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Abstract
This paper proposes a spatial multivariate CUSUM control chart in order

to monitor the mean of a single characteristic of a product or process, when
the measurements are taken in different locations on each sampled item. To
estimate the variance and covariance matrix some tools from the geostatistics
are used, taking into account the spatial correlation between the measure-
ments. The performance of this control chart is explored by simulation and
its use is illustrated with an example.

Key words: Mutivariate control charts; Multivariate CUSUM; Spatial cor-
relation; Semivariogram.

Resumen
Este documento propone una carta de control CUSUM multivariada es-

pacial para monitorear la media de una sola característica de un producto o
proceso, cuando las mediciones se toman en diferentes ubicaciones en cada
elemento muestreado. Para estimar la matriz de varianza y covarianza, se
utilizan algunas herramientas de la geoestadística, teniendo en cuenta la cor-
relación espacial entre las mediciones. El desempeño de esta carta de control
se explora por simulación y su uso se ilustra con un ejemplo.

Palabras clave: Cartas de control multivariadas; CUSUM multivariada;
Correlación espacial; Semivariograma.

1. Introduction

Statistical process control (SPC) is a set of tools for monitoring a production
process, useful to achieve the stability of the process and reduce its variability,
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among which are included the control charts. The processes always have varia-
tion, which can be inherent or natural to the characteristics of the process, called
common cause variation; or obey special circumstances that are not permanent
in the process, called assignable (or special) cause variation. When a process is
operating in the presence of special causes, it is considered to be unstable or out
of statistical control (OC); otherwise, the process is considered to be stable or in
statistical control (IC). A fundamental objective of a control chart is to analyze
the variability of the process and quickly detect assignable causes when they occur.
Readers interested in this topic can consult the following textbooks: Ryan (2011),
Qiu (2013) and Montgomery (2019), among others.

Generally, the statistical process control can be divided in two phases called
phase I or retrospective phase and phase II or prospective phase. In phase I a
set historical process data is used to learn about the process. Among the main
goals of phase I are: to understand the sources of process variability, to evaluate
the process stability searching unusual results and removing assignable causes of
variation, and to estimate the in-control process parameters. The major goal of
the phase II is to detect any change from the assumed in-control model. Technical
details, comments on some of the important aspects of phase I analysis and review
about this area can be found in Chakraborti, Human & Graham (2008) and Jones-
Farmer, Woodall, Steiner & Champ (2014).

In industry there are many processes characterized for two or more quality
characteristics, generally correlated. Several multivariate control charts have been
proposed for monitoring these processes, among which are the proposals elabo-
rated by Hotteling (1947), Alt & Smith (1988), Crosier (1988), Pignatiello Jr &
Runger (1990), Lowry, Woodall, Champ & Rigdon (1992), Khoo, Wu, Castagliola
& Lee (2013), (Lee, Khoo & Xie 2014) and Nezhad & Niaki (2013). The traditional
multivariate control charts ignore the correlation between adjacent sample loca-
tions, a situation common in some modern manufacturing processes. For example,
the problem of monitoring at different locations bottle-wall thickness used for soft
drinks and other beverages (Grimshaw, Blades & Miles 2013), or the identification
of local distortions surrounding the cylinder bores in a deck face on an automotive
engine head, which impact the sealing performance of engine assemblies and reflect
cutting force dynamics during machining processes, Suriano, Wang, Shao, Hu &
Sekhar (2015). Some proposals that consider the correlation of adjacentes sites
have been recently developed by Wang, Jiang & Li (2016) and Zhang, Liu & Jung
(2019). Some recent review papers about multivariate control charts are Woodall
& Montgomery (2014), Capizzi (2015), Bersimis, Sgora & Psarakis (2018), and
Peres & Fogliatto (2018).

Most multivariate control charts seek to monitor multiple quality characteris-
tics simultaneously, however Grimshaw et al. (2013) propose a spatial T 2 control
chart and a multivariate EWMA chart (MEWMA) in order to monitor the mean
of spatial data (a single quality characteristic at different spatial locations), that is,
instead of measuring multiple quality characteristics, only one quality character-
istic is measured in multiple sites of the product or process. These control charts
are based on multivariate control charts where the sample covariance matrix is
replaced with a parametrized covariance matrix based on the semivariogram that
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models the spatial correlation, under the assumption that the process is isotropic
stationary Gaussian. While the proposals presented by Grimshaw et al. (2013)
monitor the mean of a spatial process, Garthoff & Otto (2015) recently considered
the problem of simultaneously monitoring the mean and covariance of multivariate
spatial processes using conventional MEWMA and multivariate cumulative sums
(MCUSUM) control charts. It is important to highlight that the proposals pre-
sented by Grimshaw et al. (2013) deal with the detection of changes in the mean
of the spatial process over time, while the proposal presented by Garthoff & Otto
(2015) searches to detect changes in the mean and covariance of the spatial process
in terms of the distance from a known centre of the spatial process; therefore, the
run length is not anymore a point of time but a distance in space.

In many manufacturing processes the quality of a process or product is best
described by a function, called a profile, this is, a functional relationship between
a variable and a set of explanatory variables. In these cases, the point of interest
are the changes in the profile over time. Profile monitoring is an example of multi-
variate monitoring and it also includes the monitoring of two-dimensional shapes
and three-dimensional surfaces, Woodall & Montgomery (2014). Some control
charts proposed for monitoring processes characterized for profiles are based on
multivariate control charts, among which are the approaches proposed by Kang &
Albin (2000) and Williams, Woodall & Birch (2007). Among the control charts
proposed for monitoring surface that consider the spatial correlation are the pro-
posals made by Wang, Wang & Tsung (2014) and Colosimo, Cicorella, Pacella
& Blaco (2014). Wang et al. (2014) proposed a control chart in phase II, that
describes the spatial correlations among variables in 2-D surface data. This chart
is based on the Gaussian-Kriging model, in which the spatial correlations within
the 2-D surface profile are represented by a parametric function. The proposal
presented by Colosimo et al. (2014) models the manufactured surface via Gaus-
sian processes models and monitoring the deviations of the actual surface from
the target pattern estimated in phase I. In this sense, the control charts pro-
posed by Grimshaw et al. (2013) may be extendend for monitoring profiles with
spatial dependence. Readers interested in reading about profile monitoring can
consult Woodall, Spitzner, Montgomery & Gupta (2004), Woodall (2007), and
Noorossana, Saghaei & Amiri (2011), among others.

The control charts proposed by Grimshaw et al. (2013), based on the T 2 and
multivariate EWMA control charts, allow to monitor the mean of a spatial process.
The first is designed to detect great shifts in the mean of the spatial process while
the last is designed to detect smaller shifts. Although Grimshaw et al. (2013) pro-
posed these two new control charts taking account the spatial dependence, only the
performance of the control chart based on the T 2 statistic is evaluated in the simu-
lations and illustrated in the example. Other well-known and effective alternative
to the multivariate EWMA control chart for detecting small sustained shifts in the
mean vector is the multivariate cumulative sum control chart, Montgomery (2019).
According to our knowledge, there is no MCUSUM control chart in the literature
to monitor the mean of a spatial process. In this paper, we propose an extension
of a multivariate CUSUM chart that takes into account the spatial dependence
between the measurements of a single quality characteristic in different product
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locations, where the covariance matrix is determined by the semivariogram that
models the spatial correlation.

This paper is organized as follows: Section 2 presents some basic concepts of
spatial statistics. Section 3 describes the control charts proposed by Grimshaw
et al. (2013) for monitoring the mean of a spatial process. In Section 4, the spatial
multivariate CUSUM control chart is proposed. Section 5 presents a simulation
study to evaluate the performance of the spatial T 2, EWMA charts and the new
spatial MCUSUM control chart, to detect changes in the mean of a spatial process
in phase II. An example that illustrates the use of the control chart proposed is
given in Section 6. Finally, a summary of results, conclusions and some recom-
mendations are presented in Section 7.

2. Spatial Data Analysis

Spatial data analysis is the set of statistical techniques for the proper analy-
sis of spatial data, which makes use of the spatial referencing and Geographical
Information Systems (GIS) techniques and methods. In this context, the spatial
dependence is considered a fundamental property (Haining 2003), where spatially
near observations tend to be more similar than distant observations, property
known as Tobler’s law of geography (Tobler 1970). In this sense, the strength
of the relationships between spatially distributed quantities is a function of their
spatial separation, (Schabenberger & Pierce 2001).

Let s ∈ D be a generic location data in d-dimensional Euclidean space and
suppose the potential datum Z(s) at spatial location s is a random quantity,
where s varies over index set D ⊂ Rd generating the multivariate random field
{Z(s) : s ∈ D}, with Z(s) = [Z(s)1, . . . , Z(sp)]

′. The characteristics of the index
set D determine the type of spatial data: Geostatistical data, if D is continuous
and fixed; lattice data, if D is discrete and fixed; and point patterns, if the set of
locations is itself random, (Cressie 2015).

Stationarity means that the random fields looks similar in different parts of the
domain D, (Schabenberger & Pierce 2001). There are three types of stationarity:
strict, second-order and intrinsic. The process is strict (or strong) stationarity if
the spatial distribution is invariant under translation of the coordinates by the
vector h, that is, P (Z(s1) < z1, . . . , Z(sp) < zp) = P (Z(s1 + h) < z1, . . . , Z(sp +
h) < zp). The process {Z(s) : s ∈ D ⊂ Rd} is called second-order stationary if:

a. The expected value (mean of the random field) exists and does not depend
on locations E[Z(s)] = µ, for all s ∈ D

b. The covariance function is finite and only depends on the distance between
the locations, that is, Cov(Z(s), Z(s + h)) = C(h). The function C(·) is
called covariogram or covariance function.

c. The variance function is defined by the literal b when h = 0, therefore
V ar(Z(s)) = C(0) = σ2 < ∞ does not depend on the location.
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The process {Z(s) : s ∈ D ⊂ Rd} is called intrinsically stationary if E[Z(s)] =
µ and V ar(Z(s) − Z(s + h)) = 2γ(h). The function γ(h) is called the semivari-
ogram of the spatial process.

If a random field is strictly stationary it is also second-order stationary, but
the reverse is not necessarily true. A Gaussian random field is defined as a ran-
dom function whose finite-dimensional distributions are multivariate Gaussian. If
a Gaussian random field is second-order stationary it is also strictly stationary,
(Schabenberger & Pierce 2001).

A second-order stationary process is also intrinsically stationary, but intrinsic
stationarity does not imply second-order stationarity, (Schabenberger & Gotway
2017). Second-order stationarity implies the following relationship between the
semivariogram function and the covariogram function:

γ(h) = C(0)− C(h). (1)

Whereas in a stationary random field the absolute coordinate differences are
immaterial, the orientation (angle) of the lag vector h matters. If the semivari-
ogram or covariance function do not depend on the direction of the lag vector h,
but these depends only on the absolute distance between points, the random field
is termed isotropic, (Schabenberger & Gotway 2017).

In a second-order isotropy stationary random field with isotropic covariogram
the covariance between any two points Z(s) and Z(s + h) is only a function of
the Euclidean distance between the two points, Cov(Z(s), Z(s + h)) = C(∥h∥),
Schabenberger & Pierce (2001).

For a second-order stationary random field, the isotropic semivariogram has a
typical form showed in the Figure 1, where one can observe the following elements:
nugget effect, sill and range. The nugget effect, denoted by τ2, represents the
discontinuity at the origin of the semivariogram, which may be due to the fact
that part of the spatial structure is concentrated at distances less than observed.
The sill, denoted by σ2, corresponds to the upper asymptote of the semivariogram
and it represents the V ar[Z(s)] = C(0). The range, denoted by ϕ, refers to the
distance from which two observations are spatially uncorrelated.

The semivariogram is a function of the spatial process and as such satisfies
certain properties, among these, the semivariogram must be conditionally negative-
definite, this is

p∑
i=1

p∑
j=1

αiαjγ(si − sj) ≤ 0, (2)

for any number of spatial locations {si : i = 1, . . . , p} and constants α1, . . . , αp

such that
p∑

i=1

αi = 0. For more details about the properties of the semivariogram,

the readers can consult Schabenberger & Pierce (2001), Waller & Gotway (2004)
and Cressie (2015), among others.
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Figure 1: Semivariogram of a second-order stationary process with nugget effect.

The goal of semivariogram estimation is to estimate the unknown parameters
of a theoretical semivariogram model γ(h,θ). Estimation of the semivariogram is
not easy because it must be conditionally negative definite. Estimating a semi-
variogram is usually a two-step process: (i) to derive an empirical estimate of the
semivariogram from the data and (ii) to fit a theoretical semivariogram model to
the empirical estimate, Schabenberger & Pierce (2001).

The semivariogram conveys information of the spatial dependence of a random
field. An unbiased estimator of the semivariogram, called the classical semivari-
ogram estimator or Matheron estimator, is given by

γ̂(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

(Z(si)− Z(sj))
2 (3)

where N(h) is the set of locations pairs that are separated by the lag vector h and
|N(h)| denotes the cardinality of this set.

Estimation of the semivariogram by parametric statistical methods requires the
selection of a semivariogram model γ(h,θ), where θ is a vector of parameters that
is estimated from the data by direct or indirect methods (methods that process the
data in some form generating summary amounts, and then fit the semivariogram
model to these summaries). Functions that serve as semivariogram models must
be conditionally negative definite, Schabenberger & Pierce (2001). Among the
semivariogram models more common we found the linear, spherical, exponential,
Matern and Gaussian model. In particular, the exponential model is given by

γ(h,θ) =

{
0 ∥ h ∥= 0,

τ2 + σ2
(
1− e−3∥h∥/ϕ) ∥ h ∥≠ 0.

(4)

For the exponential semivariogram to be valid we need to have τ2 ≥ 0, σ2 ≥ 0,
and ϕ ≥ 0. The covariance function of the exponential model without nugget effect
is

C(h,θ) =

{
σ2, ∥ h ∥= 0,

σ2(e−3∥h∥/ϕ), ∥ h ∥> 0.
(5)
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The more flexible Matern semivariogram model is given by

γ(h,θ) = τ2 + σ2

[
1− (2

√
kh/ϕ)k

2k−1Γ(k)
Kk(2

√
kh/ϕ)

]
, (6)

where Γ(·) is the gamma function and Kk(·) is the modified Bessel function
of order k. This function is valid for ϕ > 0 and k > 0. The case when k = 0.5
reducing to the exponential model.

The readers interested in explore more about spatial data analysis can consult
(Schabenberger & Pierce 2001), (Haining 2003),(Cressie 2015), and (Schabenberger
& Gotway 2017) among other textbooks.

3. Control Charts for the Mean of a Spatial
Process

Grimshaw et al. (2013) proposed two control charts for monitoring the mean of
a spatial process, based on the classical multivariate T 2 control chart and MEWMA
control chart. In these control charts instead of measuring multiple quality charac-
teristics, only one quality characteristic is measured in multiple sites of the product
or process, where the spatial dependendency sctructure of the process is repre-
sented by the parametrized covariance matrix based on the semivariogram that
models the spatial correlation, under the assumption that the process is isotropic
stationary Gaussian.

Let Zj,t = [Zj,t(s1), . . . , Zj,t(sp)]
′ be a p× 1 vector with the measurements of

the quality characteristic on the jth product, j = 1, . . . , n, at the time t, from the
spatial process {Z(s) : s ∈ D}. When the process is in control, µ(s) = µ0, for all
s, but when the process is out of control, µ(s) ̸= µ0 for at least one location s. Let
Z̄t be mean vector of the n sampled products at each of the p locations, at the
time t. Under the assumption that Zj,t is an isotropic stationary Gaussian process
with mean E(Z(s)) = µ(s) = µ0, the T 2 control chart produces an out-control
signal when

T 2
t = n(Z̄t − µ0)

′Σ(θ0)
−1(Z̄t − µ0) (7)

exceeds the upper control limit χ2(1/ARL0; p), where ARL0 denotes the in-
control ARL, µ0 = [µ0, . . . , µ0]

′ is the in-control mean vector and Σ(θ0) is the
covariance matrix based on the semivariogram that models the spatial correlation
with parameters θ0.

The spatial multivariate EWMA control chart proposed by Grimshaw et al.
(2013) detects small and medium shifts, sustained over time, in the mean of a
spatial process, based on the classical MEWMA control chart. This new chart
signals a process is out of control at time t when

Qt = W ′
tΣ

−1
W W t (8)
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exceeds the upper control limit, where

W t = λ(Z̄t − µ0) + (1− λ)W t−1 (9)

with 0 < λ ≤ 1 and

ΣW =
1

n

(
λ[1− (1− λ)2t]

2− λ

)
Σ(θ0), (10)

where Σ(θ0) is constructed from the semivariogram.

4. Spatial multivariate CUSUM Control Chart

Grimshaw et al. (2013) proposed two control charts for monitoring the mean
of a spatial process based on the classical T 2 and MEWMA control charts. The
spatial control chart is a straighforward application of the T 2 control chart, there-
fore this control chart is relatively insensitive to small and moderate shifts in the
mean vector because it uses information only from the current sample. The spa-
tial control chart can be used in both phase I and phase II situations. The spatial
MEWMA control chart is a modified version of the classical MEWMA chart, was
designed to detect small and medium shifts that persist over time, and as in the
MEWMA chart, this version is a phase II procedure.

Other well-known and effective alternative to the multivariate EWMA chart
for detecting small sustained shifts in the mean is the multivariate cumulative sum
chart, Montgomery (2019). In this paper, we propose an extension of a multivari-
ate CUSUM chart that takes into account the spatial dependence between the
measurements of a single quality characteristic in different product locations for
monitoring the mean of a spatial process. In this new chart, under the assumption
that the process is isotropic stationary Gaussian, the spatial dependendency sc-
tructure of the process is represented by the parametrized covariance matrix based
on the semivariogram that models the spatial correlation. We will call this new
chart as spatial MCUSUM, which is based on the classical MCUSUM proposed by
Crosier (1988).

Let Zj,t(s) = [Zj,t(s1), . . . , Zj,t(sp)]
′, j = 1, . . . , n, be an vector in phase II,

at a time t, with the measurements on the jth product of the quality charac-
teristic of interest taken at the locations s1, . . . , sp. We assume that Zj,t is an
isotropic stationary Gaussian process with mean vector µ0 = [µ0(s1), . . . , µ0(sp)]

′,
E(Zj(si)) = µ0(si) = µ0, and covariance matrix determined by the semivariogram
that models the spatial correlation, Σ(θ0). The in-control mean vector µ0 de-
scribes the mean of a single quality characteristic measured at different locations.
The statistic plotted on the control chart at that point of time is

Ut =

[
S′

t

(
Σ(θ0)

n

)−1

St

]1/2

(11)
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where

St =

 0, if Ct ≤ k

(St−1 + Z̄t − µ0)

(
1− k

Ct

)
, otherwise,

(12)

where S0 = 0, Z̄t =
1
n

n∑
j=1

Zj,t(s) is the mean vector of the n sample products at

each of the p locations at the time t, k = 0.5 is an allowance constant, and

Ct =

[
(St−1 + Z̄t − µ0)

′
(
Σ(θ0)

n

)−1

(St−1 + Z̄t − µ0)

]1/2

(13)

The chart gives a signal of spatial process mean shift at the t-th time point
when Ut > h, where h > 0 is the control limit chosen to reach a pre-specified
ARL0 value, Σ(θ0) is constructed from the semivariogram, and θ0 contains the
parameters of the semivariogram of a second-order stationary random field, for
example, θ0 = (σ2, ϕ) for an exponential semivariogram model without nugget
effect. When Ct is less than or equal to k, St is set to be 0, because there is little
evidence of process mean shift in such cases, Qiu (2013).

The spatial MCUSUM control chart is based on the assumption that the pro-
cess is isotropic stationary Gaussian, therefore the assumptions of normality, con-
stant variance at all s, and isotropy must be guaranteed. Qiu (2008) and Qiu
(2013) showed that the actual IC ARL values of the traditional MCUSUM chart
are far away from their nominal IC ARL value for some non-normal distributions.
If the number of locations is larger than the number of observations, (p ≫ n),
the central limit theorem is not applicable, therefore the distribution of the sam-
ple mean vector may be multivariate non-normal when the observations from a
multivariate non-normal process. Therefore, it is important to ensure that the
process is Gaussian. Initially, we would test the multivariate normality for the
finite-dimensional distribution at the specific locations where the quality charac-
teristic is measured, using some tests such as Mardia’s, Henze-Zirkler’s, or Roys-
ton’s test or some graphical approaches such as chi-square Q-Q plot; but this
does not guarantee that the spatial process is Gaussian. Some tests have been
designed to determine whether a spatial process is Gaussian. Yuan (2000) derived
tests of Gaussianity for stationary random fields on Zd (d ≥ 1) based on the es-
timated kth-order spectrum (k > 2) at all the discrete frequencies. He used the
likelihood-ratio principle. Di Bernardino, Estrade, León et al. (2017) dealt with
a real-valued stationary isotropic random field and used the information given by
level functionals of a single realization of the process to build a test of Gaussianity.
The level functional is the Euler characteristic (EC) of the excursion sets above
some levels. More research is required to study the robustness of the proposed
spatial MCUSUM chart, as well as the development of new robust control charts
to monitor the mean of a single characteristic of a product or process, when the
measurements are taken in different locations on each sampled item.

An user may use graphical diagnostics, such as directional sample variograms,
rose diagrams, and empirical semivariogram contour plot to decide whether the
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assumption of isotropy is reasonable. These graphical techniques can be difficult
to assess, open to subjective interpretations, and misleading. Hypothesis tests of
the assumption of isotropy may be more objective. To this end, we found among
others, the proposals formulated by Cabaña (1987), Maity & Sherman (2012), and
Weller & Hoeting (2020).

There are only few papers that discuss hypothesis tests of stationarity, among
these, Fuentes (2005) presented a test of stationarity for spatial random fields
based on spatial spectral analysis (spectral functions which are space dependent),
under the assumption that the spatial random field is on a regular grid. The
proposed method consists essentially in testing the homogeneity of a set of spatial
spectra evaluated at different locations.

Because the assumption of isotropic stationary spatial process, when the pro-
cess is in control, the mean of the quality characteristic that describes the spatial
process is constant for all location. If the spatial MCUSUM chart exhibits an
out-of-control signal, at least one of the physical locations departs from the spec-
ifications. Because the spatial correlation, using kriging the users can predict the
quality charateristic at locations where measurements were not taken. Therefore,
the sample unit can be diagnosed with a graphic representing measurements at all
locations, and thus detect defective regions.

Because the assumption of stationarity of the spatial process and to the fact
that the in-control covariance matrix is a function of the parameters of the semi-
variogram and the distances for each pair of points, the spatial MCUSUM control
chart can be computed even if the spatial measurement locations and/or the num-
ber of spatial measurements p change.

The efficient estimation of semivariogram parameters is affected by the se-
lected sampling design, this is, the number of sites and the spatial configuration
where measurements are taken. Grimshaw et al. (2013) pointed out, the optimal
allocation scheme depends on the type of defects that are of concern: the best
performance is obtained when the measurement grid is chosen to cover the loca-
tions and types of anticipated defects and then the sample size maximized subject
to resource constraints. In this paper, we do not study the effect that the imple-
mentation of some sample design criteria would have on the performance of the
proposed control chart. It would be interesting to investigate this issue. Some
design criteria, among others, have been proposed by Bogaert & Russo (1999),
Müller & Zimmerman (1999), Marchant & Lark (2007). An interesting review
about this issue is presented by Zimmerman & Buckland (2019).

In the spatial MCUSUM chart the covariance matrix is determined by the
semivariogram that models the spatial correlation. The semivariogram is a pa-
rameter of the spatial process that generally must be estimated from the data in
phase I, usually in a procedure of two steps: (1) derive an empirical estimate of the
semivariogram from the data and (2) fit a theoretical semivariogram model to the
empirical estimate. There are various methods of fitting semivariogram models,
such as least squares, maximum likelihood, and robust methods (Cressie 2015).
These techniques require a large number of variogram points. Another alternative
is a visual fit of the variogram points to a few standard models. A visual check
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against a fitted theoretical model is appropriate (Hohn 1998). Studying both the
impact of the misspecifying the semivariogram model and the effect of estimating
the parameters of the semivariogram on the performance of the spatial MCUSUM
chart in phase II are issues of great importance that are not addressed in this
paper, which deserve further investigation.

5. Simulations

In this section, we present some simulation results to evaluate, in phase II, the
numerical performance of the proposed spatial MCUSUM chart. We have orga-
nized these results in three subsections: in the first, the spatial T 2, MCUSUM and
MEWMA control charts are compared and the effects of sample sizes and mag-
nitude of the non-centrality parameter are analyzed; in the second, the effects of
the range of the semivariogram model in the performance of the spatial MCUSUM
chart are evaluated, and finally the third subsection evaluates the robustness of
the performance of the spatial MCUSUM control chart under deviations in the
normality assumption.

The simulations are carried out under the hypothesis that the spatial corre-
lations come from a exponential model without a nugget effect with parameters
σ2 = 0.03 and ϕ = 1. A spatial measurement grid density of 12 points is consid-
ered, with 1.5 units between points.

5.1. Performance Comparison Between the Spatial T 2,
MEWMA and MCUSUM Control Charts

We compare the numerical performance of the proposed spatial MCUSUM
chart with the performance of the spatial T 2 and spatial MEWMA (considering
λ = 0.1, 0.2, 0.4, 0.8) control charts. In order to measure the numerical perfor-
mance of the proposed control chart in phase II, we calculate the average run
length for different changes in the mean vector, (ARL1). The level of shifts in the
mean vector is described by the non-centrality parameter (ncp), which is defined
as

δ = ((µ1 − µ0)
′
[Σ(θ0)]

−1(µ1 − µ0))
1/2 (14)

where µ0 represents a vector of means under control and µ1 the new vector of
means, (Montgomery 2019). Large values of δ represent large shifts in the mean
vector. When δ = 0, the mean process is under control and the measure of
performance is denoted as ARL0.

Two sample sizes are explored: n1 = 1 and n6 = 6. For the three spatial
control charts considerated, the control limits and ARL are calculated using the
next algorithm:

1. An initial control limit (h) is established.
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2. Under the assumption that the spatial process is isotropic, stationary and
Gaussian, random vectors from a multivariate normal distribution are sim-
ulated with mean vector zero (µ0 = 0) and covariance matrix defined by an
exponential semivariogram model (Σ0) until the control statistic exceeds the
value of the control limit h.

3. The run length (RL) is calculated.

4. Steps 2 and 3 are repeated 100.000 times and the ARL is estimated.

5. If ÂRL0 < 200, h is increased (If ÂRL0 > 200, h is decreased) and go to
step 2.

6. Once the ÂRL0 = 200, a mean shift (µ1 = µ0 + ξ) is stablished.

7. 100.000 random vectors are generated from a multivariate normal distribu-
tion with mean vector µ1 and covariance matrix Σ0.

8. To estimate ARL1.

The R code for implementing the proposed scheme, including the procedure
for finding the control limit, is available from the authors upon request.

Table 1: Performance comparison between the spatial T 2, MEWMA (λ = 0.1, 0.2, 0.4
and 0.8) and MCUSUM control charts for processes where the spatial cor-
relation from an exponential model without a nugget effect with parameters
σ2 = 0.03 and ϕ = 1.

Control Charts T 2 MCUSUM MEWMA (λ=0.1)
Matrix δ n1 n6 n1 n6 n1 n6

Σ (0.03,1)

0.00 200.00 200.00 200.00 200.00 200.00 200.00
0.060 197.15 196.02 185.47 148.13 194.39 163.57
0.121 193.55 185.08 160.18 83.95 173.05 100.87
0.189 192.37 168.59 127.33 50.25 145.21 54.54
0.312 186.98 129.40 78.70 27.72 95.97 21.97
0.696 136.31 37.26 31.12 11.54 26.32 5.44
1.00 99.62 12.22 20.42 7.99 13.50 3.03
2.02 22.63 1.32 9.71 4.08 4.11 1.17
3.00 6.18 1.00 5.34 2.95 2.18 1.00

Control Charts MEWMA (λ=0.2) MEWMA (λ=0.4) MEWMA (λ=0.8)
Matrix δ n1 n6 n1 n6 n1 n6

Σ (0.03,1)

0.00 200.00 200.00 200.00 200.00 200.00 200.00
0.060 196.07 178.66 199.14 187.80 195.66 193.76
0.121 184.23 128.57 192.71 156.81 193.92 181.28
0.189 164.77 79.02 180.63 115.23 188.88 158.27
0.312 122.88 31.60 153.38 56.39 175.85 108.09
0.696 38.48 6.07 67.18 8.17 117.28 22.02
1.00 17.71 3.26 31.42 3.70 73.57 7.05
2.02 4.52 1.21 5.53 1.23 13.05 1.26
3.00 2.34 1.00 2.51 1.00 3.61 1.00

Table 1 shows the performance of the spatial T 2, MEWMA (with λ = 0.1, 0.2,
0.4, 0.8) and MCUSUM control charts for processes with spatial correlation, where
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the spatial correlation from an exponential model without nugget effect with
σ2 = 0.03 and ϕ = 1. The performace of these control charts is calculated for
9 values of δ. For small shifts in the mean vector (δ=0.06 to δ=0.312) the spatial
MCUSUM chart has better performance than the spatial T 2 and MEWMA control
charts. For moderate shifts in the mean vector (δ = 0.696, 1 and 2.02) the spatial
MEWMA(λ = 0.1) presents better performance. For large shifts (δ = 3), the
spatial T 2 and MEWMA control charts show a better performance when n = 6,
while the MEWMA(λ = 0.1) is better for n = 1.

5.2. Effects of the Range of the Exponential Model

Table 2 presents a comparison in the performance of the spatial MCUSUM
chart for n = 6 and different values of range (ϕ) in the exponential model consid-
ered. According to the results, the chart presents a similar behavior for different
values of the range, that is, the spatial MCUSUM chart is not sensitive to changes
presented by the parameter ϕ.

Table 2: Performance comparison of the spatial MCUSUM chart for n = 6 and processes
where the spatial correlation from an exponential model without a nugget effect
with parameters σ2 = 0.03 and different values of ϕ.

δ ϕ = 1 ϕ = 4 ϕ = 10 ϕ = 20

0.00 200.00 200.00 200.00 200.00
0.06 148.13 147.21 150.06 146.65

0.121 83.95 83.97 83.70 83.21
0.189 50.25 50.16 50.40 49.97
0.312 27.72 27.79 27.73 27.80
0.696 11.54 11.55 11.55 11.55
1.00 7.99 7.96 7.99 7.98
2.02 4.08 4.08 4.08 4.08

Table 3 shows the influence of the sample size in the performance of the spatial
MCUSUM chart under two range values and two sample sizes. For the two range
values, the performance of the spatial MCUSUM chart is better when the sample
size is larger.

Table 3: Influence of the sample size in the performance of the spatial MCUSUM chart
for n = 1 and 6 from an exponential model without a nugget effect with
parameters σ2 = 0.03 and ϕ = 1 and 4.

σ2 = 0.03 ϕ = 1 ϕ = 4

δ n1 n6 n1 n6

0.00 200.00 200.00 200.00 200.00
0.06 185.47 148.13 187.11 147.21

0.121 160.18 83.95 160.25 83.95
0.189 127.33 50.25 124.84 50.25
0.312 78.70 27.72 78.72 27.72
0.696 31.12 11.54 30.78 11.54
1.00 20.42 7.99 20.39 7.99
2.02 9.71 4.08 9.70 4.08
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5.3. Robustness of the Performance of the Spatial MCUSUM
Control Chart, Under Deviations in the Normality
Assumption

Both the multivariate t and the multivariate normal are members of the gen-
eral family of elliptically symmetric distributions. Multivariate t distributions
are generalizations of the classical univariate Student t distribution. Multivariate
t-distributions offer a more viable alternative with respect to real-world data, par-
ticularly because its tails are more realistic than the multivariate normal distribu-
tion. This distribution has been used in different fields such as physics, engineering
and finance. Its degrees of freedom parameter, υ, is also referred to as the shape
parameter, because the peakedness of the density function may be diminished,
preserved, or increased by varying υ (Nadarajah & Kotz 2005). The covariance
matrix of this distribution is only defined if υ > 2 (Frey 2010). Other family of
distributions with applications in the real world is the Multivariate generalized
hyperbolic distributions (MGH distributions). The MGH distributions were intro-
duced by Barndorff-Nielsen (1978). These distributions in general are skewed and
represent an attractive family of distributions with exponentially decreasing tails
for multivariate data modelling (Frey 2010). Under the exponential model con-
sidered and n = 6, Table 4 shows the performance of the spatial MCUSUM chart
under three different distributions: multivariate normal, multivariate t-student
with υ = 3 and 10, and MGH(0.5, 0.5, 2,µ0,Σ(θ0),0).

Table 4: Effect of the distributional assumption in the performance of the spatial
MCUSUM chart

δ N(µ0,Σ(θ0) t3(µ0,Σ(θ0)) t10(µ0,Σ(θ0)) MGH(0.5, 0.5, 2,µ0,Σ(θ0)),0)
0.00 200.00 200.00 200.00 200.00
0.06 148.13 176.71 153.75 180.44

0.121 83.95 132.13 92.99 128.40
0.189 50.25 94.35 57.89 79.59
0.312 27.72 58.70 32.72 32.13
0.696 11.54 26.15 13.80 8.103
1.00 7.99 18.16 9.53 5.09
2.02 4.08 9.09 4.83 2.40

According to the obtained results, the performance of the spatial MCUSUM
control chart is sensitive to the distributional assumption. However, because the
control limits are found by simulation to guarantee a predetermined ARL in-
control, no distributional assumptions are required for the data.

6. Example

To illustrate the application of the proposed spatial MCUSUM control chart,
we consider the problem of monitoring bottle thickness presented by (Grimshaw
et al. 2013). The production of bottles is done by a blown model, which can vary
the thickness of the bottle-wall when the air pressure is not uniform in the time,
causing the surface of the bottle to curve inward. Bottle-wall thickness is measured
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using a nondestructive ultrasound micrometer. Bottle is a three-dimensional ob-
ject, which is represented more simply in two dimensions “unwrapping” the bottle.

In this example, according to the requirements of the manufacturer, 8 locations
of the bottles were selected (p), which belongs the phase I sample, with a uniform
thickness of 0.055 inch. The sample is made up 26 bottles, includes four locations
around the cylinder at two heights, p = 8. There were m = 4 days where n = 6
bottles were measured in a thick spatial measurement grid, to improve production
of semivariogram for distances close to zero were collected in two other denser
spatial measurement grids, a 5 × 5 grid with dimensions of 0.25 inches away one
day and a 5 × 5 grid with dimensions of 0.125 inches away the other day. These
measurements are skewed, but the log transformation produces data that are ap-
proximately distributed as multivariate normal, according to multivariate version
of the statistic Shapiro-Wilk (p-value= 0.6832).

The in-control mean vector is µ0 = ln(0.055)1p = −2.91p, where 1p is an p×1
column vector of ones. The in-control covariance matrix is estimated based on
the semivariogram that models the spatial correlation. Figure 2 shows the plot
of (Z(si)−Z(sj))

2

2 against the arc distance measured in inches, d(si, sj), for each
pair of points on the bottles from the phase I sample (first 4 days), represented
by circles, which indicate that there is no evidence of a nugget effect. The figure
also includes the estimated semivariogram based on the exponential model without
nugget effect (solid line), the Matern model without a nugget efect (black dash-dot
line) and the Spherical model (gray dotted line). The parameters of the exponential
semivariogram model without a nugget effect are estimated using n-weighted least
squares and a numerical minimization algorithm in the geoR package of software
R, (Ribeiro Jr. & Diggle 2001). Notice in Figure 2 that small d have smaller error
bars than larger d. Cressie (2015) describes how a simple nonlinear least-squares
estimator would ignore the fact that the variance is a function of distance and
a weighted least-squares approach could improve model fit by allowing different
variances. Of the three spatial correlation models the exponential model better
fit. For the exponential model σ̂2 = 0.034 and ϕ̂ = 3.194; for the Matern model
σ̂2 = 0.028, ϕ̂ = 0.167 and k = 52.791, and for the spherical model σ̂2 = 0.028 and
ϕ̂ = 5.

There is no evidence of a nugget effect because the empirical semivariogram
cloud approaches zero for small distances. Based on these phase I sample bottles,
the spatial control chart will use the covariance based on the exponential model
without a nugget-effect. Figure 3 shows the spatial T 2, MEWMA and MCUSUM
control charts using the exponential, Matern and spherical models to estimate the
semivariogram, where the upper control limit for the spatial T 2 is calculated as the
percentile χ2

0.005,8 = 21.95, the control limits for the spatial MCUSUM chart and
spatial MEWMA (λ = 0.2) chart are h = 12.7 and h = 27.2, respectively, which
are chosen by simulations to obtain an ARL0 = 200. The spatial MCUSUM chart
behaviour is similar in the three models; the same situation occurs for the spatial
T 2 and MEWMA(λ = 0.2) chart. These control charts show 2 out-of-control
signals, corresponding to the days 7 and 8.
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Figure 2: Estimated Semivariogram.

Figure 3: Spatial T2 control chart: a) using the exponential model without nugget effect
(grey solid line), b) using the Matern model without nugget effect (black solid
line), and c) the spherical model (grey dash-dot line ); Spatial MCUSUM con-
trol chart: d) using the exponential model without nugget effect (grey dotted
line), e) using the Matern model without nugget effect (black dotted line), f)
the spherical model (black dash-dot line); and Spatial MEWMA(λ = 0.2) con-
trol chart: g) using the exponential model without nugget effect (black thick
line), h) using the Matern model without nugget effect (black thick dotted
line), and i) the spherical model (black thick dash-dot line), for monitoring
bottle thickness.

In this example, the three control charts show the same performance, this may
be because only 4 days are used for the estimation of parameters in phase I.
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7. Conclusions

This paper presents a new type of MCUSUM control chart for monitoring, in
phase II, the mean of a single characteristic with spatial dependence. Under the
assumption that the observations from an isotropic stationary Gaussian process,
the control chart proposed taking account the spatial correlation that exists be-
tween the observations of the characteristic that are measured at different sites.
This new control chart is called spatial MCUSUM. To ensure a good performance
of the proposed control chart, the assumptions of multivaraite normality, constant
variance at all location, and isotropy must be verified.

Although the spatial MCUSUM chart constitutes an extension of the classical
multivariate cusum control chart, the control chart proposed differs in three fun-
damental points: only a single quality characteristic is measured in different sites,
the covariance matrix is estimated based on the semivariogram that takes into
account the spatial dependence, and the observations from an isotropic Gaussian
process.

According to the simulation study, which considered only the exponential semi-
variogram, for small shifts in the mean vector the spatial MCUSUM chart has bet-
ter performance than the spatial T 2 and MEWMA control charts. For moderate
shifts in the mean vector the spatial MEWMA(λ = 0.1) presents better perfor-
mance. For large shifts the spatial T 2 (with n > 1) and MEWMA control charts
show a better performance. It would be interesting to explore the performance of
these three control charts using other semivariogram models. The performance of
the spatial MCUSUM control chart is sensitive to the distributional assumption,
although the control limit can be found by simulation to guarantee a predeter-
mined ARL in-control. More research is required to study the robustness of the
proposed spatial MCUSUM chart.

The spatial MCUSUM control chart is based on the assumption that the pro-
cess is isotropic stationary Gaussian, therefore is important verify, in phase I, that
the spatial process satisfies the assumptions of isotropy, stationarity and normal-
ity. An user may use graphical diagnostics, such as directional sample variograms,
rose diagrams, and empirical semivariogram contour plot to decide whether the
assumption of isotropy is reasonable, or use the proposals presented by Cabaña
(1987), Maity & Sherman (2012), or Weller & Hoeting (2020) to test this hypoth-
esis. The stationarity can be verified using the proposal presented by Fuentes
(2005), for example; while the assumption of normality can be verified using the
proposals formulated by Yuan (2000) or Di Bernardino et al. (2017).

Another interesting research topic could be the extending of this procedure for
health surveillance. The timely detection of various types of adverse health events
is very important for the agencies responsible for health surveillance. For example,
detect disease outbreaks such as asthma or influenza. The delay in the detection
of and response to an adverse health event can result in the loss of lives and high
economic costs. The early detection of these events allows preparing contingency
plans to contain them. Using the spatial information that is given by the location
can potentially enable localized outbreaks of a disease to be detected, or variations
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in regional patterns to be identified (Unkel, Farrington, Garthwaite, Robertson &
Andrews 2012). The proposed spatial MCUSUM control chart could help detect
these outbreaks or changes. This extension must consider, among others, the
following observations: 1) risk adjust the outcome data before constructing a
control chart, 2) find measures appropriate to evaluate the performance of the
control proposed chart in the health care context, 3) adjust the population at
risk, which it varies over time, 4) capture the space-time dependence presents in
the data. Some interesting references on this topic are Sonesson & Bock (2003),
Woodall (2006), and Tsui, Chiu, Gierlich, Goldsman, Liu & Maschek (2008).

It would be interesting to investigate a version of the proposed control chart
for phase I, as well as the effect of the estimation in phase I on the performance
of the chart in phase II.

Acknowledgements

The authors thank the two anonymous referees for their many helpful comments
that have resulted in significant improvements in the article. We especially thank
the professor Scott Grimshaw, who provided the example data set.[

Received: March 2019 — Accepted: December 2019
]

References

Alt, F. B. & Smith, N. D. (1988), ‘Multivariate process control’, Handbook of
statistics 7, 333–351.

Barndorff-Nielsen, O. (1978), ‘Hyperbolic distributions and distributions on hy-
perbolae’, Scandinavian Journal of statistics pp. 151–157.

Bersimis, S., Sgora, A. & Psarakis, S. (2018), ‘The application of multivariate
statistical process monitoring in non-industrial processes’, Quality Technology
& Quantitative Management 15(4), 526–549.

Bogaert, P. & Russo, D. (1999), ‘Optimal spatial sampling design for the estima-
tion of the variogram based on a least squares approach’, Water Resources
Research 35(4), 1275–1289.

Cabaña, E. M. (1987), ‘Affine processes: a test of isotropy based on level sets’,
SIAM Journal on Applied Mathematics 47(4), 886–891.

Capizzi, G. (2015), ‘Recent advances in process monitoring: Nonparametric and
variable-selection methods for phase i and phase ii’, Quality Engineering
27(1), 44–67.

Chakraborti, S., Human, S. & Graham, M. (2008), ‘Phase i statistical process
control charts: an overview and some results’, Quality Engineering 21(1),
52–62.

Revista Colombiana de Estadística 43 (2020) 49–70



Spatial MCUSUM Control Chart 67

Colosimo, B. M., Cicorella, P., Pacella, M. & Blaco, M. (2014), ‘From profile
to surface monitoring: Spc for cylindrical surfaces via gaussian processes’,
Journal of Quality Technology 46(2), 95–113.

Cressie, N. (2015), Statistics for spatial data, John Wiley & Sons.

Crosier, R. B. (1988), ‘Multivariate generalizations of cumulative sum quality-
control schemes’, Technometrics 30(3), 291–303.

Di Bernardino, E., Estrade, A., León, J. R. et al. (2017), ‘A test of gaussian-
ity based on the euler characteristic of excursion sets’, Electronic journal of
statistics 11(1), 843–890.

Frey, R. (2010), Multivariate distributions, in ‘Encyclopedia of Quantitative Fi-
nance’, Wiley Online Library.

Fuentes, M. (2005), ‘A formal test for nonstationarity of spatial stochastic pro-
cesses’, Journal of Multivariate Analysis 96(1), 30–54.

Garthoff, R. & Otto, P. (2015), Simultaneous surveillance of means and covariances
of spatial models, in ‘Stochastic Models, Statistics and Their Applications’,
Springer, pp. 271–281.

Grimshaw, S. D., Blades, N. J. & Miles, M. P. (2013), ‘Spatial control charts for
the mean’, Journal of Quality Technology 45(2), 130.

Haining, R. (2003), Spatial data analysis: theory and practice, Cambridge univer-
sity press.

Hohn, M. (1998), Geostatistics and petroleum geology, Springer Science & Business
Media.

Hotteling, H. (1947), ‘Multivariate quality control, illustrated by the air testing of
sample bombsights’, Techniques of statistical analysis pp. 111–184.

Jones-Farmer, L. A., Woodall, W. H., Steiner, S. H. & Champ, C. W. (2014),
‘An overview of phase i analysis for process improvement and monitoring’,
Journal of Quality Technology 46(3), 265–280.

Kang, L. & Albin, S. L. (2000), ‘On-line monitoring when the process yields a
linear profile’, Journal of Quality Technology 32(4), 418–426.

Khoo, M. B., Wu, Z., Castagliola, P. & Lee, H. (2013), ‘A multivariate syn-
thetic double sampling T2 control chart’, Computers & industrial engineering
64(1), 179–189.

Lee, M. H., Khoo, M. B. & Xie, M. (2014), ‘An optimal control procedure based on
multivariate synthetic cumulative sum’, Quality and Reliability Engineering
International 30(7), 1049–1058.

Lowry, C. A., Woodall, W. H., Champ, C. W. & Rigdon, S. E. (1992), ‘A multi-
variate exponentially weighted moving average control chart’, Technometrics
34(1), 46–53.

Revista Colombiana de Estadística 43 (2020) 49–70



68 Juan David Rojas Gordillo & Rubén Darío Guevara Gonzalez

Maity, A. & Sherman, M. (2012), ‘Testing for spatial isotropy under general de-
signs’, Journal of statistical planning and inference 142(5), 1081–1091.

Marchant, B. & Lark, R. (2007), ‘Optimized sample schemes for geostatistical
surveys’, Mathematical Geology 39(1), 113–134.

Montgomery, D. C. (2019), Introduction to statistical quality control, John Wiley
& Sons.

Müller, W. G. & Zimmerman, D. L. (1999), ‘Optimal designs for variogram esti-
mation’, Environmetrics: The official journal of the International Environ-
metrics Society 10(1), 23–37.

Nadarajah, S. & Kotz, S. (2005), ‘Mathematical properties of the multivariate t
distribution’, Acta Applicandae Mathematica 89(1-3), 53–84.

Nezhad, M. S. F. & Niaki, S. T. A. (2013), ‘A max-ewma approach to monitor and
diagnose faults of multivariate quality control processes’, The International
Journal of Advanced Manufacturing Technology 68(9-12), 2283–2294.

Noorossana, R., Saghaei, A. & Amiri, A. (2011), Statistical Analysis of Profile
Monitoring, John Wiley & Sons, Hoboken, New Jersey.

Peres, F. A. P. & Fogliatto, F. S. (2018), ‘Variable selection methods in multivari-
ate statistical process control: A systematic literature review’, Computers &
Industrial Engineering 115, 603–619.

Pignatiello Jr, J. J. & Runger, G. C. (1990), ‘Comparisons of multivariate cusum
charts’, Journal of quality technology 22(3), 173–186.

Qiu, P. (2008), ‘Distribution-free multivariate process control based on log-linear
modeling’, IIE Transactions 40(7), 664–677.

Qiu, P. (2013), Introduction to statistical process control, CRC Press.

Ribeiro Jr., P. J. & Diggle, P. J. (2001), ‘geoR: a package for geostatistical analy-
sis’, R-NEWS 1(2), 15–18.
*http://cran.R-project.org/doc/Rnews

Ryan, T. P. (2011), Statistical methods for quality improvement, John Wiley &
Sons.

Schabenberger, O. & Gotway, C. A. (2017), Statistical methods for spatial data
analysis, CRC press.

Schabenberger, O. & Pierce, F. J. (2001), Contemporary statistical models for the
plant and soil sciences, CRC press.

Sonesson, C. & Bock, D. (2003), ‘A review and discussion of prospective statistical
surveillance in public health’, Journal of the Royal Statistical Society: Series
A (Statistics in Society) 166(1), 5–21.

Revista Colombiana de Estadística 43 (2020) 49–70



Spatial MCUSUM Control Chart 69

Suriano, S., Wang, H., Shao, C., Hu, S. J. & Sekhar, P. (2015), ‘Progressive mea-
surement and monitoring for multi-resolution data in surface manufacturing
considering spatial and cross correlations’, IIE Transactions 47(10), 1033–
1052.

Tobler, W. R. (1970), ‘A computer movie simulating urban growth in the detroit
region’, Economic geography 46(sup1), 234–240.

Tsui, K.-L., Chiu, W., Gierlich, P., Goldsman, D., Liu, X. & Maschek, T. (2008),
‘A review of healthcare, public health, and syndromic surveillance’, Quality
Engineering 20(4), 435–450.

Unkel, S., Farrington, C. P., Garthwaite, P. H., Robertson, C. & Andrews, N.
(2012), ‘Statistical methods for the prospective detection of infectious dis-
ease outbreaks: a review’, Journal of the Royal Statistical Society: Series A
(Statistics in Society) 175(1), 49–82.

Waller, L. A. & Gotway, C. A. (2004), Applied spatial statistics for public health
data, Vol. 368, John Wiley & Sons.

Wang, A., Wang, K. & Tsung, F. (2014), ‘Statistical surface monitoring by spatial-
structure modeling’, Journal of Quality Technology 46(4), 359–376.

Wang, K., Jiang, W. & Li, B. (2016), ‘A spatial variable selection method for
monitoring product surface’, International Journal of Production Research
54(14), 4161–4181.

Weller, Z. D. & Hoeting, J. A. (2020), ‘A nonparametric spectral domain test of
spatial isotropy’, Journal of Statistical Planning and Inference 204, 177–186.

Williams, J. D., Woodall, W. H. & Birch, J. B. (2007), ‘Statistical monitoring
of nonlinear product and process quality profiles’, Quality and Reliability
Engineering International 23(8), 925–941.

Woodall, W. H. (2006), ‘The use of control charts in health-care and public-health
surveillance’, Journal of Quality Technology 38(2), 89–104.

Woodall, W. H. (2007), ‘Current research in profile monitoring’, Producao
17(3), 420–425.

Woodall, W. H. & Montgomery, D. C. (2014), ‘Some current directions in the
theory and application of statistical process monitoring’, Journal of Quality
Technology 46(1), 78–94.

Woodall, W. H., Spitzner, D. J., Montgomery, D. C. & Gupta, S. (2004), ‘Using
control charts to monitor process and product quality profiles’, Journal of
Quality Technology 36(3), 309–320.

Yuan, J. (2000), ‘Testing gaussianity and linearity for random fields in the fre-
quency domain’, Journal of Time Series Analysis 21(6), 723–737.

Revista Colombiana de Estadística 43 (2020) 49–70



70 Juan David Rojas Gordillo & Rubén Darío Guevara Gonzalez

Zhang, S., Liu, Y. & Jung, U. (2019), ‘Sparse abnormality detection based on
variable selection for spatially correlated multivariate process’, Journal of the
Operational Research Society 70(8), 1321–1331.

Zimmerman, D. L. & Buckland, S. T. (2019), Environmental sampling design,
in ‘Handbook of Environmental and Ecological Statistics’, CRC Press, pp.
181–210.

Revista Colombiana de Estadística 43 (2020) 49–70


