼ N
(
µβt

,Σβt

)
Σβt

=
(
Σ(zt)

−1

+ F b
t

)−1

µβt
= Σβt

(
Σ(zt)

−1

A(zt)βt−1 + f b
t

)
.

4. Starting with with ff
0 = 0 and F f

0 = I, for each t = 1, . . . , T compute:

ft−1,t = A(zt)ff
t−1

Ft−1,t = Σ(zt) +A(zt)F f
t−1A

(zt)′

ff
t = F f

t

( 1

rzt
X

(zt)′
t yt + F−1

t−1,tft−1,t

)
F f
t =

( 1

r(zt)
X

(zt)′
t X

(zt)
t + F−1

t−1,t

)−1

.

5. Backward. For each t in {T, . . . , 1} and each k in {1, . . . ,K}, compute
mt,t−1(k) starting with mT+1,T (k) = 1 for all k:

mt,t−1(k) =

K∑
j=1

πkjN(ã
(j)
t , Q̃

(j)
t )mt+1,t(j),

where

ã
(j)
t = X

(j)′
t ft−1,t

Q̃
(j)
t = X

(j)′
t Ft−1,tX

(j)
t + r(j).

6. Forward. For each t in {1, . . . , T}:

a) Compute for each k in {1, . . . ,K}:

fk(yt) = N(ã
(k)
t , Q̃

(k)
t )mt+1,t(k).

Revista Colombiana de Estadística - Theoretical Statistics 45 (2022) 231–263



246 Dayna P. Saldaña-Zepeda, Ciro Velasco-Cruz & Víctor H. Torres-Preciado

b) Sample zt from:

zt ∼
K∑

k=1

πzt−1(k)fk(yt)δ(zt, k).

7. Update {λ, π} as in Fox et al. (2011b), and θ as in Fox et al. (2011a).

8. For each k in {1, . . . ,K} and j = 1, . . . , p, if {t : zt = k} = {∅}, then sample
γ
(k)
j from B(pj), with pj the prior belief about the jth predictor. Else,

sample γ
(k)
j from B(p̃

(k)
j ), with p

(k)
j = c

(k)
j /(c

(k)
j + d

(k)
j ), where c

(k)
j and d

(k)
j

are computed as in equation (20a) and (20b), respectively.

4. Simulation

In this section we analyze three synthetic datasets to highlight the versatility
of the model proposed in the previous section. Each dataset is used to evaluate
one of three scenarios. For the first and second scenarios, T = 500 data were
generated from a two-mode SLDS with the following parameters:

1. The evolution matrices A(k), k = 1, 2, were set as

A(1) =

0.85 0 0

0 1 0

0 0 1

 ; A(2) =

0.85 0 0

0 0.65 0

0 0 0.65


2. The covariance matrices Σ(k), k = 1, 2, were drawn from the prior

distribution IW(n0, S
(k)
0 ), where n0 = p+ 2, S(1)

0 = Ip, and S
(2)
0 = 2Ip.

3. The measurement noise precision 1/r(k) was drawn from a Gam(ar, br) prior,
with ar = 1 (shape parameter) and br = 2 (scale parameter).

4. The first scenario has the same number of observations per mode; each
mode is observed in 2 non-adjacent subintervals of the same size. The mode
sequence z1:T was set as

zt =

{
1 for t ∈ [1, 125] and t ∈ [251, 375]

2 for t ∈ [126, 250] and t ∈ [376, 500].

The second scenario has different number of observations per mode. The
mode sequence z1:T was drawn randomly from the prior distribution with
large probability of self-transition. That is to say, zt ∼ πzt−1

, t = 1, . . . , T ,
where πj = [πj1 πj2], j = 1, 2, with πjj = 0.95.

5. The vectors of indicator variables were set as

γ(1) = (1, 0, 1)

γ(2) = (1, 1, 0),
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where the first element of each vector is associated with the intercept, and
the other elements are associated with explanatory variables.

For the third scenario, T = 600 data were generated from a three-mode SLDS
with the following parameters:

1. The evolution matrices A(k), k = 1, 2, 3, were set as

A(1) =

[
0.85 0

0 1I3

]
; A(2) =

[
0.85 0

0 0.65I3

]
; A(3) =

[
0.85 0

0 0.85I3

]
;

2. The covariance matrices Σ(k), k = 1, 2, were drawn from the prior
distribution IW(n0, S

(k)
0 ), where n0 = p+2, S(1)

0 = S
(3)
0 = 2Ip, and S

(2)
0 = Ip.

3. The measurement noise precision 1/r(k) was drawn from a Gam(ar, br) prior,
with ar = 1 (shape parameter) and br = 2 (scale parameter).

4. Each mode has the same number of observations, and is observed in one
subinterval on the whole series.

5. Each γ
(k)
j , k = 1, 2, 3; j = 1, 2, 3, was drawn from a Be(1, p), with

p ∼ U(0, 1). The resulting vectors of indicator variables are

γ(1) = (1, 0, 1, 1)

γ(2) = (1, 0, 0, 1)

γ(3) = (1, 1, 1, 0)

The measurements for the three scenarios were simulated as follows:

1. The design matrix is build such that, for each t = 1, . . . , T and j = 1, . . . , p:

xtj = υxt−1,j + htj , htj ∼ N(0, 1)

x0j = 0 ∀j,

where υ = 1 for scenario 1, and υ = 0.9 for scenarios 2 and 3. This choice
of predictors as correlated adjacent points is due to the dynamic nature of
the time series exhibiting dependence or time correlations between adjacent
points in time.

2. For each t = 1, . . . , T , βt and yt satisfy the following set of equations:

βt = A(zt)βt−1 + et, et ∼ N(0,Σ(zt)),β0 = 0

yt =

p∑
j=0

βtjγ
(zt)
j xtj + wt, wt ∼ N(0, r(zt)), xt0 = 1.
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We employ the algorithm described in the previous section to investigate the
accuracy of the model (18a)-(18d) in its ability to infer the simulated segmentation
and model fitting. We use a truncation level of K = 30, an ARD prior distribution
on A(k), IW prior on Σ(k), and IG prior on r(k), with the following initial values
for the hyperparameters for each k = 1, . . . ,K:

1. We place independent N(0, 1/α
(k)
j Ip) priors on the columns of the matrix

A(k), where α
(k)
j ∼ Gam(1, 0.01), such that E(α(k)

j ) = 100.

2. We place a IW(p+ 2, 0.1Ip) prior on Σ(k).

3. We place a Gam(1, 0.1) prior on precision 1/r(k), such that E(1/r(k)) = 10.

The vectors of indicator variables are initialized with the full model γ(k)
j = 1 for all

j, and an equal probability of transition, 1/K, to each mode. The hyperparameters
{α, κ, γ} were set as in Fox et al. (2011b). All results are based on 15,000 iterations,
obtained after a burn-in period of 5,000 samples.

4.1. Scenario 1

In Figure 1(a)-1(b) we show the slope components of the state vector fitted
by our model (dash lines) along with the simulated points (continuous lines). As
expected, the estimated sequences closely approximate the simulated ones in the
intervals in which the explanatory variable is significant. This fact is clearer in
Figure 1(c)-1(d), in which we show the simulated slope components (continuous
lines) along with the corresponding posterior components of ϑ(zt)

t (dash lines). We
see that the VS-SLDS is able to correctly identify the significant variables.

We display in Figure 2(a) the simulated data sequence (continuous line) and
the fitted curve (dash line). Although it is well-known that a model that overfits
the data typically leads to poor prediction performance, currently we are mainly
interested in inferring about the number of dynamical modes and verifying if it
correctly identifies the membership of the observations in each mode. However, we
have to face the issue of summarizing the results from the posterior distribution
over modes. The so-called label switching problem, used by Redner & Walker
(1984) to describe the invariance of the likelihood under relabelling of the mixture
components, makes it difficult to estimate quantities of interest by their posterior
mean (see Stephens, 2000 for more details about this issue). In order to show the
capability of the model to identify the correct grouping of observations, we display
the posterior probability of a mode switching for each t in Figure 2(b). We can
see that the higher probabilities match with sequence changes. Additionally, we
display the number of modes to which at least 30% of observations are assigned
(Figure 3); we can see that the observations are mainly clustered into 2 groups.
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Figure 1: Scenario 1. (a) βt1, β̂t1; (b) βt2, β̂t2; (c) βt1, ϑ̂(zt)
t1 ; (d) βt2, ϑ̂(zt)

t2 .
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Figure 2: Scenario 1. (a) Simulated and fitted sequences (ŷt = X ′
tϑ̂t, t = 1, . . . , 500);

(b) mode sequence and estimated probability of a change point for each t.
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Figure 3: Scenario 1. Significant modes.

4.2. Scenario 2

The plots of Figure 4 show that the model is able to identify the relevant
variables on each mode even if the mode has few data. We include the simulated
mode sequence (dotted black line) in Figures 4(c) and 4(d) in order to provide
a better understanding. We can see that the model has a good performance to
identify the correct explanatory variables for each mode even with lower temporal
mode persistence (Figures 4(c)-4(d)). This result is due to that the higher
probabilities of a change point match with the true changes in the mode sequence
(Figure 5(a)). Consequently, the data are mainly clustered into two modes (Figure
6), and the fitted values are accurate (Figure 5(b)).

4.3. Scenario 3

The results depicted in Figure 7 confirm good performance of the VS-SLDS
to identify the significant variables on data generated from a model with three
modes. The simulated slope components of the state vector are compared with
the fitted ones (left panel), and with the corresponding fitted components ϑ̂

(zt)
tj

(right panel), which is zero in the interval where the predictor is simulated not
significant.

We display in Figure 8 the number of modes to which at least 25% of
observations are assigned. Around 82% of iterations the data are clustered into
three groups. We show in Figure 9(b) the estimated probability of a change point
for each t. We notice that two change points with high probability divide the
sequence into three sections. In real data without a priori knowledge of the number
of modes, the probability of a change point does not give complete information
by itself. By looking at the number of modes to which a significant number of
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observations are assigned, the estimated sequence of z1:T , and the change point
probabilities, we are able to infer the number of modes and where the mode changes
originate. In Figure 9(b) we include the mode sequence of the iteration 161003

to have an idea about the estimated sequence. We display in Figure 9(a) the
simulated and fitted data sequences.
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Figure 4: Scenario 2. (a) βt1, β̂t1; (b) βt2, β̂t2; (c) βt1, ϑ̂(zt)
t1 ; (d) βt2, ϑ̂(zt)

t2 .

3We randomly chosen a mode sequence after of the iteration 5000.
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Figure 5: Scenario 2. (a) Simulated and fitted sequences (ŷt = X ′
tϑ̂t, t = 1, . . . , 500);

(b) mode sequences and estimated probability of a change point for each t.
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Figure 6: Scenario 2. Significant modes.
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Figure 7: Scenario 3. Simulated slope components of the state vector vs. fitted sequence
(left panel) and components ϑ̂

(zt)
tj (right panel), j = 1, 2, 3.
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5. Applications

The proposed method is on the real dataset of meteorological series of
Barranquilla, Colombia, reported by the weather station Ernesto Cortissoz.
The dataset can be downloaded from the National Centers for Environmental
Information (2021). We have selected five series in all, including relative humidity,
atmospheric pressure, visibility, wind speed and temperature. All the data are
monthly average value ranging from January 1995 to December 2020, resulting in
295 months totally (there are 17 missing values).

In the first instance, we consider the temperature as observations yt and all of
the rest of variables in the design matrix Xt. In other example we consider the
visibility as observations yt and all of the rest of variables in the design matrix
Xt. We assumed the hierarchical model in equations (18a)-(18d) to describe
the dynamical behavior of both observations series by employing the algorithm
described in Section 3. We use a truncation level of K = 30 and the following
settings for each k = 1, . . . ,K: independent N(0, 1/α(k)Ip) priors on the columns
of the matrix A(k), where α(k) ∼ Gam(1, 0.01); a IW(p + 2, 0.1Ip) prior on Σ(k);
a Gam(1, 0.1) prior on precision 1/r(k). The vectors of indicator variables are
initialized with the full model γ

(k)
j = 1 for all j, and an equal probability of

transition, 1/K, to each mode. The hyperparameters {α, κ, γ} were set as in Fox
et al. (2011b). All results are based on 30,000 iterations, obtained after a burn-in
period of 5,000 samples.
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Figure 8: Scenario 3. Significant modes.
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Figure 9: Scenario 3. (a) Simulated and fitted sequences (ŷt = X ′
tϑ̂t, t = 1, . . . , 500);

(b) mode sequences and the estimated probability of a change point for each
t.

5.1. Temperature Data

Temperature data are frequently related to meteorological parameters such as
relative humidity, precipitation, wind speed, insolation, atmospheric pressure and
so on (Han et al., 2015). In this instance, the design matrix is build such that
x1 = humidity , x2 = atmospheric pressure, x3 = visibility and x4 = wind speed.
The Figures 10(b) and 10(c) show that the model identifies two relevant variables
for the temperature data: atmospheric pressure and visibility, which is described
by the posterior of ϑtj , t = 1, . . . , 295, j = 2, 3. On the other hand, in Figures
10(a) and 10(d) the fitted sequence of ϑtj , t = 1, . . . , 295, j = 1, 4, is almost zero,
which means that the variable j is absent.
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Figure 10: Fitted sequences of the state vectors βj and ϑj = βjγj for the temperature
data.
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5.2. Visibility Data

The study of visibility (the horizontal distance an object can be seen and
identified) is of interest in a variety of fields including aeronautics (Watson et al.,
2009), environment (Du et al., 2013; Tsai et al., 2007) and human health ((Huang
et al., 2009; Thach et al., 2010; Majewski et al., 2015). Visibility is typically
related to meteorological parameters and air pollution. In this instance, the
design matrix is build such that x1 = humidity, x2 = atmospheric pressure,
x3 = temperature and x4 = wind speed. The Figure 11 show that the model
identifies the atmospheric pressure as the only relevant variable for the visibility
data, which is described by the posterior of ϑt2, t = 1, . . . , 295. In Figures 11(a),
11(c) and 11(d) the fitted sequence of ϑtj , t = 1, . . . , 295, j = 1, 3, 4, shows that
the variable j is absent. Influence of the atmospheric pressure on the visibility has
been shown in the literature (see for example Tsai et al. 2007 and Majewski et al.
2011).
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Figure 11: Fitted sequences of the state vectors βj and ϑj = βjγj for the visibility
data.

6. Discussion

In this paper, we propose an extension of the SLDS. We make the measurement
noise and mean mode-specific. The extension uses the predictive distribution of
the observations, which involves integration over the latent states, and a method to
select relevant explanatory variables among modes. By allowing the measurement
noise be mode-specific we obtained a flexible model for complex time series where
the stationarity assumption is not valid. Additionally, by selecting a mode-
specific set of explanatory variables allows us to describe changing relationships
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between variables as time evolves. Our proposed model is a flexible dynamic
regression model for learning about the number of modes, that is to say, it
accurately helps finding out the appropriate number of distributions in a mixture of
distributions. Since the modes divide the time series into non-overlapping groups,
the proposed method helps finding the location of the modes, and within each
mode, it identifies the significant explanatory variables and accurately estimate
the regression coefficients. We judge the capability of the proposed model by
examining three synthetic datasets. We note that the model performs well even
with lower temporal mode persistence. We present two applications using a real
dataset of meteorological data from Barranquilla, Colombia. The results are
consistent with the literature. We conclude by addressing two avenues for further
research: (1) to extend the model to include a penalty term to prevent overfitting,
as proposed by West & Harrison (1997) for LDS, and as a consequence of it, (2)
study the model’s ability for predictions.[
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Appendix A. Filtering Distribution p(βt|y1:T ,θ)

p(βt|y1:t,θ) ∝ p(yt|βt,θ)p(βt|y1:t−1,θ)
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Appendix B. Forward-Backward Procedure for Sam-
pling the Mode and State Sequences

We provide the derivations of the expressions to jointly sample the dynamic
modes z1:T as well as the state sequence β1:T . The expressions apply for both
the SLDS (15a)-(15c) and VS-SLDS (18a)-(18d), we simply replace Xt with X

(zt)
t .

For compactness, we omit the dependency of dynamic parameters θ and design
matrix Xt on zt.

Appendix B.1. Sampling z1:T

The joint distribution of z1:T , given the observation sequence, can be
decomposed as follows:

p(z1:T |y1:T ,π,θ) =p(zT |zT−1, y1:T ,π,θ) p(zT−1|zT−2, y1:T ,π,θ)

· · · p(z2|z1, y1:T ,π,θ) p(z1|y1:T ,π,θ).

We can use a forward-backward procedure for jointly sample the mode sequence,
as in Section 2.1. We first sample z1 from p(z1|y1:T ,π,θ), then we sample z2
conditioning on z1 from p(z2|z1, y1:T ,π,θ), and so on. For each t, the conditional
distribution is given by:

p(zt|zt−1, y1:T ,π,θ)

∝ p(zt|πzt−1)p(y1|zt,π,θ)p(y2|y1, zt,π,θ)p(y3|y1:2, zt,π,θ)
· · · p(yt|y1:t−1, zt,π,θ)p(yt+1|y1:t, zt,π,θ) · · · p(yT |y1:T−1, zt,π,θ)

∝ p(zt|πzt−1
)

t∏
i=1

p(yi|y1:i−1, zt, zi,π,θ) ·
T∏

j=t+1

p(yj |y1:j−1, zt, zj ,π,θ)

∝ p(y1, . . . , yt, zt|z1:t−1,π,θ) · p(yt+1, . . . , yT |zt, zt+1:T ,π,θ).

If t = 1, then:

p(z1|y1:T ,π,θ) ∝ p(y1, z1|π,θ) · p(y2, . . . , yT |z1, z2:T ,π,θ)

∝ p(z1)p(y1|z1,π,θ) ·
∑
z2

p(z2|πz1)p(y2|y1, z2,π,θ)p(y3:T |z3:T ,π,θ)

∝ p(z1)p(y1|z1,θ)m2,1(z1).

When t = 2:

p(z2|z1, y1:T ,π,θ)
∝ p(y1, y2, z2|z1,π,θ) · p(y3, . . . , yT |z2, z3:T ,π,θ)
∝ p(z2|πz1)p(y1|z2,π,θ)p(y2|y1, z2,π,θ)

·
∑
z3

p(z3|πz2)p(y3|y1:2, z3,π,θ)p(y4:T |z4:T ,π,θ)

∝ p(z2|πz1)p(y2|y1, z2,θ)m3,2(z2).

Revista Colombiana de Estadística - Theoretical Statistics 45 (2022) 231–263



262 Dayna P. Saldaña-Zepeda, Ciro Velasco-Cruz & Víctor H. Torres-Preciado

In general, the conditional distribution of zt, for all t, can be decomposed as
follows:

p(zt|zt−1, y1:T ,π,θ) ∝ p(zt|πzt−1
)p(yt|y1:t−1, zt,θ)mt+1,t(zt),

where,

mt,t−1(zt−1) ∝

{∑
zt
p(zt|πzt−1

)p(yt|y1:t−1, zt,θ)mt+1,t(zt) t ≤ T

1 t = T + 1.

The term mt,t−1(zt−1) is known as backward message passed from zt to zt−1 in
the machine learning literature (see e.g. Bishop, 2006).

Appendix B.2. Sampling βt

A similar forward-backward procedure can be used to sample the latent state
sequence β1:T . We begin by considering

mt,t−1(βt−1) ∝
∫
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It is easy to see that mt,t−1(βt−1) ∝ N(ft,t−1, Ft,t−1), where

ft,t−1 = Ft,t−1(Σ
−1 + F b

t )
−1A′Σ−1f b

t

Ft,t−1 = [A′Σ−1A−A′Σ−1(Σ−1 + F b
t )

−1Σ−1A]−1.

The conditional distribution of βt is then computed as:

p(βt|βt−1, z1:T , y1:T ,θ) ∝ p(βt|βt−1, zt,θ)p(yt|βt, zt,θ)mt+1,t(βt)
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.

We first compute the messages mt+1,t(βt) backward in time, by initializing it with
F b
T = 1

rX
′
TXT , f

b
T = 1

rX
′
T yT , and we then sample the state sequence β1:T forwards

in time.
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