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Abstract

This study involves the implentation of the extensions of the partial least
squares generalized linear regression (PLSGLR) by combining it with logistic
regression and linear discriminant analysis, to get a partial least squares
generalized linear regression-logistic regression model (PLSGLR-log), and a
partial least squares generalized linear regression-linear discriminant analysis
model (PLSGLRDA). A comparative study of the obtained classifiers
with the classical methodologies like the k-nearest neighbours (KNN),
linear discriminant analysis (LDA), partial least squares discriminant
analysis (PLSDA), ridge partial least squares (RPLS), and support vector
machines(SVM) is then carried out. Furthermore, a new methodology
known as kernel multilogit algorithm (KMA) is also implemented and its
performance compared with those of the other classifiers. The KMA emerged
as the best classifier based on the lowest classification error rates compared
to the others when applied to the types of data are considered; the un-
preprocessed and preprocessed.
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Resumen
Este estudio combina el modelo de regresión lineal generalizado por

mínimos cuadrado parciales (RLGMCP), con regresión logística y análisis
discriminante lineal, para obtener los modelos de regresión logística
generalizada por mínimos cuadrados parciales, (RLGMCP) y regresión
logística generalizada-discriminante por mínimos cuadrados parciales
(RLGDMCP). Se realiza un estudio comparativo con clasificadores clásicos
como, k-vecinos más cercanos (KVC), análisis discriminante lineal (ADL),
análisis discriminante de por mínimos cuadrados parciales (ADMCP),
regresión por mínimos cuadrados parciales (RMCP) y máquinas de vectores
de soporte de soporte vectorial (MSV). Además, se implementa una nueva
metodología conocida como algoritmo de kernel multilogit (AKM). Su
desempeño es comparado con los de los otros clasificadores. De acuerdo
con las tasas de error de clasificación obtenidas a partir de los diferentes
tipos de datos, el KMA es el de mejor resultado.

Palabras clave: Regresíon lineal generalizada; Algoritmo de kernel
multilogit; Mínimos cuadrados parciales.

1. Introduction

The field of genomics has witnessed a tremendous increase in the amount
of data generation due to biotechnological advances like microarrays and next-
generation sequencing platforms. These biotechnological advances have made it
possible to simultaneously monitor expression levels for thousands of genes, and
thus help in solving particular problems related to the identification of molecular
variants in them, and their relation to the classification, diagnosis, prognosis and
treatment of different conditions. The high dimensional data generated from
microarray technology involve many thousands of genes measured simultaneously,
a different microarray for each individual. This definitely introduces some noise
and unwanted variations that might stem from technical or unknown sources.

In a microarray experiment let n and p be the numbers of the samples and genes
respectively, so that the generated data is a n × p matrix. The main challenge
with these technologies is that the resultant data are noisy due to biological and
technological variations, and at the same time they usually are high dimensional,
i.e., they have more variables than cases due to a low sample size, so n << p. This
condition makes the direct application of most classical statistical methodology
implausible, leading researchers to propose new solutions for this type of problem.

Normally before the down stream analysis of the data generated from DNA
microarrays, a preprocessing and normalization stage is performed to remove
the noise, filtering out the genes with low expression values, addressing missing
values, and standardizing the data via a log-transformation. One of the most used
preprocessing procedures for microarray data was proposed by Dudoit, Fridlyand
& Speed (2002), which entails three basic steps, namely: thresholding, filtering
out of genes outside of a range of minimum/maximum intensities, and finally,
standardization of the expression values by a log transformation (Alshamlan, Badr
& Alohali 2013, Dudoit et al. 2002).
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This work considers classification problems for microarray data sets under two
conditions: un-preprocessed and preprocessed. In the un-preprocessed data all
genes available in the study are included, while in the preprocessed only the subset
of genes believed to play important roles in the biological problem of interest
are used. We extend the Partial Least Squares Generalized Linear Regression
(PLSGLR) algorithm of Bastien, Vinzi & Tenenhaus (2005) by combining it with
Logistic Regression, to give PLSGLR-log, and with Linear Discriminant Analysis
to come up with PLSGLRDA. Furthermore, we compare their performance with
that of the kernel multilogit algorithm (KMA) proposed by Dalmau, Alarcón &
González (2015), and of the classical methods: the k-Nearest Neighbour (KNN),
Ridge Partial Least Squares (RPLS), Partial Least Squares-Linear Discriminant
Analysis (PLSDA), the usual Linear Discriminant Analysis (LDA) and the Support
Vector Machines (SVM), when applied to a set of microarray data, referred to in
this work as the Colon data set by Alon, Barkai, Notterman, Gish, Ybarra, Mack
& Levine (1999). We evaluate the classifiers with regard to their classification
error rates in this data set and compare them.

Our work addresses problems similar to many studies involving classification
in microarrays, with typically high dimensional data and low numbers of samples
(or subjects). Following a two stage strategy, many involve the use of the original
PLS to build the components, even though the response variables are discrete, for
example the analysis of Nguyen & Rocke (2002a, 2002b); this is intuitively not
correct since the original PLS is an algorithm best suited for continuous response
variables (that is, variables with numeric values that have an infinite number of
values between any two values). And in almost all of the procedures a variable
(gene) selection step is implemented, with an accompanying computing cost. This
paper describes a procedure suitable for categorical data, and its performance is
studied with and without the gene selection step, and compared to that of each
of the other classifiers used. An additional advantage of our approach is that the
PLSGLR can deal with missing values, unlike the original PLS, commonly used in
the literature.

The proposed two stage strategy for the classification problem is described as
follows.

To the best of our knowledge, the proposed combination of PLS generalized
linear regression algorithm with logistic and discriminant analysis has not been
used before in cases where n << p. The PLS generalized linear regression
algorithm is simple, and a good performance when compred to the classical
methods would make it an attractive alternative (See Table 1).

2. Kernel Multilogit Algorithm (KMA)

The KMA was recently proposed by Dalmau et al. (2015). This algorithm
works by first transforming a categorical response variable to a continuous one via
a multilogit transformation. A categorical variable in this case refers to the one
that contain a finite number of categories or distinct groups for instance tumor and
non-tumor. The transformed variable is then used with the explanatory variables

Revista Colombiana de Estadística - Applied Statistics 43 (2020) 233–249



236 Adolphus Wagala, Graciela González-Farías, Rogelio Ramos & Oscar Dalmau

in a regression model for classification and prediction. Finally, the new predicted
variables are transformed back using the inverse multilogit function to the original
space to enable classification.

Table 1: Proposed strategy
Steps

Step 1: Dimension reduction
In this stage, we propose to use PLSGLR to project the high dimensional data to a low
dimension space thus resulting in new components (latent variables), which preserve the
information in the intrinsic structure of the data.

Step 2: Use of latent variables for classification
Analyze the obtained latent variables with the classical statistical classifiers:

i PLSGLR components with logistics regression to get the PLSGLR-logistic model
denoted as (PLSGLR-log)

ii PLSGLR components with linear discriminant analysis model to get PLSGLR-Linear
Discriminant Analysis model denoted as (PLSGLRDA)

Let the response variable vector y be categorical with class labels {1, 2, . . . , C}.
To classify a discrete variable from predictor variables x, the first step is to
transform the response variable y into a new space using the multilogit function.
The multinomial logit model with C as the reference category can be given as

Pr(y = j | x) = exp{f(x;θj)}

1 +
C−1∑
i=1

exp{f(x;θi)}
, j = {1, 2, . . . , C − 1}

Pr(y = C | x) = 1

1 +
C−1∑
i=1

exp{f(x;θi)}
,

(1)

where f(x;θi) = xTθi. The expected value of y being a multinomial random
variable is given by E(y | x) = [Pr(y = 1 | x),Pr(y = 2 | x), . . . ,Pr(y = C | x)]T .
Now, denoting t = E(y | x), the original response variable y is not used but
instead a transformed version ϑ = logit(t) is used. The logit transformation is
done with C as the reference category as follows

ϑj = logit(tj) = log tj
tC

, j = {1, 2, . . . , C − 1} (2)

where ϑj ∈ ϑ, tj ∈ t.
In the second step a parametric linear model is proposed and its parameter

estimates can be obtained via the standard Bayesian formula Pr(ϑ | x) = Pr(x |
ϑ)Pr(ϑ)/Pr(x) where Pr(ϑ | x) is the posterior probability distribution, Pr(x | ϑ)
is the likelihood function and Pr(x) is the normalization constant, assuming
that ϑ ∈ RC−1 for a given x ∈ Rm follows a multivariate normal distribution
ϑ | x ∼ N (ΘTx, α2I), Θ ∈ Rm×C−1,Pr(ϑ | x) is also multivariate normally
distributed. Furthermore, the prior parameters are assumed to follow a normal
distribution, i.e. θ ∼ N (0, β2I) where β is known. The parameter matrix Θ is
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thus estimated by optimizing an equivalent of a regularized least squares function

Θ̂ = argmin
Θ

U(Θ)

U(Θ) = ∥ϑ−XΘ∥2F + λ∥Θ∥2F ,
(3)

where ϑ = [ϑ(i)]Ti=1,2,...,n, X = [x(i)]Ti=1,2,...,n, ∥.∥F is the Frobenius norm of a
matrix and λ is the regularization parameter. The result is a closed form estimate
given by Θ̂ = (XTX+λI)−1XTϑ. To capture non-linearities which may be present,
a dual representation Θ = XTΓ is taken so that

U(Γ) = ∥ϑ−XXTΓ∥2F + λ∥XTΓ∥2F

then U(Γ) is optimized to get Γ̂ = (K + λI)−1ϑ, where K = XXT is the
Gram matrix, Kij = ⟨x(i),x(j)⟩ + 1. However a more general kernel Kij =
((ϕ(x(i)), ϕ(x(j))) where ϕ(·) is a nonlinear mapping, is preferred in practice.

The final step of the algorithm involves prediction/classification given a new set
of response variables xnew. This entails estimation of ϑnew by ϑnew = Γ̂T x̂new,
but x̂new = K((ϕ(x(i)), ϕ(x(new))). The computed ϑnew is used to estimate tnew

by using tnew = logit−1(ϑnew). The inverse of a logit function is given by

tnewj =
exp{ϑnew

j }

1 +
C−1∑
i=1

exp{ϑnew
j }

, j = {1, 2, . . . , C − 1}

tnewJ =
1

1 +
C−1∑
i=1

exp{ϑnew
j }

.

(4)

The class labels associated with xnew are then computed using the estimated
conditional distribution by finding the components that maximize those of tnew

i.e. using the Bayes rule. The computed tnew is then used to get the class label
(ŷnew) of the new data; for details see (Dalmau et al. 2015).

3. Partial Least Squares (PLS) and Some of its
Applications in Genomics

PLS is a very useful approach because it is able to analyze data with
many, noisy, collinear as well as incomplete variables. PLS is usually utilized
in data reduction when there is multicollinearity or when the data have more
variables than the number of samples. Essentially, the PLS aims at maximizing
the covariance between the response variables Y and the predictors X, i.e.,
cov(XTY ) of highly multidimensional data by finding a linear subspace of the
explanatory variables (Wold, Sjöström & Erikson 2001, Höskuldsson 1988). Some
literature on PLS can be found in (Wold et al. 2001, Wold, Ruhe, Wold &
Dunn III 1984, Höskuldsson 1988), among others.
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The research on PLS is still very active due to its ability to address problems
associated with the high dimensional data such as multicollinearity and high
dimensionality, among others. In the recent past, PLS has been utilized
predominantly in high dimensional data in different fields like chemometrics and
the “omics” like genomics, proteomics, metabolomics, and many other fields that
generate large amounts of data, like spectroscopy (Gromski, Muhamadali, Ellis,
Xu, Correa, Turner & Goodcare 2015). Recent applications of PLS in microarray
studies include Huang, Tu, Huang, Lien, Lai & Chuang (2013), who applied PLS
regression (PLSR) in breast cancer intrinsic taxonomy, for classification of distinct
molecular sub-types by using PAM50 signature genes as predictive variables in PLS
analysis and the latent binary gene component analyzed by a logistic regression
for each molecular sub-type. Also, Telaar, Liland, Repsilber & Nürnberg (2013)
extended the notion of PLS-discriminant analysis (PLS-DA) to Powered PLS-DA
(PPLS-DA), introducing a ‘power parameter’ maximised towards the correlation
between the components and the group-membership, thereby achieving a minimal
classification error. Furthermore, Xi, Gu, Baniasadi & Raftery (2014) discussed
the PLS-DA with applications to metabolites data. Other articles involving the
usage of PLS include: Dong, Zhang, Zhu, Wang & Wang (2014) who used PLS
to investigate the underlying mechanism of the post-traumatic stress disorder
(PTSD) using microarray data; Gusnanto, Ploner, Shuweihdi & Pawitan (2013),
who made gene selection based on partial least squares and logistic regression
random-effects (RE) in classification models; gene selection involving PLS was
also done by Wang, An, Chen, Li & Alterovitz (2015). The sparse PLS has also
been utilized by many researchers; for instance, Chun & Keles (2009),Lee, Lee, Lee
& Pawitan (2011) and Chung & Keles (2010) provided an efficient algorithm for
the implementation of sparse PLS for variable selection in high dimensional data.
Furthermore, Lê Cao, Rossouw, Robert-Granieé & Besse (2008) used sparse PLS
for variable selection when integrating omics data. They implemented sparsity via
lasso penalization of the PLS loading vectors when computing the singular value
decomposition.

4. PLS Generalized Linear Regression Algorithm

In this section, we present an algorithm that can be applied to any Generalized
Linear Regression which was developed by (Bastien et al. 2005). Consider the
response data y with the explanatory variables x1, . . . ,xp; then a PLS-General
Linear Regression (PLSGLR) can be written as

g(θ) =

m∑
h=1

ch

( p∑
j=1

w∗
hjxj

)
, (5)

where θ a conditional expectation of the variable y if its distribution is continuous,
or a vector of probabilities if the variable y follows a discrete distribution with a
finite support, while g(.) is the link function chosen according to the probability
distribution of y. The PLS components are given by th =

∑p
j=1 w

∗
hjxj , j =
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1, . . . , p, h = 1, . . . ,m. To compute the PLS components, let X = x1 . . . ,xp be a
matrix of p centred explanatory variables xj ’s. The key objective is to determine
m orthogonal PLS components defined as a linear combination of the xj ’s. The
algorithm is presented as follows:

1. Computation of the first PLS component t1: First, the regression coefficients
a1j of xj are computed using the usual Generalized Linear Model (GLM)
procedure of y on xj , j = 1 . . . p. The column vector a1 which contains a1j
is then normalized: w1 = a1/∥a1∥. Finally, the component t1 is computed
as t1 = Xw1/w

′
1w1.

2. Computation of the second PLS component t2: Involves the computation of
the linear model coefficients a2j of xj in the GLM setting of y on t1 and
xj , j = 1, . . . , p. Since the main idea of PLS is to create the orthogonal
components t2, the component t1 is added as a variable in estimating y
on t1 and xj , j = 1, . . . , p. This is because the structure of PLSGLR does
not allow the residuals of y to be obtained in each iteration that would
aid in construction of orthogonal components. The column vector a2 which
contains a2j is normalized: w2 = a2/∥a2∥ and thereafter, the residual matrix
X1 is obtained via the regression of X on t1. The use of residual matrix in
the attainment of the next component ensures orthogonality between the
different components. The component t2 is calculated by t2 = X1w2/w

′
2w2.

Finally, t2 is expressed in pterms of X: t2 = Xw∗
2.

3. Computation of the hth PLS Component th: Consider the already computed
components t1, . . . , th−1; the final component th is computed by calculating
the GLM coefficients ahj of xj by fitting y on t1, . . . , th−1 and xj , j =
1, . . . , p. Next, the column vector ah, which contains ahj is normalized
as: wh = ah/∥ah∥. The residual matrix Xh−1 of the regression of
X on t1, . . . , th−1 is then computed. The use of the residual matrix
and the previously obtained t1, . . . , th−1 as covariables in calculating
the GLM coefficients helps the creation of orthogonal components, as
previously explained. The final component th is thus computed as th =
Xh−1wh/w

′
hwh. Finally, th is expressed in terms of X : th = Xw∗

h.

While computing the components th, the nonsignificant elements in ah can be
set to zero in order to simplify calculations, since only the significant response
variables are needed to build the PLS components. The number of m components
to be used can be determined through cross-validation or by hard thresholding.
The iteration can be stopped once there are no more significant coefficients in ah
(Bastien et al. 2005).

Consider xh−1,i, a column vector of the transpose of the ith row of Xh−1; then
thi = x′

h−1,iwh/w
′
hwh of the ith case on the component th. This is basically the

slope of the fitted line of the univariate OLS linear regression without intercept for
xh−1,i on wh, which can be estimated even with some data missing. Consequently,
the component is computed based on the available data. Therefore the PLSGLR
algorithm by (Bastien et al. 2005) effectively copes up with missing data.
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5. Error Rate as a Measure of Classification
Accuracy

In literature, there exist numerous metrics for the classification accuracy for
instance the error rate, sensitivity and specificity among others. Following the
methodology of Boulesteix, Strobl, Augustin & Daumer (2008), consider a random
vector X ∈ Rp and the response vector y ∈ {0, . . . , k − 1}. If f denotes the joint
distribution of X and y then a classifier is a function say C that maps from Rp to
{0, . . . , k−1} thereby assigning classes to a vector of some matrix X corresponding
to the p-dimensional gene expression vector while ŷ is the predicted class.

C : Rp → {0, . . . , k − 1}
X → ŷ

(6)

For f(X,y) and y are known then the Bayes classifier can be constructed by

Cbayes(X) = argmax
k

P (Y = k/X) (7)

from the derivation of the posterior distribution P (y/X). The error rate is thus
given by the distribution

Err(C) = Pf (C(X) ̸= y)

= Ef (IC((X) ̸= y))
(8)

Now suppose that we have data for n sample observations (say patients) denoted
by D = d1, . . . ,dn which are identically independently distributed observations
di = (yi,xi). Here yi ∈ {0, . . . , k − 1} denotes the membership of the response
vector while xi = (xi1, . . . , xip)

T the p-vector of the expression data for the ith

patient. Given the learning data set is given by D1 = (d∗
1, . . . ,d

∗
L) where L is

the number of observations chosen for the learning set. If the classifier defined
by equation 6 and learnt using the data D1 using the classification method M is
denoted by CM

D1
then the error rate given D1 is given by

CM
D1

= Ef (I(y ̸= CM
D1

(X))/D1) (9)

which is unknown because the joing distribution f is unknown. However, for
Dt = (d∗

1, . . . ,d
∗
T ) the estimator for error can be obtained as

Êrr(CM
D1

,Dt) =
1

T

T∑
i=1

I(yti ̸= CM
D1

(xti)) (10)

where Xti = (xti1, . . . , xtip) is the p-vector giving the tth observation’s gene
expression. The sensitivity and specificity are a consequence of the estimated error
rate given by equation 9, for more details see Boulesteix et al. (2008). In this paper
we therefore compare the different classifiers based on the error rates because it
is deemed adequate in identifying the best classifier. Furthermore, the sensitivity
and specificity of a classifier are not fixed characteristics but are influenced by the
type of misclassification scheme utilized.
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6. Applications to a Real Data Set

We describe in detail the analysis of the Colon data by Alon et al. (1999),
obtained from the R package plsgenomics, which consists of a (62× 2000) matrix
giving the expression levels of 2000 genes for 62 colon tissue samples.

An exploratory analysis of the data was done in order to visualize the
differences in the un-preprocessed and preprocessed microarray data sets. The
preprocessing is done using the R package plsgenomics see https://rdrr.
io/cran/plsgenomics/, that implements the recommendations of Dudoit et al.
(2002). To visualize the differences between the preprocessed and un-preprocessed
data sets, we consider the pairs of box plots, relative log expression (RLE), and
principal components analysis (PCA) plots presented in Figures 1,2, 3, 4 and 5
respectively.
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Figure 1: Box plot for the un-preprocessed colon data. The box plot for un-preprocessed
data clearly shows that the data are noisy and have a lot of variations. The
data have some unwanted variations that are expected to affect the analysis.
They also lack symmetry.
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Figure 2: Box plot for the preprocessed colon data. This plot presents less variations.
The data seem to have a symmetric distribution and do not show the
presence of unwanted variation. From the two figures, it is expected that
the preprocessed data would be easier to analyze.
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Figure 3: RLE plots for the un-preprocessed and preprocessed colon data. The RLE
plot for the un-preprocessed data shows the presence of a lot of heterogeneity,
implying that the data have variations that do not necessarily come from
biological factors. However, the RLE plot for the processed data shows
homogeneity and lack of unwanted noise, and should give better results when
analyzed statistically.

The same pair of data sets is examined using RLE plots, to show how the
preprocessed data compares with the un-preprocessed data set with regard to the
batch effect or any other abnormality. The RLE plots have been extensively used
in studies of microarray data to reveal the effectiveness of data normalization;
for an example see Gagnon-Bartsch & Speed (2011). The RLE plots are simple
yet very powerful in the visualization of data to detect unwanted variations. To
understand how an RLE plot is constructed, consider a data matrix Xp×n where
p is the number of genes while n the number of microarray samples, and so the
element of the data matrix xij represents the ith gene in the jthsample. The RLE
plot is then constructed by first calculating the median across each of the p rows,
and then substracting the respective median across each row of the data matrix
X, i.e (xij −medianxi∗). The median is used because it is robust and not affected
by outliers. A box plot is then generated for each of the n samples, and a good one
will be centered around zero and its width (interquartile range) should be equal
to or less than 0.2 see Gagnon-Bartsch & Speed (2011).
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Finally we compare the ease of classification between the un-preprocessed and
preprocessed data. The simplest way to visualize the separability of categories in
a given data set is the use of principal components analysis (PCA) plots.
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Figure 4: PCA plot for the un-preprocessed Colon data. The PCA plots show that it
is harder to separate/classify the un-preprocessed data.

According to Gagnon-Bartsch & Speed (2011), one of the key challenges of
the removal of unwanted variation is the difficulty in distinguishing the unwanted
variations from the biological variation of interest. Furthermore, they note that
the most appropriate way to deal with unwanted variation depends on the final
objective of the analysis, for instance: differential expression (DE), classification,
or clustering.
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Figure 5: PCA plots for the preprocessed Colon data.It is relatively easier to
separate/classify preprocessed data.

6.1. Analysis of the Un-Preprocessed Data

In this analysis, we compare the performance of our proposed model extensions
PLSGLR-log, PLSGLRDA and the KMA (Dalmau et al. 2015) to that of the
classical methods when the data has neither been preprocessed nor variables
been selected, thus testing the performance of the classification algorithms in the
presence of noise. The performance of the methodologies is then compared using
a 10 fold cross validation (10-CV) and the corresponding classification error rates
are computed. The results are presented in Table 2.

We note that there exist several metrics for measuring the performance of
various classifiers. A particular method is judged to be the “best” if it has a
lower classification error rate relative to the other methods, otherwise it is a poor
classifier.
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Table 2: Rate of classification error for the different methods when applied to the un-
preprocessed data set

DATA PLSGLR-log PLSGLRDA KNN LDA PLSDA RPLS SVM KMA
Colon 38.3 31.7 60.0 25.0 11.7 15.0 18.3 1.7

The results based on minimal cross validation classification error rates indicate
that for the Colon data, the KMA emerges as the best, followed by PLSDA, and
RPLS, while the worst were KNN and PLSGLR-log.

6.2. Analysis of Preprocessed Data

During the preprocessing of microarray data the feature selection step is usually
performed. This is because out of the thousands of variables (genes expression
levels) generated, only a handful may play an important role towards the biological
problem of interest. The thousands of data points are likely to be noisy due to
biological or technical reasons. Thus the feature selection extracts a subset of
the genes that are most informative (optimum subset of features). This reduces
the noise by removing irrelevant or redundant features (Awada, Khoshgoftaar,
Dittman, Wald & Napolitano 2012, Dudoit et al. 2002). Most commonly used
feature selection methods involve ranking the genes based on some value of
a univariate statistic, like the t-statistic, the F-statistic, or the Wilcoxon and
Kruskal-Wallis statistics. A cut-off point based on either the number of genes or
the p-value is imposed, to determine the number of variables to be used. Dudoit
et al. (2002) suggest a gene selection method based on ranking. This is achieved by
finding the ratio of between-group to within-group sum of squares (BSS/WSS)
so that for a gene j,

BSSj/WSSj =

∑
i

∑
k I(yi = k)(x̄kj − x̄.j)

2∑
i

∑
k I(yi = k)(xij − x̄kj)2

(11)

where x̄.j and x̄kj are the average expression levels of gene j and across all samples
in class k, respectively. The p genes with the biggest ratio are selected. In this
study, we adopted the (Dudoit et al. 2002) method of feature selection.

The preprocessing and the gene selection were performed using the
recommendations of Dudoit et al. (2002). This decision stems from the fact that
this method has been proven work relatively well in literature of several studies
involving such as by Fort & Lambert-Lacroix (2005), Dudoit et al. (2002) among
others and seem to perform relatively well. The top p genes were thus selected
using Equation 11 for the implementation of the classification methods.

The classification error rates for the various methodologies when applied to the
data under consideration are presented in Table 3.

The results indicate that KMA was the best, followed by RPLS, PLSDA.
PLSGRDA performed equally well, while KNN emerged as the worst classifier,
also in every comparison.
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Table 3: classification error rates for the different methods when applied to the
preprocessed data set

DATA PLSGLR-log PLSGLRDA KNN LDA PLSDA RPLS SVM KMA
Colon 16.4 13.3 26.7 15.0 11.7 11.7 14.8 11.2

7. Summary and Conclusions

In this study, two extensions of the PLSGLR were considered in addition to
the KMA for a comparative study with some classical classification methodologies,
namely KNN, LDA, PLSDA, RPLS and SVM, when applied to one commonly used
microarray data set. The data were considered when un-preprocessed and when
preprocessed. For both the un-preprocessed and preprocessed cases, the KMA
emerged as a clear “winner” based on lower classification error rates. The KMA
algorithm can therefore be recommended for classification problems involving noisy
and non-noisy data. This could be due to the fact that the chosen kernels map the
samples to a higher dimensional space, where they become linearly separable. This
leads to a better classification ability by the KMA. Furthermore, the three new
algorithms can therefore be considered as an addition to the existing literature for
the microarray data classification problems.
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