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Abstract

In this paper, we consider the problem of finding optimal population
designs for within-individual covariance matrices discrimination and
parameter estimation in nonlinear mixed effects models. A compound
optimality criterion is provided, which combines an estimation criterion and
a discrimination criterion. We used the D-optimality criterion for parameter
estimation, which maximizes the determinant of the Fisher information
matrix. For discrimination, we propose a generalization of the T -optimality
criterion for fixed-effects models. Equivalence theorems are provided for
these criteria. We illustrated the application of compound criteria with an
example in a pharmacokinetic experiment.

Key words: Compound criteria; D-optimality; Mixed effects models;
Optimal designs; T -optimality.

Resumen

En este artículo se considera el problema de encontrar diseños óptimos
poblacionales para discriminación entre matrices de covarianza intra-
individual y estimación de parámetros en modelos de efectos mixtos no
lineales. Se propone un criterio compuesto que combina un criterio para
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estimación y otro para discriminación. Para estimación se usa el criterio de
D-optimalidad el cual maximiza el determinante de la matriz de información
de Fisher. Para discriminación se propone una generalización del criterio
de T -optimalidad para modelos de efectos fijos. Para estos criterios
se proporcionan los respectivos teoremas de equivalencia. La aplicación
del criterio compuesto se ilustra con un ejemplo en un experimento de
farmacocinética.

Palabras clave: Criterios compuestos; Diseños óptimos; D-optimalidad;
Modelo de efectos mixtos; T -optimalidad.

1. Introduction

In the application of optimal design, one of the basic assumptions is to assume
that the model used to describe a given phenomenon or process is the correct
model. In practice, however, several candidate models may exist. One way
of selecting the most appropriate model from among several candidates is by
conducting an experiment designed in such a way that the observations obtained
allow us to discriminate between the models in the best possible way. In addition,
it is useful and advantageous that this design works well for estimating selected
model parameters efficiently. This leads to the problem of finding the optimal
experimental conditions by using optimality criteria for both model discrimination
and model parameter estimation simultaneously.

In the case of fixed-effects models, a commonly used parameter estimation
criterion is D-optimality, which maximizes the determinant of the variance-
covariance matrix of estimated parameters (Atkinson, Donev & Tobias 2007).
For models with normal errors, Atkinson & Fedorov (1975) proposed the T-
optimality criterion for discriminating between two competing-response models,
which provides the most powerful F-test for the lack of fit of one model when
the other is assumed to be true. The criterion has been generalized for others
fixed effects models (e.g., Uciński & Bogacka, 2005). López-Fidalgo, Tommasi &
Trandafir (2007) proposed the KL-optimality criterion based on the Kullback-
Leibler distance. This criterion is an extension of the T -optimality criterion
and it can be used when the rival models are nested or not, homoscedastic or
heteroscedastic, and with any error distribution. These criteria have been used
in compound criteria for model discrimination and efficient parameter estimation
(Atkinson, 2008 and Tommasi, 2009).

The nonlinear mixed-effects models are particularly useful in longitudinal
studies, such as population pharmacokinetics experiments, assay analyses, and
studies of growth in which a limited number of samples can be obtained from each
individual. These models distinguish two classes of variation: random variation
among observations within a given individual (within-individual) and random
variation between-individuals (Davidian & Giltinan 1995). This separation of
variability allows the estimation of population characteristics from sparse samples
per individual in a set of subjects without requering individual estimation of
the parameters. The pattern of within-individual variability is not necessarily
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homogeneous, and depending on the application and nature of the data, it is
possible to incorporate heteroscedasticity by specification of a variance function.
In the context of mixed effects models, a population experimental design is defined
by the number of individuals to study and the individual designs to be performed
in the individuals (number of samples and the sampling times) (Mentré, Burtin,
Merlé, Bree, Mallet & Steimer 1995). Assuming that the response function and
the between-individuals variability model are correctly specified, it may be of
interest the problem of designing an experiment in groups of individuals with
sparse samples and different sampling scheme, for discrimination between two
competing within-individual covariance models and parameter estimation.

The most common approach to optimal population design is D-optimal (e.g.,
Mentré, Mallet & Baccar, 1997 and Gagnon & Leonov, 2005, among others).
To discriminate between two models, some authors proposed extensions of T-
optimality criterion (e.g., Waterhouse, Redmann, Duffull & Eccleston, 2005,
Vajjah & Duffull, 2012 and Castañeda & López-Ríos, 2016). Kuczewski,
Bogacka & Uciński (2008) proposed an extension of the T -optimality criterion
for multivariate mixed models and it can be applied directly when all individuals
are observed under the same experimental conditions. In contrast to the above
problems, the model discrimination and parameter-estimation problem have not
been developed in great detail for mixed models. Waterhouse, Redmann, Duffull
& Eccleston (2005) proposed the product D-optimality criterion based on the
product of the determinants of the Fisher-information matrices. For nonlinear
models, however, such designs may be less efficient for discriminating than the
T -optimal designs. Therefore, alternative methods for the dual purposes of model
discrimination and parameter estimation are required.

In this paper, we consider the problem of finding optimal population designs
for discrimination between two within-individual variance models and efficient
parameter estimation. A compound optimality criterion is provided, which
combines an estimation criterion and a discrimination criterion. The parameter
estimation criterion we used is the D-optimality criterion, and for discrimination,
we propose a generalization of the T-optimality criterion for fixed-effects models.
Our approach can be applied to population studies for groups of individuals with
sparse samples and a different sampling scheme, where each sampling scheme is a
point in a finite space of admissible sampling sequences.

This paper is organized as follows: In Section 2, we present the nonlinear mixed-
effects model, optimal design concepts, and D-optimum designs. In Section 3, we
derive a generalization of the T-optimality criterion, and a necessary and sufficient
condition for a design to be optimum is given. In Section 4, we propose a compound
criterion for discrimination and estimation and provide an equivalence theorem.
In Section 5, an illustrative example is presented. Finally, our conclusions and
further work are detailed in Section 6.
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2. Model and Optimal Population Design

2.1. Model

We assume that for each individual i in a sample of N individuals, from
a larger population, the number of different available observations is n. Let
yi = (yi1, . . . , yin)

T be the vector of repeated measurements for the ith individual,
and ti = (ti1, . . . , tin)

T the n × 1 vector of sampling times where tij belongs
to a finite set X . It is assumed that measurements made on different subjects
are independent. To model the relationship between yi and ti, we consider the
nonlinear mixed model (Demidenko 2004):

yi = f(ti,β) +Zibi + εi, i = 1, . . . , N (1)

where β is a p × 1 vector of population parameters, f(ti,β) is an n × 1 vector
function, f(ti,β) = (f(ti1,β), . . . , f(tin,β))

T with f a known nonlinear function
of β, Zi is an n × q full-rank matrix of known constants, bi is a q × 1 vector
of random effects associated with individual i, and εi is the n × 1 within-
individual errors vector. It is assumed that the bi are independent and normally
distributed with mean 0 and variance-covariance matrix D, and that bi and εi are
independent. It is assumed that εi ∼ Nn(0,G(ti,λ)) where G(ti,λ) is an (n×n)
matrix and is called the within-individual covariance matrix, which depends on the
parameter λ(a× 1). The matrix G takes into account the nature of the variation
among observations on a given individual and may be choosen in such a way that
reflects the heterogeneity of variance, the correlation structure, or both. In this
work, we assume uncorrelated observations and heterogeneous variance for the
within-individual variability, so that G(ti,λ) is a diagonal matrix with diagonal
elements Var(εij) = g(tij ,λ), where g is a variance function. We assume that the
individuals share a common within-individual covariance pattern that only varies
between them through the possibly different values of ti, and that this does not
depend on the parameter β. The distinct elements of the parameter vector λ and
the covariance matrix D can be arranged in a single vector γ ∈ Γ ⊂ Rc of variance
parameters of dimension c = a+q(q+1)/2. Under the assumption of independence
and normality of the distributions of bi and εi, the marginal distribution of yi is
n-variate normal with mean vector and variance-covariance matrix given by

E(yi) = f(ti,β)

Cov(yi) = ZiDZT
i +G(ti,λ) (2)

≡ Σ(ti,γ)

In this model, the full parameters vector to be estimated is θ = (βT ,γT )T ∈ Θ ⊂
Rd of dimension d = p+ c.

2.2. Population Designs

Suposse that the sample of N individuals consists of s groups each of size nk
and that the individuals in the same group are observed under the conditions
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vector tk = (tk1, . . . , tkn)
T . The collection of tk and nk, represented by{

t1, . . . ,ts
n1, . . . ,ns

}
= {tk, nk}s1,

s∑
k=1

nk = N (3)

is a population design. The set Xn is the design region, and points tk are the design
points. The collection ζN = {tk, ωk}s1 where ωk = nk

N is the proportion of subjects
allocated to each group is the normalized or exact population design with weights
vector ω = (ω1, . . . , ωs) (Gagnon & Leonov 2005). For fixed values of the total
number of individuals N and the number of sampling times n, the population
optimal design problem consists of finding the design by a choice of distinct
values for the sampling times vector t ∈ Xn and values for the number subjects
assigned to vector t in such a way that the resulting design maximizes some
optimality criteria. The most commonly used optimality criteria usually depend
on the unknown model parameter. One approach is to construct locally optimal
designs, which require specifying a prior parameter estimate, then addressing the
optimization problem for this specific value (Chernoff 1953). In this article, the
approximate design ζ, in which the weights ωk may be any real numbers from the
interval [0, 1], is considered. The set of points tk in the design region Xn, for which
the design ζ has nonzero weights ωk, is the support set of ζ.

2.3. D-optimality Criterion

D-optimality is the most widely used criterion for efficient parameter
estimation, which determines a design ζ maximizing

ΦD(M(ζ,θ)) = log detM(ζ,θ)

where M(ζ,θ) is the Fisher information matrix for the population design ζ which
can be expressed as the sum of the Fisher information matrix M(tk,θ) for each
group with design tk, M(ζ,θ) =

∑s
k=1 ωkM(tk,θ). The matrix M(tk,θ) is given

by −E
[
∂2ℓ(θ;yi)

∂θ∂θT

]
, where ℓ(θ;yi) is the log-likelihood of the vector of observation

yi for the population parameter θ. This matrix can be calculated using the general
formula for observations with normal distribution, M(tk,θ) = {Muv(tk,θ)}du,v=1

with

Muv(tk,θ) =
∂f(tk,θ)

T

∂θu
Σ−1(tk,θ)

∂f(tk,θ)

∂θv

+
1

2
tr

[
Σ−1(tk,θ)

∂Σ(tk,θ)

∂θu
Σ−1(tk,θ)

∂Σ(tk,θ)

∂θv

]
(4)

For the class of approximate population designs Ξ, a population design ζ∗ ∈ Ξ
with a nonsingular Fisher information matrix M(ζ,θ) is a D-optimum design for
the parameter estimation θ, if and only if ϕD(t, ζ∗) ≤ 0, ∀t ∈ Xn, where

ϕD(t, ζ) = tr
[
M(t,θ)M−1(ζ,θ)

]
− d, d = dim(θ) (5)
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is the directional derivative of the criterion ΦD(M(ζ,θ)) at ζ in the direction of
δζt = ζt− ζ, and ζt is the design which puts the whole mass at point t (Gagnon &
Leonov 2005). The D-efficiency of a design ζ relative to the optimum design ζ∗D

is EffD(ζ) =
[

detM(ζ,θ)
detM(ζ∗,θ)

]1/d
. This efficiency is a number in (0,1) which measures

the goodness of a design ζ for estimating purposes.

3. Discrimination Between Two Within-Individual
Variance Models

In this section, we propose a generalization of T -optimality criterion for
discrimination between two nested within-individual variance models. The
criterion determines a design that maximize the power of likelihood ratio test
when the largest model is assumed to be the true model. Our approach can be
applied to population studies for groups of individuals with sparse samples and a
different sampling scheme.

Let G1(t,λ1) and G2(t,λ2) be two models for the within-individual variability
where one model is nested within the other. For example, if G2 is nested within
of G1, it would mean that both models involve the same structure G(t,λ), and
the parameter space Γ2 of G2 is a subset of the parameter space Γ1 of G1, which
is defined by the imposition of κ equality constraints. In order to discriminate
between these models, we propose the following criterion: assuming that G1 is
the true model for a known parameter vector γ0

1, a locally optimum approximate
population design ζ∗ to discriminate between G1 and G2 is such that

ζ∗ = argmax
ζ
TG(ζ) (6)

where

TG(ζ) = min
γ2∈Γ2

s∑
k=1

ωkF (tk,γ2) (7)

with

F (t,γ2) = tr[Σ1(t,γ
0
1)Σ

−1
2 (t,γ2)]− log det[Σ1(t,γ

0
1)Σ

−1
2 (t,γ2)] (8)

and Σr(t,γ), r = 1, 2, is given by (2). The design ζ∗ be called TG-optimal.
The justification of criterion is given below. Without loss of generality, consider

the exact population design ζN = {ti, ωi}N1 where ωi = 1
N . To discriminate

between G1 and G2 consider the problem of testing the hypothesis:

H0 : G(ti,λ) = G2(ti,λ2) vs H1 : G(ti,λ) = G1(ti,λ1) (9)
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Since yi are Nn(f(ti,β),Σ(ti,γ)) random vectors, the likelihood function under
the model Gr is

Lr =

N∏
i=1

(2π)−n/2(detΣr(ti,γr))
−1/2

× exp

[
1

2
(yi − f(ti,β))

TΣ−1
r (ti,γr)(yi − f(ti,β))

]
(10)

Thus, the likelihood-ratio test function usually associated to the hypotheses (9) is
given by

2 ln
L1

L2
=

N∑
i=1

{− ln det[Σ−1
2 (ti,γ2)Σ1(ti,γ1)]

+ (yi − f(ti,β))
TΣ−1

2 (ti,γ2)(yi − f(ti,β))

− (yi − f(ti,β))
TΣ−1

1 (ti,γ1)(yi − f(ti,β))}

If the model G1 is the true model for a specific alternative value γ0
1 ∈ Γ1 and γ∗

2

is an estimate for γ2, then

2E

[
ln
L1

L2

]
=

N∑
i=1

{
tr[Σ1(ti,γ

0
1)Σ

−1
2 (ti,γ

∗
2)]− log det[Σ1(ti,γ

0
1)Σ

−1
2 (ti,γ

∗
2)]− n

}
= N

{
N∑
i=1

1

N
F (ti,γ

∗
2)− n

}
= N {TG(ζN )− n} (11)

From this expression, the power of the likelihood ratio test for the hypotheses
(9) increases with TG(ζN ) and hence can be maximized by the choice of design ζN .

Finally, the exact design ζN can be replaced by the corresponding approximate
design ζ, thus we obtain the TG-criterion defined in (7).

In order to provide precise conditions for checking whether a particular design
is TG-optimum, we say that a design ζ is a TG-regular design if the set

Γ2(ζ) =

{
γ̃2 : γ̃2(ζ) = arg min

γ2∈Γ2

s∑
k=1

ωkF (tk,γ2)

}
is singleton; otherwise it is a TG-singular design. Hence, if ζ is a TG-regular design,
and γ̃2 ∈ Γ2(ζ) then γ̃2 is the unique solution of the equation

s∑
k=1

ωkF (tk, γ̃2) = min
γ2∈Γ2

s∑
k=1

ωkF (tk,γ2)

Assuming that Γ2 is a compact set and Σ2(t,γ2) is a twice continuously
differentiable in Γ2, the equivalence theorem for TG-optimality criterion can be
formulated as follows. The proof of this theorem is similar to the proof of Theorem
1 in Castañeda & López-Ríos (2016).
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Theorem 1. Let ζ∗ be a TG-regular design.

(i) A necessary and sufficient condition for the design ζ∗ to be TG-optimal is

ϕTG
(t, ζ∗) ≤ 0, ∀t ∈ Xn (12)

where

ϕTG
(t, ζ) = F (t, γ̃2)− TG(ζ), γ̃2 ∈ Γ2(ζ) (13)

is the directional derivative of TG(ζ) at ζ in the direction of δζt = ζt − ζ,
and ζt is the design putting all mass at the point t ∈ Xn.

(ii) The function ϕTG
(t, ζ∗) achieves its maximum value at the support points of

the optimal design ζ∗.

(iii) The set of TG-optimum designs is convex.

A measure of efficiency of a design ζ relative to a TG-optimum design is
EffTG

(ζ) = TG(ζ)
TG(ζ∗) .

4. DT α
G-optimality Criterion

In order to provide population designs for both discrimination and efficient
parameters estimation, we propose a compound criterion based on the combination
of D-optimality for each model and TG-optimality, specifically the criteria used are:

• Φ1(ζ) = TG for discrimination assuming that G1 is the true model

• Φ2(ζ) = detM1(ζ)
1/d1 for parameter estimation θ1

• Φ3(ζ) = detM2(ζ)
1/d2 for parameter estimation θ2

where Mr(ζ) is the information matrix under the model Gr for some known θ0
r.

We adopted the approach proposed by López (2008) which consists of
maximizing the geometric mean of the efficiencies for a given design ζ with respect
to each criterion, weighted by a predefined constant α, where 0 ≤ α ≤ 1. We give
equal weighting to the estimation criteria and other weighting for discrimination.
Thus, assuming that the model G1 is the true model, we propose the following
criterion:

ΦDTG
α (ζ) =

{
Φ1(ζ)

Φ1(ζ∗1 )

}α {
Φ2(ζ)

Φ2(ζ∗2 )

Φ3(ζ)

Φ3(ζ∗3 )

} 1−α
2

(14)

where ζ∗j = argmaxζ∈Ξ Φj(ζ). Taking the logarithm of (14), we obtain

lnΦDTG
α (ζ) = α lnTG(ζ) +

1− α

2

{
1

d1
ln detM1(ζ) +

1

d2
ln detM2(ζ)

}
+ C (15)
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where C is a constant that does not depend on the design ζ. The approximate
design that maximizes the criterion (15) over the set Ξ is DTα

G-optimum.
The design criterion (15) is concave because it is a convex combination of

concave functions. Therefore, the DTα
G-design criterion satisfies the conditions

of convex optimum design theory, and the following equivalence theorem may be
stated:

Theorem 2. Let ζ∗ be a TG-regular design with a nonsingular Fisher information
matrix Mr(ζ), r = 1, 2. A necessary and sufficient condition for the design ζ∗ to
be DTα

G-optimal is

ϕDTα
G
(t, ζ∗) ≤ 0, ∀t ∈ Xn, (16)

where

ϕDTα
G
(t, ζ) = α

F (t, γ̃2)

TG(ζ)
+

1− α

2

{
1

d1
tr
[
M1(t)M

−1
1 (ζ)

]
+

1

d2
tr
[
M2(t)M

−1
2 (ζ)

]}
− 1, γ̃2 ∈ Γ2(ζ) (17)

is the directional derivative of criterion function at ζ in the direction of δζt . The
function ϕDTα

G
(t, ζ∗) achieves its maximum value at the support points of the

optimal design ζ∗.

A measure of the efficiency of a design ζ relative to a DTα
G-optimum design is

EffDTα
G
(ζ) =

DTα
G(ζ)

DTα
G(ζ∗) .

5. An Example

To illustrate the proposed criterion, we consider the data set presented
in Racine, Grieve, Fluhler & Smith (1986) on the plasma concentrations of
cadralazine in 10 German cardiac- failure patients who were observed between
2 and 32 hours after a single 30mg dose of cadralazine. We propose to fit the
nonlinear mixed model shown above where only the intercept is random; thus, for
simplicity, Zi = 1 for all i. This model is

yil = f(til,βi) + bi + εil

f(til,βi) =
D

β1
exp(−β2til) (18)

where bi is the random effect associated with individual i. We assume that
bi ∼ N(0, ψ) and εi ∼ Nn(0,G(ti,λ)). Thus, the full parameters vector to be
estimate is θ = (βT ,γT )T where β = (β1, β2)

T and γ = (ψ,λT )T .
We consider two alternative models for the within-individual covariance matrix

G(ti,λ):

(1) Exponential model

G1(ti,λ) = σ2 diag(exp(δti1), . . . , exp(δtin)), λ = (σ2, δ)T
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(2) Constant variance: G2(ti,λ) = σ2In, λ = σ2.

We fit the model (18) with each within-individual covariance structure in R
Development Core Team (2014) using the nlme function for fitting nonlinear
mixed-effects models (Pinheiro & Bates 2000). The results of the estimation are:

β̂1 = (14.93, 0.21)T , ψ̂1 = 0.232, σ̂2
1 = 0.082, δ̂ = 0.02 (19)

β̂2 = (15.01, 0.19)T , ψ̂2 = 0.202, σ̂2
2 = 0.102

Since the model G2 is nested within G1, the true model is G1. We use the
estimates of the parameters obtained previously as the local value of θ to find the
locally optimal designs. Thus,

θ0
1 =

(
β0
1

T
,λ0

1

T
)T

= (14.93, 0.21, 0.232, 0.082, 0.02)T

θ0
2 =

(
β0
2

T
,λ0

2

T
)T

= (15.01, 0.19, 0.202, 0.102)T

The times in X was taken of the set of measurement times for the experiment:

X = {2, 4, 6, 8, 10, 24} hours

We assume that two observations are available for each patient n = 2, which is
a sparse sampling situation in a pharmacokinetic study. Therefore, the design
region is given by the set of combinations of two sampling times from X ; that is,
X 2 = {t = (t1, t2); tj ∈ X} contains 15 elements. The DTα

G-optimum design was
calculated to optimize the respective criterion implemented through an algorithm
in R Development Core Team (2014) for different values of α (0.25, 0.50, 0.75).
The function nlminb was used for the optimization in the design region X 2.
Additionally we find the D-, TG, and product D-optimum designs (ζ∗P ) to obtain
an overview of the individual designs. The computing times took approximately 1
hour for the compound designs. The computation complexity depends on the size
of the design region and the number of parameters.

The designs obtained were:

ζ∗D1
=

{
(2, 6) (2, 8) (2, 24) (6, 24)

0.06 0.37 0.35 0.22

}
ζ∗D2

=

{
(2, 6) (2, 8)

0.42 0.58

}
ζ∗TG

=

{
(2, 24)

1

}
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ζ∗P =

{
(2, 8) (2, 24) (6, 24)

0.68 0.19 0.13

}
ζ∗DT 0.25

G
=

{
(2, 6) (2, 24) (6, 24)

0.29 0.47 0.24

}
ζ∗DT 0.50

G
=

{
(2, 6) (2, 24) (6, 24)

0.11 0.66 0.23

}
ζ∗DT 0.75

G
=

{
(2, 24) (6, 24)

0.84 0.16

}

To check the optimality of the calculated compound designs, we use the
Equivalence Theorem. First, we enumerate all candidate sampling sequences
(i.e., the elements of X 2) and calculate the sensitivity function for each sampling
sequence. Then, we plot the sensitivity function as a function of index i. The
resulting plot for each design is shown in Figure 1.
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Figure 1: Sensitivity function for compound designs.

Table 1 presents the efficiencies of different optimum designs with respect to
the D- and TG-optimum designs. The first and second column list the efficiencies
of the optimum designs with respect to the D-optimum designs and corresponds
to G1 and G2 models, respectively. These efficiencies measure the goodness of
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optimum designs for parameter estimation. The TG-optimum design does not seem
good for estimation purposes; for the G2 especially, the efficiency is approximately
38%. On the other hand, the efficiencies of ζP - and DTα

G-optimal designs are
always high; the worst efficiency (α = 0.75) is approximately 62%. The third
column presents the efficiencies of the optimum designs with respect to the TG-
optimum design, which measure the goodness of a design for model discrimination.
For the DTα

G-optimal designs, these efficiencies seem good; the lowest efficiency
(α = 0.25) is approximately 78%. The product-optimum design does not seem to
be good for discrimination purposes; the efficiency is approximately 44%. Thus,
the best strategy for both parameter estimation and model discrimination purposes
seems to be the DTα

G-optimality criterion. In order to choose an adequate value
α to successfully discrimination and estimation, we compute the efficiencies for
D- and TG-optimality for different values of α. Figure 2 graphically displays
these efficiencies. For α approximately 0.3, the efficiencies are high; therefore, the
compound design DT 0.3

G is good for discriminating and estimating.

Table 1: D-efficiency and TG-efficiency.

Design EffD1 (ζ) EffD2 (ζ) EffTG
(ζ)

ζ∗D1
1 0.8478 0.6644

ζ∗D2
0.6715 1 0.0605

ζ∗TG
0.6021 0.3804 1

ζ∗P 0.9695 0.9180 0.4428
ζ∗
DT0.25

G

0.9899 0.8009 0.7798

ζ∗
DT0.50

G

0.8869 0.7237 0.9734

ζ∗
DT0.75

G

0.8549 0.6230 0.9534
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Figure 2: Plot of the efficiencies for different values of α.
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6. Conclusions

In this article, a compound optimality criterion for model discrimination and
parameter estimation was proposed for two nonlinear mixed effects nested models
with respect to the within-individual variance pattern. We used the D-optimality
criterion for estimation, and we proposed a generalization of T-optimality criterion
(the TG-optimality criterion) for the problem of model discrimination. An
equivalence theorem for the criterion was provided. To illustrate the use of
proposed methodology, a pharmacokinetic example was presented. To show the
good properties of the optimum compound design, the D-, TG- and product
D-optimum designs were computed; for discrimination, the efficiencies of the
compound optimum designs were higher than the D- and product D-optimal
designs. The design efficiencies for different values of the weight in the compound
design α show that the design for α = 0.3 is good for estimating and discriminating.
Further development of the method for estimating the model parameters, some
nonlinear functions of parameters, and simultaneously discrimination between
models would also be interesting. In this work, we considered nonlinear mixed
model with normality of both within-subject random error and random-effects,
however, there is often interest in models with nonnormal distribution. Thus, the
KL-optimality criterion could be an interesting methodology to explore in this
class of models. Finally, it should be noted that we have found local designs, but
the other option is the use of the Bayesian approach.[
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