
Revista Colombiana de Estadística
January 2020, Volume 43, Issue 1, pp. 3 to 20

DOI: http://dx.doi.org/10.15446/rce.v43n1.78054

Relationship Between Kendall’s tau Correlation
and Mutual Information

Relación entre la correlación tau de Kendall e información mutua

Mohammad Bolbolian Ghalibafa

Department of Statistics, Faculty of Mathematics and Computer Science, Hakim
Sabzevari Univercity, Sabzevar, Iran

Abstract

Mutual information (MI) can be viewed as a measure of multivariate
association in a random vector. However, the estimation of MI is difficult
since the estimation of the joint probability density function (PDF) of non-
Gaussian distributed data is a hard problem. Copula function is an appro-
priate tool for estimating MI since the joint probability density function of
random variables can be expressed as the product of the associated copula
density function and marginal PDF’s. With a little search, we find that
the proposed copulas-based mutual information is much more accurate than
conventional methods such as the joint histogram and Parzen window-based
MI. In this paper, by using the copulas-based method, we compute MI for
some family of bivariate distribution functions and study the relationship
between Kendall’s tau correlation and MI of bivariate distributions. Finally,
using a real dataset, we illustrate the efficiency of this approach.

Key words: Copula function; Kendall’s tau correlation; Mutual
information.

Resumen

La información mutua (MI) puede ser vista como una medida de aso-
ciación multivariante en un vector aleatorio. Sin embargo, la estimación de
MI es difícil ya que la estimación de la función de densidad de probabilidad
conjunta (PDF) de datos distribuidos no gaussianos es un problema difícil.
La función copula es una herramienta apropiada para estimar el MI ya que
la función de densidad de probabilidad de las variables aleatorias se puede
expresar como el producto de la función de densidad de cópula asociada y
de los PDF marginales. Con una pequeña búsqueda, encontramos que la
información mutua propuesta basada en cópulas es mucho más precisa que
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los métodos convencionales, como el histograma de la articulación y el MI
basado en ventana de Parzen. En este artículo, al utilizar el método basado
en cópulas, calculamos el MI para algunas familias de funciones de distribu-
ción bivariadas y estudiamos la relación entre la correlación tau de Kendall
y el MI de las distribuciones bivariadas. Finalmente, usando un conjunto de
datos real, ilustramos la eficiencia de este enfoque.

Palabras clave: Función de cópula; Correlación tau de Kendall; Informa-
ción mutua.

1. Introduction

One way of determining the measure of dependence between two random vari-
ables is using the information theory. Some measures such as entropy, mutual
information, and quadratic mutual information play an important role in depen-
dence measuring of bivariate distributions and some papers have written in this
subject. The mutual information (also known as Kullback-Leibler divergence) is
a general measure of the dependence between two random variables. It expresses
the quantity of information one has obtained on X by observing Y . For two
discrete variables, the MI between them is given by Shannon & Weaver (1949).
The MI for random vector with underlying multivariate Gaussian distribution is
given by Kullback (1952), Kullback (1959). Bell (1962) has used MI as a mea-
sure of dependence and Joe (1989) has presented the relative entropy measures
of multivariate dependence. MI was calculated for the multivariate t distribution
by Guerrero-Cusumano (1996a), Guerrero-Cusumano (1996b) and Mercier (2005)
have arrived at the MI in Cuadras-Auge family of distributions. Also, Arellano-
Valle, Contreras-Reyes & Genton (2013) represent MI for the full symmetric class
of multivariate elliptical distributions and then extend it to the more flexible fam-
ilies of multivariate skew-elliptical distributions.

MI has been applied widely in signal processing such as image registration,
and feature selection. However, an efficient method to estimate MI accurately is
necessary. As an instance, in digital image processing, three approaches: specific
multivariate distribution assumption such as multivariate Gaussian distribution,
the joint histogram (Maes, Collignon, Vandermeulen, Marchal & Suetens 1997)
and the Parzen window (Kwak & Choi 2002) are usually used to estimate MI.
Multivariate distribution models such as the multivariate Gaussian are often em-
ployed. Note, however, that the distributions of the image pixel intensities in the
real world may not obey the Gaussian or other certain probability distributions.
Furthermore, known models of multivariate distributions require that the associ-
ated marginal distributions are consistent. However, the marginal distributions
usually are arbitrary. The joint histogram method computes the normalized joint
histograms of pixel intensities for the overlapping parts of two images, where the
joint histogram counts the number of occurrences of pixel pairs. The number of
bins is difficult to confirm, a smaller or greater bin number than the optimal num-
ber of bins is known to yield over-smoothed density and highly sparse density,
respectively. As for the Parzen window method, the selections of kernel function

Revista Colombiana de Estadística 43 (2020) 3–20



Relationship Between Kendall’s tau and Mutual Information 5

and parameter for kernel function are difficult to confirm. Furthermore, both the
joint histogram and the Parzen window cannot estimate the continuous form of
the joint probability density function. Zeng & Durrani (2011) introduce a novel
method using copula density function to estimate MI with the continuous form.
By using copulas-based mutual information Blumentritt & Schmid (2012) estimate
MI in Frank copula and Clayton copula by Monte Carlo simulations and describe
the estimators for MI. Kumar (2012) and Dobrowolski & Kumar (2014) compute
MI in two-parameter Marshall-Olkin family of copulas.

In this paper, we estimate MI for some family of bivariate distribution functions
by using copulas-based mutual information, but for calculating we use numerical
integration. In Section 2, we represent copulas-based mutual information. MI
for some family of bivariate distribution functions compute in Section 3, also we
study the relationship between Kendall’s tau correlation and MI of bivariate dis-
tributions. In Section 4, we compare the MI from various copulas mentioned in
Section 3 numerically and graphically. We examine the efficiency of this approach
in Section 5 with a real dataset. Finally, Section 6 concludes done. For these pur-
poses, we use the R software (R Development Core Team 2012) and for numerical
integration, we apply the R package “cubature”.

2. Copulas-Based Mutual Information

MI can be viewed as a measure of multivariate association in a random vector.
This measure is directly related to Shannon’s entropy. Assume that X and Y
are input and output respectively of a stochastic system, then Shannon’s entropy
H[X] represents the uncertainty of input X before output Y is observed while
conditional entropy H[X|Y ] is the uncertainty of input X after output Y has been
realized. The quantity is called mutual information (distance from independence)
between X and Y .

MI(X,Y ) = H[X]−H[X|Y ]

= H[X] +H[Y ]−H[X,Y ]

= H[X,Y ]−H[X|Y ]−H[Y |X],

Thus MI measures the decrease in uncertainty of X caused by the knowledge of Y
which is the same as the decrease in uncertainty of Y caused by the knowledge ofX.
The measure MI(X,Y ) indicates the amount of information of X contained in Y
or the amount of information of Y contained in X. Obviously MI(X,X) = H[X],
the amount of information contained in X about itself. MI is the recommended
measure in Kinney & Atwal (2014). The conventional MI for continuous variables
has been defined as:

MI(X,Y ) =

∫ ∫
X,Y

fXY (x, y) log
fXY (x, y)

fX(x)fY (y)
dxdy, (1)

where fXY (x, y) is the joint PDF, and fX(x) and fY (y) are the marginal PDF’s
of variables X and Y , respectively.
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The units of information depend on the base of the logarithm. If base 2, e or
10 is used, information is measured in bits, nats or bans respectively. We use base
e in this paper. For more details, see Table 1.

Table 1: The units of information.
Base Units Conversion

2 bits 1bit = 1bit

e nats 1bit = loge2(≈ 0.693)nats

10 bans 1bit = log102(≈ 0.301)bans

MI is always greater than or equal to zero, with equality iff X and Y are
independent; the higher the MI obtained the stronger the dependency between X
and Y . It is lower than the entropy of both variable, and equality only occurs iff
one variable is a deterministic function of the other:

0 ≤MI(X,Y ) ≤ min(H[X],H[Y ]). (2)

Copulas provide a useful way to model different types of dependence structures
explicitly. Instead of having one correlation number that encapsulates everything
known about the dependence between two variable, copulas capture information
on the level of dependence as well as whether the two variables exhibit other
types of dependence. In particular, copula density functions offer a natural way
to estimate MI instead of the joint and marginal probability density functions,
marginal and joint entropy.

Let (X,Y ) be a random vector with density function fXY (x, y), distribution
function FXY (x, y) and marginals FX(x) and FY (y). The copula function C(u, v)
is a bivariate distribution function with uniform marginals on [0, 1], such that

FXY (x, y) = CF (FX(x), FY (y)).

By Sklar’s Theorem (Sklar 1959), this copula exists and is unique if FX and FY

are continuous. Also, the copula CF is given by

C(u, v) = F (F−1
X (u), F−1

Y (v)), ∀u, v ∈ [0, 1],

where, F−1
X and F−1

Y are quasi-inverses of FX and FY respectively (Nelsen 2006).
The partial derivatives ∂C(u,v)

∂u and ∂C(u,v)
∂v exist and density function of C(u, v) is

defined as:

c(u, v) =
∂2C(u, v)

∂u∂v
=
∂2C(FX(x), FY (y))

∂FX(x)∂FY (y)

=
∂2FXY (x, y)

fX(x)fY (y)∂x∂y
=

fXY (x, y)

fX(x)fY (y)
.

Therefore by substituting in Equation (1), copulas-based mutual information can
be defined as:

MI(X,Y ) =

∫ ∫
[0,1]2

c(u, v) ln c(u, v)dudv = EC [ln c(U, V )],
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where c(u, v) is copula density function of the copula C(u, v) and EC denotes
the expectation with respect to the Lebesgue-Stieltjes measure PC induced by
C, (Zeng & Durrani 2011). It should be noted this result has been obtained in
Jenison & Reale (2004) earlier for calculating entropy. Note that the copulas-based
mutual information only relies on the copula density function that is determined
by the copula parameter, and therefore only the copula parameter is required for
estimation of MI. According to (2), MI(X,Y ) is not necessarily limited to [0, 1],
Joe (1989) defined

δ =
√
1− exp (−2MI),

which is normalizing this index. The measure of δ is confined to the interval [0, 1].
If X and Y are independent then δ = 0 and when the dependence is maximal, δ
achieves to one.

Kendall’s tau is another measure of concordance between two variables; this
measure has been introduced by Kendall (1938). Let (X1, X2) and (Y1, Y2) be
independent and identically distributed random vectors with distribution function
F . In the bivariate case, the population version of Kendall’s tau is defined as the
probability of concordance minus the probability of discordance:

τ(X1, X2) = P{(X1 − Y1)(X2 − Y2) > 0} − P{(X1 − Y1)(X2 − Y2) < 0}.

Note 1. Kendall’s tau associated by copula function C(u, v) as follows:

τ = 1− 4

∫ 1

0

∫ 1

0

[
∂C

∂u
.
∂C

∂v

]
dudv

= 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 = 4EC [C(U, V )]− 1,

where EC denotes the expectation with respect to the copula function C (Nelsen
2006). For (bivariate) Archimedean copulas, Kendall’s tau can directly be calcu-
lated from the generator ϕC(t) of the copula through

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt,

for more details see Genest & MacKay (1986a) and Genest & MacKay (1986b).

3. Mutual Information in Some Family of Bivariate
Distribution

In this section, we compute the MI for some family of bivariate distribution. We
consider the copula functions: Cuadras-Auge, Clayton, Frank, Gumbel, Raftery,
Gaussian, and T-copulas. We consider these copulas because these have positively
ordered and perfect dependency bound since its corresponding Kendall’s tau cor-
relation locates between [0, 1]. Meanwhile, the bound of Kendall’s tau correlation
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for some copulas may be limited, such as the FGM copula (Nelsen 2006) is limited
on [−2/9, 2/9].

It should be noted that the explicit form of MI for Cuadras-Auge copula,
Gaussian copula, and T-copulas already been achieved and we obtained the MI of
them using those formulas. Also the estimating of MI for Frank copula and Clayton
copula has done by Monte Carlo simulations. However, we estimate MI of Frank
and Clayton copulas again by using numerical integration and we calculate MI of
Gumbel and Raftery copulas by using numerical integration.

3.1. Cuadras-Auge Copula

Cuadras & Auge (1981) have defined the copula

C(u, v) = [min(u, v)]θ(uv)1−θ, θ ∈ [0, 1].

Cuadras-Auge (C-A) family of bivariate distributions is obtained by considering a
weighted geometric mean of the independence distribution and the upper Frechet-
Hoeffding bounds. C-A family is a subfamily of the Marshall-Olkin family of
copulas. C-A copula has a singular part in the diagonal u = v. The copula density
function of this family is given by

c(u, v) = (1− θ)[max{u, v}]−θ + θu1−θI{u=v},

where I{u=v} = 1 if u = v and 0 otherwise, is the indicator function.
Note 2. By using Note 1 it is easy to show that Kendall’s tau in C-A family is
given by

τ =
θ

2− θ
. (3)

For the first time, Mercier (2005) obtains MI of C-A copula with respect to
dependence parameter θ and Kumar (2012) offers a simpler formula for computing
MI.

Proposition 1. Let (X,Y ) be a random vector with C-A copula, then MI is given
by

MI = −2(1− θ)

2− θ

[
log(1− θ) +

θ

2− θ

]
. (4)

Proof . See page 21 from Mercier (2005) and Section 4 from Kumar (2012).

Note 3. By substituting Equation (3) in Equation (4), we conclude that

MI = −(1− τ)

[
τ + log(

1− τ

1 + τ
)

]
. (5)
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We compute the MI of C-A family for various values of τ , i.e. θ was chosen
according to the values of Kendall’s τ given in the first row. Results display in
Table 2. In Figure 1, by using Equation (5), we depict the behavior of the MI
versus the Kendall’s τ .

Table 2: The values of MI and normalized MI with respect to the amounts of Kendall’s
τ for C-A copula.

τ 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1
θ 0 0.182 0.333 0.400 0.461 0.571 0.667 0.750 0.823 0.857 0.889 0.947 1

MI 0 0.091 0.164 0.196 0.223 0.268 0.299 0.314 0.310 0.299 0.279 0.204 0
δ 0 0.407 0.529 0.569 0.600 0.644 0.671 0.683 0.680 0.671 0.654 0.579 0

According to Table 2 and Figure 1, we conclude that MI isn’t necessarily an
increasing function of the τ and θ. Also the highest MI value of C-A family occurs
at τ = 0.632006, and it is MI = 0.315552.
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Figure 1: MI of C-A family for various values of τ .

3.2. Clayton Copula

The Clayton copula belongs to the class of Archimedean copulas. Its generator
is ϕ(t) = 1

θ (t
−θ − 1). This copula is referred to Clayton (1978), Cook & Johnson

(1981) and Oakes (1982) and is defined as:

C(u, v) = (u−θ + v−θ − 1)−
1
θ , θ ∈ (0,∞).

When θ tends to infinity, the degree of association increases, i.e. the Clayton
copula approaches the monotonic copula; for θ converging to zero, one obtains
the independence copula. In particular, this family is positively ordered, and its
members are absolutely continuous. The density of Clayton copula is

c(u, v) = (1 + θ)(uv)−(1+θ)(u−θ + v−θ − 1)−
1+2θ

θ .
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Note 4. By using Note 1 it is easy to show that Kendall’s tau in Clayton family
is given by

τ =
θ

θ + 2
.

Blumentritt & Schmid (2012) estimate values of MI for Clayton copula by
Monte Carlo simulations. By using numerical integration, we again compute the
values of MI for this copula. Similar to Table 2, the quantity of θ was chosen
according to the values of Kendall’s τ . Results display in Table 3. Note that
for τ = 0.9, the R package “cubature” doesn’t work, therefore, in this case, we
compute MI by using Riemann integration with 108 cubes.

Table 3: The values of MI and normalized MI with respect to the amounts of Kendall’s
τ for Clayton copula.

τ 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9
θ 0 0.222 0.500 0.667 0.857 1.333 2 3 4.667 6 8 18

MI 0 0.019 0.072 0.111 0.157 0.275 0.432 0.636 0.911 1.089 1.308 2.003
δ 0 0.192 0.366 0.446 0.520 0.651 0.760 0.848 0.915 0.942 0.963 0.991

3.3. Frank Copula

The Frank copula is introduced by Frank (1979), some of the statistical proper-
ties of this family were discussed in Nelsen (1986) and Genest (1987). This copula
is an Archimedean copula and ϕ(t) = − log((e−θt − 1)/(e−θ − 1)) is generator
function. Thus, for θ > 0, yielding

C(u, v) = −1

θ
log

[
1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)

]
, θ ∈ (0,∞),

for θ = 0 it is defined as the independence copula. Frank copula is positively
ordered and it is completely monotonic on θ > 0, i.e. the degree of association
increases as θ tends to infinity. The density of Frank copula is

c(u, v) =
−θ(e−θ − 1)e−θ(u+v)

[(e−θu − 1)(e−θv − 1) + e−θ − 1]
2 .

Note 5. By using Note 1 it is easy to show that Kendall’s tau in Frank family is
given by

τ = 1− 4

θ
[1−D1(θ)],

where D1 is the Debye function of order 1, Debye function of order k is defined as:

Dk(x) =
k

xk

∫ x

0

tk

et − 1
dt.
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Blumentritt & Schmid (2012) estimate values of MI for Frank copula by Monte
Carlo simulations. By using numerical integration, we again compute the values
of MI for this copula according to the amounts of Kendall’s τ . Results display in
Table 4.

Analogously to the Clayton copula, for τ = 0.9, the R package “cubature”
doesn’t work, therefore, in this case, we compute MI by using Riemann integration
with 108 cubes.

Table 4: The values of MI and normalized MI with respect to the amounts of Kendall’s
τ for Frank copula.

τ 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9
θ 0 0.907 1.861 2.372 2.917 4.161 5.736 7.930 11.411 14.138 18.191 38.281

MI 0 0.011 0.046 0.072 0.105 0.193 0.316 0.485 0.723 0.881 1.082 1.800
δ 0 0.149 0.296 0.367 0.435 0.566 0.684 0.788 0.874 0.910 0.941 0.986

3.4. Gumbel Copula

Gumbel copula was first discussed by Gumbel (1960), hence many authors
refer to it as the Gumbel family. However, because Gumbel’s name is attached
to another Archimedean family and this family also appears in Hougaard (1986),
Hutchinson & Lai (1990) refer to it as the Gumbel-Hougaard family. This copula
is an Archimedean copula with generator ϕ(t) = (− ln t)θ. The Gumbel copula is
defined as

C(u, v) = exp
{
−
[
(− lnu)θ + (− ln v)θ

] 1
θ

}
, θ ∈ [1,∞),

θ = 0 is implied the independence copula. This family is positively ordered, and
its members are absolutely continuous. The density of Gumbel copula is

c(u, v) =
C(u, v)

uv

[(− lnu)(− ln v)]θ−1

[(− lnu)θ + (− ln v)θ]2−
1
θ

{
[(− lnu)θ + (− ln v)θ]

1
θ + θ − 1

}
.

Note 6. By using Note 1 it is easy to show that Kendall’s tau in Gumbel family
is given by

τ = 1− 1

θ
.

By using numerical integration we compute values of MI for Gumbel copula
according to the amounts of Kendall’s τ . Results display in Table 5.
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Table 5: The values of MI and normalized MI with respect to the amounts of Kendall’s
τ for Gumbel copula.

τ 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9
θ 1 1.111 1.250 1.333 1.428 1.667 2 2.500 3.333 4 5 10

MI 0 0.018 0.064 0.096 0.136 0.237 0.375 0.562 0.821 0.991 1.205 1.884
δ 0 0.188 0.346 0.418 0.487 0.615 0.727 0.821 0.898 0.929 0.954 0.988

3.5. Raftery Copula

Raftery (1984) and Raftery (1985) introduced a one-parameter (θ ∈ [0, 1])
family of absolutely continuous (for θ ̸= 1) bivariate distributions with identically
distributed exponential margins. The survival copulas for the Raftery family are
given by

C(u, v) = min(u, v) +
1− θ

1 + θ
(uv)

1
1−θ

{
1− [max(u, v)]

−(1+θ)
1−θ

}
,

independence corresponds to for θ = 0. This family is positively ordered and the
density of Raftery copula is

c(u, v) =
1

1− θ2

{
(uv)

θ
1−θ + θ[min(u, v)]

θ
1−θ [max(u, v)]

−1
1−θ

}
.

Note 7. By using Note 1 it is easy to show that Kendall’s tau in Raftery family
is given by

τ =
2θ

3− θ
.

By using numerical integration, we compute values of MI according to the
amounts of Kendall’s τ . Results display in Table 6.

Table 6: The values of MI and normalized MI with respect to the amounts of Kendall’s
τ for Raftery copula.

τ 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9
θ 0 0.143 0.273 0.333 0.391 0.500 0.600 0.692 0.778 0.818 0.857 0.931

MI 0 0.032 0.098 0.142 0.192 0.315 0.473 0.676 0.947 1.123 1.340 2.023
δ 0 0.248 0.422 0.497 0.565 0.684 0.782 0.861 0.922 0.946 0.965 0.991

3.6. Gaussian Copula

The Gaussian copula is defined implicitly by

C(u, v) = Φθ(Φ
−1(u),Φ−1(v)),

where Φθ is the distribution function of the bivariate normal distribution with zero
means, variances one, and correlation parameter θ and Φ−1 denotes the inverse of
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the univariate standard normal distribution function (For more details see Meyer
2013). Therefore the Gaussian copula expressed as

C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

exp
{
− t2+s2−2θts

2(1−θ2)

}
2π

√
1− θ2

dtds, θ ∈ [0, 1],

when θ = 0, independence is implied. The Gaussian copula is positively ordered,
and its members are absolutely continuous. The density of Gaussian copula is

c(u, v) =
√
1− θ2 exp

{
−x

2 + y2 − 2θxy

2(1− θ2)
+
x2 + y2

2

}
,

where x = Φ−1(u) and y = Φ−1(v).
Note 8. By using Note 1, in the case of meta-elliptical distributions (Fang, Fang
& Kotz 2002), that includes Gaussian and T-copulas, Kendall’s tau is related to
the correlation parameter θ as

τ =
2

π
sin−1(θ). (6)

For the first time, Kullback (1952) obtains MI of the multivariate normal dis-
tribution with the title ’mean information’ and Kullback (1959) studies it with
more details.

Proposition 2. Let (X,Y ) be a random vector with Gaussian copula, then MI is
given by

MI = −1

2
log(1− θ2). (7)

Proof . See Equation (6.16), page 97 from Section 6 of Kullback (1952), Example
4.3 from page 8 and Equation (7.16), page 203 from Section 9.7 of Kullback (1959).

By using Equations (6) and (7) we can compute MI of Gaussian family for
various values of Kendall’s τ , i.e. θ was chosen according to the values of τ given
in the first row. Results display in Table 7.

Table 7: The values of MI and normalized MI with respect to the amounts of Kendall’s
τ for Gaussian copula.

τ 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9
θ 0 0.156 0.309 0.383 0.454 0.588 0.707 0.809 0.891 0.924 0.951 0.988

MI 0 0.012 0.050 0.079 0.115 0.212 0.346 0.531 0.790 0.960 1.174 1.855
δ 0 0.156 0.309 0.383 0.454 0.588 0.707 0.809 0.891 0.924 0.951 0.988
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3.7. T-Copulas

Let tθ,ν denote the standardized multivariate Student’s t distribution function
with correlation parameter θ and ν degrees of freedom and t−1

ν the inverse of the
univariate distribution function of the Student’s t distribution with ν degrees of
freedom. The T-copula, with ν degrees of freedom, is given by

C(u, v) = tθ,ν(t
−1(u), t−1(v)),

therefore the T-copula expressed as

C(u, v) =

∫ t−1(u)

−∞

∫ t−1(v)

−∞

1

2π
√
1− θ2

{
1 +

t2 + s2 − 2θts

ν(1− θ2)

}− ν+2
2

dtds, θ ∈ [0, 1],

θ = 0 is implied the independence copula. This family is positively ordered,
and its members are absolutely continuous. The density of T-copula is

c(u, v) =
Γ(ν+2

2 )Γ(ν2 )[
Γ(ν+1

2 )
]2 √

1− θ2

[
1 +

qθ(t
−1
ν (u),t−1

ν (v))
ν

]− ν+2
2

[
1 + (t−1

ν (u))2

ν

]− ν+1
2

[
1 + (t−1

ν (v))2

ν

]− ν+1
2

,

where qθ(x, y) = x2+y2−2θxy
1−θ2 and Γ(.) is Gamma function.

For the first time, Guerrero-Cusumano (1996a), Guerrero-Cusumano (1996b)
obtains MI of multivariate t distribution and Calsaverini & Vicente (2009) offer a
simpler formula for MI in T-copulas.

Proposition 3. Let (X,Y ) be a random vector with T-copula, it can be shown
that MI can be decomposed as

MI =MIGauss(θ) +MIExcess(ν), (8)

where MIGauss(θ) = − 1
2 log(1− θ2) is MI for the Gaussian copula and

MIExcess(ν) = 2log

[√
ν

2π
β(
ν

2
,
1

2
)

]
− 2 + ν

ν
+ (1 + ν)

[
ψ(
ν + 1

2
)− ψ(

ν

2
)

]
, (9)

is an excess of information in the dependence with respect to the Gaussian
copula. Here, ψ(.) and β(.) denotes the Digamma and Beta functions, respectively.

Proof . See Lemma 1 from Guerrero-Cusumano (1996a), Lemma 1 from Guerrero-
Cusumano (1996b) and page 4 from Calsaverini & Vicente (2009).

Note 9. Note that MIExcess of T-copula is constant function from the dependence
parameter θ and consequently it is constant with respect to the Kendall’s τ .
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By using Equation (9), we can compute MIExcess of T-copula for various values
of degrees of freedom ν. Results display in Table 8, therefore for computing MI in
T-copula with degrees of freedom ν, it is sufficient that add the constant value of
Table 8 with values of MI from Gaussian copula (Table 7). In Figure 2, we depict
the behavior of MIExcess versus the degrees of freedom ν.
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Figure 2: The MIExcess of T-copula for various values of ν.

Table 8 and Figure 2 show that MIExcess is a decreasing function of degrees of
freedom ν, consequently when ν tends to infinity, the MIExcess of T-copula tends
to zero. Therefore, as we expect, when ν tends to infinity, the MI of T-copula
tends to MI of Gaussian copula.

Table 8: The values of MI and normalized MI with respect to the amounts of Kendall’s
τ for T-copulas.

ν 1 2 3 4 5 6 7 8 9
MIExcess 0.224 0.083 0.042 0.026 0.017 0.012 0.009 0.007 0.006

ν 10 12 15 20 30 50 100 200 500
MIExcess 0.005 0.003 0.002 0.001 0.0005 0.0002 0.00005 0.00001 0.000002

4. Comparing mutual information

In this section, we compare MI correlation for some family of bivariate dis-
tribution mentioned in Section 3, visually. Note that, we don’t have considered
Cuadras-Auge copula, because MI correlation of this family is not increasing and
it is limited on [0, 0.6841022]. Figure 3 shows the MI correlation from various cop-
ulas with respect to Kendall’s τ correlation. For greater clarity, in the left graph,
we draw the plots of Gaussian and T-copulas, and in the right graph, we consider
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the plots of Gaussian, Clayton, Frank, Gumbel, and Raftery copulas. As be seen
in figure, MI correlation of T-copulas, Clayton, Gumbel, and Raftery copulas is
greater than Gaussian copula and MI correlation of Frank copula is lesser than
Gaussian copula.
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Figure 3: Comparing plots: the MI correlation from different copula with respect to
Kendall’s τ .

5. Data Analysis: Insurance Data

In this section, using a real dataset we illustrate the role of Kendall’s τ in
estimating MI. For this purpose, we apply Insurance dataset. Insurance data are
given in data frame ‘Insurance’ in R software consist of the numbers of policy-
holders of an insurance company who were exposed to risk, and the numbers of
car insurance claims made by those policyholders in the third quarter of 1973.
In this dataset ‘Holders’ is numbers of policyholders and ‘Claims’ is numbers of
claims. First, by the raw data, we compute sample Kendall’s τ coefficient for two
variables ‘Holders’ and ‘Claims’ in insurance data equal to 0.307. Then, by using
the goodness of fit tests, we fit a copula function for two variables ‘Holders’ and
‘Claims’. This work is done by ‘copula’ package in R software (For more details
see Genest, Remillard & Beaudoin, 2009). We express the results in Table 9.

Table 9: Goodness of fit test for various copulas.

Copula Function Statistic θ̂ p-value
Frank 0.11971 2.9931 0.0004995

Gumbel 0.0248 1.4254 0.1753
Clayton 0.72023 0.49891 0.0004995
Normal 0.08931 0.45909 0.0004995

T-copula 0.11341 0.43387 0.0004995
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According to p-values, we conclude that Gumbel copula is an appropriate cop-
ula for this dataset. Finally, using Gumbel copula and sample Kendall’s τ co-
efficient, we estimate MI between two variables ’Holders’ and ’Claims’ equal to
0.142. We can control the results using ’mpmi’ package in R software. By this
package, we estimate MI equal to 0.157. Due to the small difference between the
two estimated values, it can be concluded that we can employ copula function and
Kendall’s τ for estimating MI.

6. Conclusion

In this paper, by using the copula function, we have estimated the MI of some
bivariate distributions. We have shown that, except Cuadras-Auge copula, the MI
for mentioned copulas is increasing the function of Kendall’s τ , i.e. Kendall’s τ
and MI have a direct relationship. But Cuadras-Auge copula is a counterexample,
and it proves that this result is not true, generally. This example shows that the
range of MI correlation is not necessarily [0, 1], even if Kendall’s τ is within [0, 1].
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