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Abstract

In the inferential process of Principal Component Analysis (PCA), one
of the main challenges for researchers is establishing the correct number
of components to represent the sample. For that purpose, heuristic and
statistical strategies have been proposed. One statistical approach consists
in testing the hypothesis of the equality of the smallest eigenvalues in
the covariance or correlation matrix using a Likelihood-Ratio Test (LRT)
that follows a χ2 limit distribution. Different correction factors have been
proposed to improve the approximation of the sampling distribution of the
statistic. We use simulation to study the significance level and power of
the test under the use of these different factors and analyze the sample
size required for an adequate approximation. The results indicate that for
covariance matrix, the factor proposed by Bartlett offers the best balance
between the objectives of low probability of Type I Error and high Power.
If the correlation matrix is used, the factors W ∗

B and cχ2
d are the most

recommended. Empirically, we can observe that most factors require sample
sizes 10 or 20 times the number of variables if covariance or correlation
matrices, respectively, are implemented.
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Resumen

Dentro del proceso inferencial del Análisis de Componentes Principales
(PCA) uno de los interrogantes principales de los investigadores es sobre el
número correcto de componentes para representar la muestra. Para este fin se
han propuesto estrategias heurísticas y estadísticas. Un enfoque estadístico
consiste en probar la hipótesis sobre la igualdad de los valores propios más
pequeños de la matriz de covarianza o correlación a través de una prueba de
razón de verosimilitud (LRT) que sigue una distribución límite χ2. Diferentes
factores de corrección han sido propuestos para mejorar la aproximación de la
distribución muestral del estadístico. En este trabajo utilizamos simulación
para estudiar el nivel de significancia y la potencia de la prueba bajo el uso
de estos diferentes factores, así como una revisión del tamaño de muestra
requerido para una adecuada aproximación. Los resultados para la matriz
de covarianza indican que el factor propuesto por Bartlett ofrece el mejor
equilibrio entre los objetivos de baja probabilidad de Error Tipo I y alta
potencia. En caso de la matriz de correlación, los factores W ∗

B y cχ2
d son los

más recomendados. Empíricamente se observa que la mayoría de los factores
requieren tamaños de muestra 10 y 20 veces mayores al número de variables
en caso de la matriz de covarianza o de correlación respectivamente.

Palabras clave: Análisis de componentes principales; Comparación de
potencias; Distribución Chi-cuadrado; Prueba de esfericidad; Prueba de
razón de verosimilitud.

1. Introduction

Principal Component Analysis (PCA) is a multivariate technique used to
reduce data dimensionality. During the inference process of PCA for a sample
composed of p original variables, questions arise about the adequate k number
of components to represent the data and the adequate sample size to produce
the inference (Krazanowski, 1988). For instance, Chakraborty et al. (2020) used
the Bartlett’s test of sphericity in a correlation matrix for the construction of
socioeconomic index based on PCA in the field of environmental justice. Similary
Şahan et al. (2018) used the same test for the validation of a psychological
questionnaire. PCA can also be used as an intermediate step in a prediction
task. For example, Maté (2011) used PCA to generate combined forecasts by
identifying the underlying structure within a set of prediction methods.

In the inferential context, principal components are no longer a strictly
mathematical procedure to become a statistical method. The objective of
obtaining a smaller dimension to represent the data is affected by the sample
error. This sample error can lead to misrepresentation of the data. Such as the
non-inclusion of components with relevant information (underestimation), or the
inclusion of noise components (overestimation), causing a distortion in the analysis
(Peres-Neto et al., 2005). As Björklund (2019) pointed out, when a study requires
to extract a number of components, the differentiation between the eigenvalues
must be previously tested before proceeding with the analysis since the patterns
found may correspond to a simple sampling error of the correlations.
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Several strategies have been adopted to define the k number of principal
components that should be retained. In this regard, multiple works can be
found comparing different methods with respect to their ability to identify the
true number of non-trivial components (Ferré, 1995; Jackson, 1993; Peres-Neto,
Jackson & Somers, 2005). For example, Jackson (1993) compared heuristic
and statistical methodologies used to define the number of components. He
compared Kaiser-Guttman, Bootstrapped Kaiser-Guttman, Scree Plot, Modified
Scree Plot, Percentage of explained variation, and those based on hypothesis
testing. Regarding the statistical approach, Jackson (1993) concluded that
Bartletts test of sphericity, based on the hypothesis of the equality of the remaining
p−k eigenvalues in the covariance matrix, correctly identified true dimensionality
in many data sets. But it showed inconsistent results with matrices having a
low observation-to-variable ratio (less than 3:1 ratio). Similarly, Peres-Neto et al.
(2005) made a comparison of methods and proposed a two-stage selection strategy,
using Bartlett’s sphericity test to identify the significance of the first component.
Later, different rules can be applied to validate the other components. However,
it should be noted that in most of these works comparing methods or applying
Bartlett’s sphericity test, only one version of the test correction factors is used.
Although, multiple correction factors have been proposed.

This study focuses on the analysis of a methodology based on a hypothesis
testing process also known as isotropic test or equality of variance test of the
(p−k) last principal components. This is an important method in literature, which
has even inspired graphic methods such as the scree-plot (Ferré, 1995). In this
statistical method, the null hypothesis of interest is defined as H0k : λk+1 = λk+2 =
. . . = λp = λ, against Hak : some of them are different. Where λ represents the
unknown common value and λi is the population eigenvalue of the i−th component
obtained from the covariance or correlation matrix. The test tries to find evidence
that the smallest p − k last population eigenvalues are equal and could even be
considered to be simple measurements of noise (Schott, 1988). Then, accepting
H0k means that, if more than k components are included, all the p components
should be included because each one of the remaining components contains the
same amount of information. H0k is tested in a sequential manner starting with
k = 0, and increasing k until the hypothesis is accepted (Mardia, Kent & Bibby,
1979; Krazanowski, 1988). To evaluate the hypothesis, it is used a Likelihood-Ratio
Test (LRT), which, under H0k, presents an χ2 asymptotic distribution (Mardia,
Kent & Bibby, 1979; Krazanowski, 1988). Alternatively, Schott (2012) proposed a
new limiting distribution based on Saddlepoint approximations when Chi-square
distribution is not adequate, but that scenario was not considered in this study.

To improve the approximation of the sampling distribution of the statistic to
its distribution limit, several correction factors have been proposed; said factors
change if the PCA is conducted based on the covariance matrix or the correlation
matrix. For that reason, this work uses a simulation to compare different correction
factors that have been proposed for the Likelihood-Ratio statistic when the test of
equality of eigenvalues is used in PCA, whether with a covariance or correlation
matrix. The comparison considers the number of variables, the number of
components, and the sample size in order to recommend to PCA users which

Revista Colombiana de Estadística - Applied Statistics 44 (2021) 43–64



46 Eduard Gañan-Cardenas & Juan Carlos Correa-Morales

factor to employ and under what conditions it would be adequate to do so. We
also study the power of the test under the different factors, in order to obtain a
complete view on the performance of the method.

This article is organized as follows: First, we present the test and different
correction factors proposed for the covariance and correlation matrices. Afterward,
we describe the simulation scheme and illustrate the process. Finally, we report
the results of the simulation and draw some conclusions. In the conclusions,
we highlight a series of recommendations regarding the test statistics to be
used in PCA.

2. Tests of Equality of Eigenvalues

2.1. Test of Equality of Eigenvalues for the Covariance
Matrix

Let x1, . . . ,xn be a random sample of an n size taken from a normal p−variate
distribution with unknown population vector of µ means and Σ population
covariance matrix. Let λ1 ≥ · · · ≥ λp > 0 be the population eigenvalues of Σ
and l1 > l2 > · · · > lp be the sample eigenvalues of sample covariance matrix S,
with an n sample size. The test statistic to evaluate the hypothesis of equality of
the smallest p − k eigenvalues H0k : λk+1 = λk+2 = · · · = λp = λ, based on the
sample covariance matrix, is given by (Mardia, Kent & Bibby, 1979; Krazanowski,
1988):

W = n′

{
(p− k) log

[
p∑

i=k+1

li
(p− k)

]
−

p∑
i=k+1

log(li)

}
(1)

under true H0k, W has approximately a χ2 distribution with 1
2 (p−k+2)(p−k−1)

degrees of freedom, where n′ is replaced by n or n − 1, which are represented as
Wn and Wn−1, respectively.

To achieve a better χ2 approximation, n′ is replaced with the next correction
factor (Mardia, Kent & Bibby, 1979; Krazanowski, 1988), which is known as
Bartletts Test of Sphericity:

FC2Bartlett = n− 2p+ 11

6
(2)

Lawley (1956) claims that a better χ2 approximation is achieved if n′ is replaced
by the correction factor:

FC3Lawley = n− k − 1

6

(
2q + 1 +

2

q

)
+ λ2

k∑
i=1

1

(λi − λ)2
(3)

where, for practical purposes, λi is replaced by li, q = p − k, and λ is estimated
as λ̂ =

∑p
i=k+1 li

p−k .
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In Jackson (1993), n′ is replaced by

FC4Jackson = n− k (4)

Likewise, in Ferré (1995), correction factor FC2Bartlett is written as:

FC5Ferre = n− k − 1− 2p+ 11

6
(5)

To test the hypothesis that all the variables are independent and have an equal
variance (Jolliffe, 2002), that is, H0k with k = 0, correction factor FC3Lawley

becomes (Bartlett, 1954; Lawley, 1956):

n− 1

6

(
2p+ 1 +

2

p

)
(6)

Not rejecting hypothesis H00 would mean that it is not possible to reduce the
dimensionality of the data at all.

2.2. Test of Equality of Eigenvalues for the Correlation
Matrix

When PCA is based on variables that have been standardized, the hypothesis
that all the eigenvalues in the population correlation matrix P are the same is equal
to the hypothesis that P = I (Mardia et al., 1979), that is, proving that H0k with
k = 0, which means that all the variables are independent without implying that
the variances are the same (Jolliffe, 2002). To support this hypothesis, Mardia,
Kent & Bibby (1979) introduced the following LRT in terms of sample correlation
matrix R:

LR = −n · log |R| (7)

which, under H00, has a χ2 distribution with 1
2p(p − 1) degrees of freedom. Box

(1949) suggested a new correction factor to improve the χ2 approximation, which
is presented in Mardia, Kent & Bibby (1979), replacing n by:

FC1LR = n− 2p+ 11

6
(8)

To conduct the same test, Bartlett (1954) present the following correction
factor:

FC2LR = n− 2p+ 5

6
(9)

Now, we are also interested in testing the hypothesis that the smallest p − k
eigenvalues of P are equal, where 0 < k < p − 1. Mardia, Kent & Bibby (1979)
examine the following statistic suggested by Bartlett (1951):
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W ∗ = n′

{
(p− k) log

[
p∑

i=k+1

li
(p− k)

]
−

p∑
i=k+1

log(li)

}
, (10)

where n′ is replaced by n − 1 or n (Lawley, 1956; Mardia, Kent & Bibby, 1979;
Schott, 1988), which is represented as W ∗

n and W ∗
n−1, respectively. However, this

statistic is not χ2 asymptotically distributed, although it could be approximated
if λ1, λ2, . . . , λk are big in relation to λ with a maximum number of degrees of
freedom equal to 1

2 (p − k + 2)(p − k − 1) (Bartlett, 1954; Lawley, 1956; Mardia
et al., 1979).

To improve the approximation to the limit distribution, we calculate the W ∗
B

statistic, where n′ is replaced by the following correction factor B (Bartlett, 1954;
Jackson, 1991):

B = n− 1

6
(2p+ 5)− 2

3
k (11)

Lawley (1956) improved the approximation presented by Bartlett (1954) under
the same assumption of normality and calculating the effective number of degrees
of freedom in a general case for the W ∗ statistic, taking n′ = n:

µW∗ =
1

2
(q − 1)(q + 2)

− 1

q

2(q − 1)λ

p∑
i=1

c2ii − q

p∑
i=1

p∑
j=1

(c2ijr
2
ij) +

p∑
i=1

p∑
j=1

(ciicjjr
2
ij)

 (12)

where cij are the elements of C = I−Q1Q
′

1 (Q1 can be estimated as the matrix of
the eigenvectors of the corresponding l1, l2, . . . , lk of R); rij denotes the correlation
between xi and xj ; q = p − k, and λ is estimated as λ̂. The W ∗ statistic, based
on the degrees of freedom µW∗ , is denoted as χ2

µW∗ .
Schott (1988) extended the study by Lawley (1956), which shows the way to

obtain a new statistic of the form cχ2
d proposed by Anderson (1963). From this,

we obtain that c = 1
2σ

2
W∗/µW∗ and d = 2µ2

W∗/σ2
W∗ , where µW∗ and σ2

W∗ are the
mean and variance of W ∗. That is, µW∗ is the result obtained by Lawley (1956)
(see Equation 12), and the variance of W ∗ is:

σ2
W∗ = (q − 1)(q + 2)− 8λ

(
q − 1

q

) p∑
i=1

c2ii + 4

p∑
i=1

p∑
j=1

r2ij

(
c2ij −

1

q
ciicjj

)

+ 8λ2

p∑
i=1

p∑
j=1

fijij − 8λ

p∑
i=1

p∑
j=1

p∑
α=1

fiαjαr
2
ij + 2

p∑
i=1

p∑
j=1

p∑
α=1

p∑
β=1

fiβjαr
2
ijr

2
αβ , (13)

where fiβjα = c2iβc
2
jα − 2q−1c2jαciicββ + q−2ciicjjcααcββ , q = p− k, cij , and rij are

obtained as mentioned for Equation 12, and λ is estimated as λ̂.
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3. Simulation Scheme

3.1. Simulation Scheme for the Covariance Matrix

The correction factors will be evaluated based on their distribution
approximation to the corresponding limit distribution by comparing the
level of nominal significance and the significance estimated for the specific
statistic. For significance level simulation we use p = 5, 10, 15, 30 and n =
10, 30, 50, 100, 200, 500. We take n ≥ p + 1 so that the sample eigenvalues of
S are positive. We performed 100,000 simulations under the following sample
generation process.

n-sized samples are taken from a distribution Np (0,Σ). By considering
the covariance matrix Σ = diag (λ1, . . . , λk, λ, . . . , λ) a diagonal matrix of the
population eigenvalues, generality is not lost because the eigenvalues of S are the
same as those of G′

SG for any orthogonal matrix G. Moreover, the W statistic
is invariant to multiplications of S by a positive scalar. Therefore, under H0k, we
can assume Σ = diag (λ1/λ, . . . , λk/λ, 1, . . . , 1), which, for simplicity, is written as
(Waternaux, 1984; Schott, 2006; Fujikoshi et al., 2007; Watanabe et al., 2008):

Σ = diag (λ1, . . . , λk, 1, . . . , 1) (14)

The configuration of the population eigenvalues can be defined as follows (Schott,
2006; Fujikoshi et al., 2007; Watanabe et al., 2008):

i. If k = 0, then Σ = Ip. That is, all the components explain the same amount of
variability.

ii. If k = 2, then λ = 1 and λi =
ai(p−k)

1−
∑k

j=1 aj
with a1 = 0.56, a2 = 0.24. Thus, the

first two components explain 80% of the total variation.

iii. If k = 3, then λ = 1 and λi =
ai(p−k)

1−
∑k

j=1 aj

with a1 = 0.45, a2 = 0.3 a3 = 0.15. In this case, the first three components
explain 90% of the total variation.

The nominal significance level was set at α = 0.05. As the estimated
significance level approaches the nominal value, the sampling distribution of the
statistic is considered to achieve a better approximation to its limit distribution
(Waternaux, 1984; Schott, 2006; Fujikoshi et al., 2007; Watanabe et al., 2008).
To calculate the estimated significance level, we first define the quantile of the
limit distribution as WC = χ2

1
2 (p−k+2)(p−k−1),1−α

with α = 0.05. Afterward, we
generate a sample based on a pre-established population configuration, calculate
the test statistic, and check if W ≥ WC ; that is, under a defined k, we check if
H0k is rejected being true. The same process is completed as many times as the
number of simulations above; as a result, we obtain the number of times that the
null hypothesis is rejected being true. That quantity is divided by the number of
conducted simulations; thus, we obtain the percentage of times that Type I errors
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were produced, which is defined as the estimated significance level. The simulation
process was programmed in R Core Team (2019).

3.2. Simulation Scheme for the Correlation Matrix

The simulation scheme considered in this study is similar to that proposed
above for the covariance matrix. The difference lies in the fact that we should
define a covariance matrix where the variances of all the variables equal 1, and
that λ1+ · · ·+λp = p. For that purpose, we implemented the study by Arteaga &
Ferrer (2010), in which they proposed an algorithm to obtain a covariance matrix
with the eigenvalues and the specified variances. Likewise, the configurations of
the population eigenvalues used in the covariance matrix are redefined so that they
meet the previous constraint regarding the sum of the eigenvalues, but maintaining
the same percentages of explained variation.

3.3. Simulation Scheme for Power of the Test

For the study of the power of the test, the following alternatives were designed
with deviations from the null hypothesis given by δ = 0.5, 1, 1.5 (Waternaux, 1984).

i. To prove k = 0, H00 : λ1 = λ2 = . . . = λp = 1, when really λ1 = 1 + δ

ii. To prove k = 2, H02 : λ3 = λ4 = . . . = λp = 1, when really λ3 = 1 + δ

The scenarios of k = 0 and k = 2 were evaluated with p = 10 and p = 30
and sample sizes n = 30, 50, 100, 200, 500. For the k = 2 scenario, we use the
configuration of variance explained with a1 = 0.56, a2 = 0.24, for λ1 and λ2

respectively. This scheme leaves an unexplained 20% variance in the remaining
components, seeking to make the identification of the different component more
demanding. For scenario k = 0, similar to the power test performed by Knapp
& Swoyer (1967), the eigenvalues of λ1 = 1.5, 2, 2.5 represent overall correlation
coefficients of 0.06, 0.11 and 0.17 (Friedman, 1981). To evaluate the factors of
the correlation matrix, the eigenvalues were adjusted to the condition that all
variances are equal to 1 and that λ1 + · · · + λp = p. The analysis focuses on the
factors that show the best performance in significance analysis. The simulation
process consisted in counting the number of times that H0k is rejected considering
that it is not true. To do this we define the critical value WC with α = 0.05.

3.4. Illustration

Figure 1 illustrates the sampling distribution W under different sample sizes,
p = 5, k = 0, and replacing n

′
= n, denoted as Wn. The solid line represents

the limit distribution χ2
1
2 (p−k+2)(p−k−1)

, and the dark area denotes the estimated
significance level, which is marked as α̂. Figure 1 shows that, as the sample size n
increases, the sampling distribution of the Wn statistic moves closer to the limit
distribution. This would lead us to conclude, in this case, that a sample size of
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n = 100 would produce a good approximation of the statistic distribution and,
therefore, an estimated significance level very close to the nominal value α = 0.05.

In general, correction factors are considered to generate a good approximation
or performance if the estimated significance level is close to the nominal level; and,
among them, we select the factor that presents the lowest estimation. The purpose
is to obtain the factor that produces the lowest error level.
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Figure 1: Comparison between the sampling distribution of the Wn statistic and its
limit distribution for the case of p = 5 and k = 0. The dark area represented
by α̂ indicates the estimated significance level, that is, the proportion of real
rejection obtained with the Wn statistic under a scenario of p, n and k.

4. Simulation Results

4.1. Simulation Results in the Case of the Covariance Matrix

Tables 2, 3 and Figure 2 present the results of the simulation with the
covariance matrix. To test k = 0 in Table 2, the factors are sorted from best
to worst according to the quality of the approximation: FC5Ferre, FC2Bartlett,
FC3Lawley, Wn−1, and Wn. Additionally, factors FC5Ferre and FC2Bartlett
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present a good approximation even with sample sizes close to the number of
variables. However, when p = 30, factor FC2Bartlett requires n = 100, while
n = 50 is enough for FC5Ferre. In turn, factors Wn−1 and Wn exhibit a poor
approximation, which quickly worsens as the number of variables increases.

Based on Table 3, to test k = 2 the order of the factors is FC5Ferre,
FC2Bartlett, FC3Lawley, FC4Jackson, Wn−1, and Wn. Factors FC2Bartlett and
FC3Lawley exhibit a very similar behavior, although FC2Bartlett still presents
significance levels slightly lower than those of FC3Lawley. Factors Wn−1 and
Wn still show the worst approximation to their limit distribution, as can be seen
in Figure 2(d). When k = 3 the order is FC5Ferre, FC3Lawley, FC2Bartlett,
FC4Jackson, Wn−1, and Wn. Factors FC2Bartlett and FC3Lawley still present
a similar behavior; however, in this case, factor FC3Lawley produces slightly
lower significance levels. Factors FC4Jackson, Wn−1, and Wn still show the worst
approximation.

In order to get a closer view of the performance of the correction factors with
respect to the sample size, we estimate the significance levels for each change in
the sample size, in units, from n = p + 1 to n = 1000. Figure 2 presents the
behaviors we obtained. All the charts enable us to conclude that, with sample
sizes very close to the number of variables, most statistics exhibit a poor behavior,
except for FC5Ferre, which presented an acceptable behavior with a low number
of variables (p = 5, 10). Furthermore, as p increases, the performance of all the
statistics is reduced, which results in the need for larger sample sizes to obtain
good approximations. Factors Wn, Wn−1, and FC4Jackson are most affected by
such increase, while FC5Ferre continues presenting the lowest estimations.

4.2. Simulation Results in the Case of the Correlation Matrix

If the PCA is carried out using the correlation matrix and k = 0 is tested,
Table 1 shows that the correction factor with the best approximation, even with
small sample sizes, is FC1LR. That factor, for example, for p = 10, requires a
sample size of n = 30 to obtain an estimated significance level close to the nominal
one. FC2LR presented the second best performance, although it requires sample
sizes that are sometimes much larger than those of FC1LR to achieve a good
approximation. Finally, the LR statistic, simply multiplied by n, presents a poor
approximation.

Tables 1 and 4 present the results of the simulation with the correlation matrix.
The quantity n − 2p+11

6 of factor FC1LR is less than n − 2p+5
6 of factor FC2LR.

This enables factor FC1LR to produce more contraction of the basic form of the
statistic, that is, of log |R|. As a consequence, the sampling distribution of FC2LR

will be more displaced to the left and, therefore, it will exhibit lower estimated
significance levels.
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Table 1: Comparison of the significance levels estimated based on the statistics of
the correlation matrix; LR, FC1LR and FC2LR; nominal significance level
α = 0.05 and k = 0.

p
n = 10 n = 30 n = 50 n = 100 n = 200 n = 500

5 LR 0.3129 0.0939 0.0737 0.0614 0.0534 0.0492
FC1LR 0.0622 0.0521 0.0496 0.0501 0.0484 0.0467
FC2LR 0.1187 0.0624 0.0560 0.0534 0.0497 0.0476

10 LR 0.2637 0.1403 0.0886 0.0650 0.0583
FC1LR 0.0512 0.0532 0.0521 0.0492 0.0529
FC2LR 0.0776 0.0653 0.0586 0.0525 0.0536

15 LR 0.6737 0.3158 0.1380 0.0840 0.0617
FC1LR 0.0773 0.0584 0.0504 0.0518 0.0493
FC2LR 0.1340 0.0799 0.0602 0.0560 0.0506

30 LR 0.9971 0.6420 0.2340 0.1002
FC1LR 0.1493 0.0640 0.0506 0.0494
FC2LR 0.2497 0.0856 0.0607 0.0521

Table 2: Comparison of the significance levels estimated based on the statistics of
the covariance matrix; Wn, Wn−1, FC2Bartlett, FC3Lawley, and FC5Ferre;
nominal significance level α = 0.05 and k = 0.

p
n = 10 n = 30 n = 50 n = 100 n = 200 n = 500

5 Wn 0.2947 0.0931 0.0733 0.0604 0.0549 0.0523
Wn−1 0.2021 0.0771 0.0649 0.0567 0.0532 0.0515
FC2Bartlett 0.0362 0.0437 0.0467 0.0481 0.0491 0.0498
FC3Lawley 0.1287 0.0634 0.0580 0.0534 0.0518 0.0509
FC5Ferre 0.0098 0.0333 0.0398 0.0447 0.0476 0.0492

10 Wn 0.2471 0.1382 0.0843 0.0652 0.0561
Wn−1 0.1928 0.1147 0.0761 0.0617 0.0546
FC2Bartlett 0.0413 0.0438 0.0474 0.0484 0.0491
FC3Lawley 0.0848 0.0667 0.0575 0.0535 0.0512
FC5Ferre 0.0241 0.0325 0.0416 0.0453 0.0477

15 Wn 0.6479 0.3027 0.1342 0.0834 0.0619
Wn−1 0.5502 0.2491 0.1172 0.0775 0.0599
FC2Bartlett 0.0515 0.0442 0.0466 0.0479 0.0492
FC3Lawley 0.1417 0.0816 0.0617 0.0553 0.0522
FC5Ferre 0.0239 0.0293 0.0383 0.0436 0.0474

30 Wn 0.9967 0.6161 0.2366 0.0990
Wn−1 0.9926 0.5573 0.2131 0.0944
FC2Bartlett 0.1058 0.0495 0.0487 0.0489
FC3Lawley 0.2751 0.0870 0.0638 0.0545
FC5Ferre 0.0496 0.0344 0.0410 0.0457
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In a test to reduce p variables to k = 2 components based on the correlation
matrix (see Table 4), correction factor B, that is, W ∗

B , produces the best
approximation with estimated significance levels, in most cases, much lower than
those obtained with other statistics or correction factors. However, the increase
in the number of variables has a negative effect on the performance of such factor,
which generates situations that require sample sizes above 500 for 30 variables.
Nevertheless, such factor offers the best approximation. Factors W ∗

n and W ∗
n−1

present the same behavior: poor performance. Statistics χ2
µW∗ and cχ2

d exhibited
a similar behavior, although the latter with slightly lower significance levels and
a better behavior than factor W ∗

B in cases of large sample sizes. Statistics χ2
µW∗

and cχ2
d did not exhibit a good performance with small sample sizes.

(a) p = 5

6 100 200 300 400 500 600 700 800 900 1000

0.00

0.05

0.10

0.15

0.20

0.25

Wn

Wn−1

FC2Bartlett

FC3Lawley

FC4Jackson

FC5Ferre

Sample size (n)

S
ig

n
if
ic

a
n
c
e
 l
e
ve

l

(b) p = 10
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(c) p = 15
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(d) p = 30
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Figure 2: Detailed comparison by sample size n of correction factors for the covariance
matrix: Wn, Wn−1, FC2Bartlett, FC3Lawley, FC4Jackson, and FC5Ferre,
with α = 0.05 y k = 2.
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Table 5: Power comparison for statistics based on the covariance matrix; for H00 and
H02 testing when really λ1 = (1 + δ) and λ3 = (1 + δ) respectively, with
α = 0.05

1 + δ n = 30 n = 50 n = 100 n = 200 n = 500

p = 10, k = 0 1.5 FC2Bartlett 0.0650 0.0923 0.1796 0.4074 0.9095
FC3Lawley 0.1238 0.1303 0.2053 0.4244 0.9118
FC5Ferre 0.0409 0.0731 0.1646 0.3973 0.9079

2.0 FC2Bartlett 0.1418 0.2725 0.6298 0.9611 1.0000
FC3Lawley 0.2316 0.3356 0.6608 0.9643 1.0000
FC5Ferre 0.0973 0.2349 0.6101 0.9591 1.0000

2.5 FC2Bartlett 0.2753 0.5441 0.9282 0.9997 1.0000
FC3Lawley 0.3932 0.6110 0.9380 0.9997 1.0000
FC5Ferre 0.2088 0.4992 0.9221 0.9997 1.0000

p = 30, k = 0 1.5 FC2Bartlett 0.1287 0.0834 0.1353 0.4017
FC3Lawley 0.3110 0.1381 0.1668 0.4217
FC5Ferre 0.0619 0.0596 0.1178 0.3900

2.0 FC2Bartlett 0.1860 0.2141 0.5202 0.9872
FC3Lawley 0.4022 0.3037 0.5697 0.9886
FC5Ferre 0.0977 0.1661 0.4897 0.9862

2.5 FC2Bartlett 0.2768 0.4541 0.9004 1.0000
FC3Lawley 0.5143 0.5615 0.9195 1.0000
FC5Ferre 0.1620 0.3901 0.8865 1.0000

p = 10, k = 2 1.5 FC2Bartlett 0.1075 0.1301 0.2335 0.4916 0.9485
FC3Lawley 0.1186 0.1364 0.2377 0.4941 0.9487
FC5Ferre 0.0335 0.0758 0.1931 0.4663 0.9460

2.0 FC2Bartlett 0.2170 0.3614 0.7202 0.9805 1.0000
FC3Lawley 0.2336 0.3727 0.7244 0.9808 1.0000
FC5Ferre 0.0879 0.2585 0.6763 0.9774 1.0000

2.5 FC2Bartlett 0.3782 0.6409 0.9579 1.0000 1.0000
FC3Lawley 0.3990 0.6505 0.9589 1.0000 1.0000
FC5Ferre 0.1983 0.5350 0.9463 0.9999 1.0000

p = 30, k = 2 1.5 FC2Bartlett 0.2439 0.1258 0.1678 0.4515
FC3Lawley 0.2831 0.1367 0.1741 0.4553
FC5Ferre 0.0304 0.0501 0.1149 0.4177

2.0 FC2Bartlett 0.3277 0.2893 0.5897 0.9926
FC3Lawley 0.3712 0.3065 0.5989 0.9928
FC5Ferre 0.0539 0.1464 0.5034 0.9906

2.5 FC2Bartlett 0.4430 0.5580 0.9318 1.0000
FC3Lawley 0.4890 0.5775 0.9348 1.0000
FC5Ferre 0.0993 0.3718 0.9012 1.0000
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Table 6: Power comparison for statistics based on the correlation matrix; for H00 and
H02 testing when really λ1 = (1 + δ) and λ3 = (1 + δ) respectively, with
α = 0.05.

1 + δ n = 30 n = 50 n = 100 n = 200 n = 500

p = 10, k = 0 1.5 FC1LR 0.1304 0.2080 0.4474 0.8360 0.9998
FC2LR 0.1786 0.2402 0.4660 0.8416 0.9998

2.0 FC1LR 0.3354 0.6126 0.9532 0.9998 1.0000
FC2LR 0.4036 0.6468 0.9566 0.9998 1.0000

2.5 FC1LR 0.6224 0.8996 0.9992 1.0000 1.0000
FC2LR 0.6834 0.9136 0.9992 1.0000 1.0000

p = 30, k = 0 1.5 FC1LR 0.1858 0.1204 0.1952 0.5764
FC2LR 0.3042 0.1544 0.2198 0.5886

2.0 FC1LR 0.2806 0.3152 0.6872 0.9984
FC2LR 0.4186 0.3710 0.7126 0.9986

2.5 FC1LR 0.4264 0.6264 0.9702 1.0000
FC2LR 0.5654 0.6822 0.9738 1.0000

p = 10, k = 2 1.5 W ∗
B 0.1203 0.1477 0.2638 0.5266 0.9486

χ2
µW∗ 0.3471 0.2613 0.3111 0.5336 0.9431

cχ2
d 0.3341 0.2496 0.3039 0.5213 0.9336

2.0 W ∗
B 0.2233 0.3815 0.7381 0.9845 1.0000

χ2
µW∗ 0.4994 0.5354 0.7782 0.9851 1.0000

cχ2
d 0.4798 0.5258 0.7655 0.9850 1.0000

2.5 W ∗
B 0.3945 0.6602 0.9671 0.9999 1.0000

χ2
µW∗ 0.6796 0.7812 0.9753 0.9999 1.0000

cχ2
d 0.6658 0.7710 0.9754 0.9999 1.0000

p = 30, k = 2 1.5 W ∗
B 0.2517 0.1570 0.2079 0.5126

χ2
µW∗ 0.9980 0.7265 0.4522 0.5790

cχ2
d 0.9976 0.7107 0.4325 0.5588

2.0 W ∗
B 0.3310 0.3138 0.6361 0.9920

χ2
µW∗ 0.9989 0.8722 0.8450 0.9942

cχ2
d 0.9986 0.8614 0.8335 0.9937

2.5 W ∗
B 0.4480 0.5862 0.9400 1.0000

χ2
µW∗ 0.9994 0.9630 0.9868 1.0000

cχ2
d 0.9992 0.9598 0.9850 1.0000
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(a) p = 10, λ3 = 1.5
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(b) p = 10, λ3 = 2
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(c) p = 30, λ3 = 1.5
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(d) p = 30, λ3 = 2
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Figure 3: Detailed power performance by sample size of the covariance matrix correction
factors for H02 testing when λ3 = (1 + δ) with α = 0.05.

With the increase in components to k = 3 it is observed a deterioration of the
approximation of factors W ∗

n , W ∗
n−1, and W ∗

B . In turn, statistics χ2
µW∗ and cχ2

d

still present estimated significance levels similar to those obtained with k = 2.

4.3. Simulation Results for the Power of the Test

Regarded to the power of the test, for both scenarios k=0 and k=2, when the
covariance matrix is used, the factor FC3Lawley presents the best performance,
followed by FC2Bartlett, and with the lowest performance we have FC5Ferre

(Table 5). This means that FC3Lawley generates the lowest probability of Type II
Error in all scenarios. As expected, the power of the test for the different factors
increases with the sample size, although the growth rate is subject to the level of
deviation of the eigenvalue from the common value λ (Figure 3). In general terms
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the three factors show a better performance in the k=2 scenario than in the k=0
scenario. For cases with a low differentiation (δ = 0.5) and p = 10, sample sizes
of 500 are needed to obtain powers close to 1. Although when p = 30, in the
same sample size of n = 500, probabilities of Type II Error greater than 50% are
obtained and only for sample sizes greater than 1000, powers greater than 90%
are observed (see Figure 3).

In order to evaluate the relevance of the first component using the correlation
matrix, the best result is obtained with FC2LR (Table 6). This performance
difference from FC1LR is most noticeable when p = 30. To evaluate k = 2,
the best result is obtained with χ2

µW∗ followed by cχ2
d with a close performance.

However, both factors show less consistent behavior when n is close to p. Unlike
W ∗

B which shows a more consistent growth of power with increasing sample size.
On the other hand, similar to the covariance matrix, estimated powers of around
0.51 and 0.57 are observed when there is a low differentiation of the component,
with the number of variables of p = 30 and a sample size of n = 500.

It can also be seen that in general the powers obtained with the correlation
matrix are greater than those obtained with the covariance matrix under the same
scenarios. For example, for k = 0, p = 10, 1 + δ = 1.5 and n = 500 we get power
estimates of 0.99, while in the covariance matrix the values are between 0.90 and
0.91. Similarly, for k = 2 and p = 30, 1+δ = 1.5 and n = 500, the estimated power
ranges from 0.51 to 0.57 for the three factors in the correlation matrix, while in
the covariance matrix, the values are between 0.41 and 0.45.

5. Conclusions

Assuming a normal distribution, we compared the different correction factors
that have been proposed for likelihood-ratio statistic to define the number of
components that should be retained in PCA. Using the test of the hypothesis
of equality of the smallest last (p− k) eigenvalues of the covariance or correlation
matrix. For large sample sizes in the order of n = 500, most factors generated
estimated significance levels close to their nominal counterparts and even below
them, which indicates that a good approximation was achieved.

In order to conduct a PCA based on the covariance matrix, factors FC5Ferre

and FC2Bartlett present the best approximation with k = 0, 2, 3, even with sample
sizes close to the number of variables p. With k = 2, factors FC2Bartlett and
FC3Lawley exhibit a very similar behavior, although FC2Bartlett requires larger
sample sizes to obtain good approximations. With k = 3, factors FC2Bartlett

and FC3Lawley still present a similar behavior, although FC2Bartlett exhibits
slightly higher levels than FC3Lawley. Furthermore, factors FC4Jackson, Wn−1,
and Wn offer the worst performance, which is even more critical when there is a
big difference between the number of variables and the sample size. This produces
situations in which sample sizes above 800 are required for 30 variables (see Figure
2(d)). Hence, these factors would not be recommended to determine the number of
components. Finally, we can observe that, as the number k of components grows,
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the estimated significance levels of factors FC2Bartlett and FC3Lawley exhibit
patterns of slight increase and decrease, respectively.

In this work we also investigated the power of the test in relation to the use
of the different factors. To do this, we focused on the factors that performed best
at the significance level. As it was mentioned above, the factors FC2Bartlett,
FC3Lawley and FC5Ferre generated the best approximation when using the
covariance matrix. Among these factors, the best power for the different scenarios
was obtained with the factor FC3Lawley, followed by the factor FC2Bartlett and
finally FC5Ferre with the lowest performance. As it can be seen, the single
recommendation of a factor that provides the lowest probability of Type I Error
and in turn the highest power is a difficult problem. However, given the scenarios
that have been studied, we dare to consider the factor FC2Bartlett as the most
balanced between these two objectives. This considering that although it does
not generate the least level of significance or the greatest power, it was close to
the factors with the best performance in each case. The simulation results also
showed that if the component differentiation is low (δ = 0.5), sample sizes of 30 to
50 times the number of variables are required to obtain powers greater than 90%.
If the deviation is higher (δ = 1.5), only 6 or 10 larger sample sizes are required.

If the correlation matrix is used with k = 0, factor FC1LR presents the lowest
estimated significance levels, close to the nominal value, even with small sample
sizes. Moreover, this factor is the most consistent as the number of variables
increases, as opposite to the LR statistic, which becomes more erroneous. Now, in
terms of power, the factor FC2LR presents the best performance in the different
scenarios studied. Knapp & Swoyer (1967) using this same factor pointed out the
sensitivity of the test in identifying the first component. This is consistent with
the current study, where we observed a high power of 0.9136 in a case where the
first component represents a global correlation between all variables of only 0.17
(λ1 = 2.5). This means that the test is highly powerful even in scenarios with low
global correlation.

Regarding the test with k = 2 and k = 3, Table 4 shows that W ∗
B is the

factor with the best approximation and consistency. Nevertheless, factor cχ2
d,

with large sample sizes, presents even better results than W ∗
B . In addition, as

the number of components grows, most statistics are deteriorated. With k = 2,
the statistics χ2

µW∗ and cχ2
d are similar; however, with k = 3, a greater difference

can be observed, and the cχ2
d statistic presents a better approximation. This is

in line with Schott (1988) regarding the superior performance of cχ2
d with respect

to χ2
µW∗ . With respect to power, χ2

µW∗ shows the best results followed by cχ2
d.

The factor W ∗
B only begins to show approximately comparable results after sample

sizes between 10 and 20 times larger than the number of variables. Thus, if large
sample sizes are available, it is recommended to use the factor W ∗

B for k > 0. And
in the case of testing k = 0 it is recommended to use the factor FC2LR

Finally, as p increases, the behavior of all the statistics worsens. Therefore, it
would be interesting to precisely study the n/p ratio under which the sampling
distribution of the statistic would exhibit a good approximation in general. We can
empirically establish that, to achieve adequate approximations, we require sample
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sizes 10 times the number of variables in the case of the covariance matrix, and 20
times if a correlation matrix is used. Which are more demanding sizes than the
minimum of 2p indicated by Schott (2012) for covariance matrix using the factors
FC2Bartlett and FC3Lawley. Although the values proposed in this work are in
consideration of the significance level of all factors, the sample requirements can
be increased up to more than 30 times if a high power is desired.

As indicated at the beginning of this study, Table 7 provides a series of
recommendations about correction factors that should be used according to a
specific configuration, p number of variables, n sample size, and k number of main
components being tested. The objective is to obtain the best performance in the
test. Furthermore, the results are discriminated depending on the type of matrix
(covariance or correlation) on which the PCA was based.

Table 7: Recommended correction factors according to a specific configuration of the p
number of variables, n sample size, and k number of components considering
the type of matrix (covariance or correlation) on which the PCA was based.

Association Matrix k p n Recommended Factor

Covariance

k = 0

5-9
10-50 FC5Ferre, FC2Bartlett

50-200 FC2Bartlett, FC5Ferre

200+ FC2Bartlett, FC5Ferre, FC3Lawley

10-29
30-50 FC2Bartlett, FC5Ferre

50-200 FC2Bartlett, FC5Ferre

200+ FC2Bartlett, FC5Ferre, FC3Lawley

30+ 50-200 FC5Ferre

200+ FC2Bartlett, FC5Ferre, FC3Lawley

k > 0

5-9
10-50 FC2Bartlett, FC5Ferre

50-200 FC2Bartlett, FC5Ferre, FC3Lawley

200+ FC2Bartlett, FC5Ferre, FC3Lawley

10-29
30-50 FC2Bartlett, FC5Ferre, FC3Lawley

50-200 FC2Bartlett, FC5Ferre, FC3Lawley

200+ FC2Bartlett, FC5Ferre, FC3Lawley

30+ 50-200 FC5Ferre

200+ FC2Bartlett, FC5Ferre, FC3Lawley

Correlation

k = 0

5-9
10-50 FC1LR

50-200 FC2LR, FC1LR

200+ FC2LR, FC1LR, LR

10-29
30-50 FC1LR

50-200 FC2LR, FC1LR

200+ FC2LR, FC1LR

30+ 50-200 FC1LR

200+ FC2LR, FC1LR

k > 0

5-9
10-50 W ∗

B

50-200 W ∗
B , cχ2

d

200+ W ∗
B , cχ2

d

10-29
30-50 W ∗

B

50-200 W ∗
B

200+ W ∗
B , cχ2

d, χ2
µW∗

30+ 50-200 W ∗
B

200+ W ∗
B , cχ2

d
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