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Abstract
The most suitable statistical method for explaining serial dependency in

time series count data is that based on Hidden Markov Models (HMMs).
These models assume that the observations are generated from a finite
mixture of distributions governed by the principle of Markov chain (MC).
Poisson-Hidden Markov Model (P-HMM) may be the most widely used
method for modelling the above said situations. However, in real life sce-
nario, this model cannot be considered as the best choice. Taking this fact
into account, we, in this paper, go for Generalised Poisson Distribution
(GPD) for modelling count data. This method can rectify the overdisper-
sion and underdispersion in the Poisson model. Here, we develop Generalised
Poisson Hidden Markov model (GP-HMM) by combining GPD with HMM
for modelling such data. The results of the study on simulated data and
an application of real data, monthly cases of Leptospirosis in the state of
Kerala in South India, show good convergence properties, proving that the
GP-HMM is a better method compared to P-HMM.

Key words: EM algorithm; Generalized Poisson distribution; Hidden Markov
Model; Overdispersion.

Resumen
El mtodo estadstico ms adecuado para explicar la dependencia serial en

los datos de recuento de series de tiempo se basan en los modelos ocultos
de Markov (HMM). Estos modelos suponen que las observaciones se gen-
eran a partir de un finito mezcla de distribuciones regidas por el principio
de la cadena de Markov (MC). El modelo de Markov oculto de Poisson (P-
HMM) puede ser el mtodo ms utilizado para modelar las situaciones men-
cionadas anteriormente. Sin embargo, en el escenario de la vida real, este
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modelo no puede considerarse como la mejor opcin. Teniendo en cuenta
este hecho, nosotros, en este artculo, apostamos por la distribucin general-
izada de Poisson (GPD) para modelar datos de conteo. Este mtodo puede
rectificar la sobredispersin y subdispersin en el modelo de Poisson. Aqu
desarrollamos Poisson generalizado Modelo de Markov oculto (GP-HMM)
combinando GPD con HMM para modelando tales datos. Los resultados del
estudio sobre datos simulados y una aplicacin de datos reales, casos mensu-
ales de leptospirosis en el estado de Kerala en South India, muestra buenas
propiedades de convergencia, lo que demuestra que el GP-HMM Es un mtodo
mejor en comparacin con P-HMM.

Palabras clave: Algoritmo EM; Distribucin generalizada de Poisson; Mod-
elo oculto de Markov; Sobredispersin.

1. Introduction

Poisson model is the most commonly used method for modelling time series
count data. Though equidispersion is the unique feature of Poisson distribution,
in practical cases, either the mean will be greater than variance or vice-versa,
making the Poisson assumption wrong. In many populations of Poisson nature,
the probability of the occurrence of an event does not remain constant and is
affected by previous occurrences, resulting in unequal mean and variance in the
data (Kendall & Stuart 1963). To deal with such situations, modification and
generalization of the Poisson distribution were considered by Greenwood & Yule
(1920) and by Neyman (1931). Wang & Famoye (1997) introduced generalized
Poisson regression for modelling household fertility decisions. Recently, Cepeda-
Cuervo & Cifuentes-Amado (2017) also developed mean and dispersion regression
models to fit overdispersed data based on beta binomial and negative binomial
models.

An important generalization for the Poisson distribution was introduced by
Consul & Jain (1973) with two parameters λ1 and λ2 and it can be considered
as a limiting form of the generalized negative binomial distribution. Consul &
Shoukri (1984) obtained maximum likelihood estimators of the parameters of GPD.
The properties of the GPD are discussed by Consul (1989) and Tuenter (2000).
The variance of GPD model is greater than, equal to, or less than the mean
when the second parameter λ2 is positive, zero or, negative respectively. Both
the mean and variance tend to increase or decrease in value with respect to the
change in λ1. When λ2 is positive, the mean and the variance increase in value.
However, when λ2 increases, the variance increases faster than mean which results
in overdispersion or vice versa. The probability mass function of GPD is given by

Pr(X = x) =
λ1(λ1 + xλ2)

x−1

x!
exp(−λ1 − xλ2), x = 0, 1, 2, . . . (1)

where λ1 > 0 and |λ2| < 1. The mean and variance of the GPD are

µ =
λ1

(1− λ2)
.
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σ2 =
λ1

(1− λ2)3
.

The GPD is often used in researches and studies for modelling data in many
situations. It can be used to adjust overdispersion in Poisson model, as in the case
of negative binomial model. The GPD is also apt for modelling underdispersed
Poisson data. Going by all these details, one can consider GP-HMM as a better
option than P-HMM as shown in Sebastian, Jeyaseelan, Jeyaseelan, Anandan,
George & Bangdiwala (2019) for count data modelling. However, the idea of
using GPD in HMM is not new. In 2014, Witowski et.al made a simulation study
for using HMM to improve quantifying physical activity in accelerometer data
(Witowski, Foraita, Pitsiladis, Pigeot & Wirsik 2014). They used P-HMM, GP-
HMM and normal-HMM for their comparative study. The following part of this
paper has been categorized into four sections, detailing the methods and estimation
of parameters of GP-HMM, a simulation study and a real data application of GP-
HMM.

2. Generalized Poisson Hidden Markov model

In HMM, there is an underlying unobserved state of the system that changes
with time in line with the Markov process. The distribution of observations at a
given time is determined by the system’s state at that time (Zucchini & MacDonald
2009). Let Ht, t ∈ 1, 2, . . . , T be an MC on a finite state space, S = {1, 2, . . . ,m}
with transition probability matrix A = (aij), where aij = Pr[Ht+1 = j|Ht = i]
for any i y j ∈ S and with the initial distribution π = (π1, π2, . . . , πm)′, where
πi = Pr[H1 = i] for any i ∈ S. The MC Ht, defined on a finite state space,
is homogenous and irreducible. So, the initial distribution π is stationary, which
satisfies the condition π′ = π′A.

Let Xt, t ∈ N , an HMM, be a particular type of dependent mixture, with
X(t) = (X1, . . . , Xt) and H(t) = (H1, . . . , Ht) having the following properties.

Pr[Ht | H(t−1)] = Pr[Ht | Ht−1], t = 2, 3, . . .

P r[Xt | X(t−1),H(t)] = Pr[Xt | Ht], t ∈ N.

The first property, ‘parameter process’, Ht, t = 1, 2, . . . satisfies Markov property,
while the second one, ‘state-dependent process’, Xt, t = 1, 2, . . . such that the
distribution of Xt, depends only on the current state Ht and not on previous
states or observations. Now, we introduce some notations - the probability mass
function (pmf) of Xt, given the Markov chain is in state i at time t, is denoted by
pi and it is called state-dependent distribution of the model.

pi(x) = Pr(Xt = x | Ht = i) for i = 1, 2, . . . ,m.

In the case of GPD, the pmf is given by

pi(x) =
λ1i(λ1i + xλ2i)

x−1

x!
exp(−λ1i − xλ2i).
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Now, πi(t) = Pr(Ht = i) is the unconditional probabilities of MC being at state i
at time t. Let Xt be a discrete valued random variable, such that

Pr(Xt = x) =

m∑
i=1

Pr(Ht = i)Pr(Xt = x | Ht = i) =

m∑
i=1

πi(t)pi(x).

This expression can be rewritten in matrix form as

Pr(Xt = x) = π(t)P (x)1′,

where P (x) is defined as the diagonal matrix with ith diagonal element pi(x) and
1′ is the m-dimensional vector of ones.

Now,
π(t) = π(1)At−1,

and, therefore,
Pr(Xt = x) = π(1)At−1P (x)1′.

If the MC is stationary, then π(1)At−1 = π and in this case,

Pr(Xt = x) = πP (x)1′.

In the case of a GP-HMM, the mean and variance of Xt are given by

E[Xt] =

m∑
i=1

πi
λ1i

(1− λ2i)
.

V (Xt) =

m∑
i=1

πi

[
λ2
1i

(1− λ2i)2
+

λ1i

(1− λ2i)3

]
−

[
m∑
i=1

πiλ1i

(1− λ2i)

]2
.

So, the model {Xt,Ht} t = 1, 2, . . . , T is characterized by (i) the stationary ini-
tial distribution π, (ii) the transition probability matrix A and (iii) the state-
dependent pmfs pi(x). Let Φ = (Π, A,Θ) denote the set of parameter space.
The parameters to be estimated are: the (m2 − m) transition probabilities (aij)
for any i = 1, 2, . . . ,m and j = 1, 2, . . . ,m− 1; the m entries of the vector Π and
the m parameters of λ1i and λ2i of the GP random variables Xt. Hence, the vector
of unknown parameters is given by

ϕ = (a11, . . . , a1m−1, . . . , am1, . . . , amm−1, λ11, λ12, . . . , λ1m, λ21, λ22, . . . , λ2m)′

which belongs to the parameter space Φ. The initial distribution π will be es-
timated by the equality π′ = π′A, after the estimation of the matrix A. The
estimators of the vector ϕ will be obtained by the EM algorithm. The likelihood
function is given by:

LT = πP (x1)AP (x2)AP (x3) · · ·AP (xT )1
′. (2)

Revista Colombiana de Estadística 43 (2020) 71–82



Generalized Poisson Hidden Markov Model 75

2.1. Joint Probability Mass Functions of the Model

In HMM {Xt;Ht} with the sequence of observations, x1, x2, . . . , xT and the
sequence of states of the Markov chain h1, h2, . . . , hT , the joint pmf is given by

Pr[x1, x2, . . . , xT , h1, h2, . . . , hT ] =πh1ah1h2ah2h3 . . . ahT−1hT
p[x1|h1]p[x2|h2]

. . . p[xt|ht] = πh1p[x1|h1]

T∏
t=2

aht−1htp[xt|ht].

Summing over h1, h2, . . . , hT , we have the joint pmf

Pr[x1, x2, . . . , xT ] =
∑
h1

∑
h2

. . .
∑
hT

{πh1
p[x1|h1]

T∏
t=2

aht−1ht
p[xt|ht]}. (3)

Define P (x) as the diagonal matrix with ith diagonal element pi(x), and we have

Pr[x1, x2, . . . , xT ] = π′P (x1)AP (x2) . . .AP(xT )1
′.

When π is stationary then it can be replaced by π′A. Now, the joint pmf becomes

P [x1, x2, . . . , xT ] = π′AP (x1)AP (x2) · · ·AP (xT )1
′.

If π is not stationary, then the state of the Markov chain has to be estimated.
So, the estimate of the initial distribution from one observation at time 1 is not
useful. If it is stationary, clearly π is fully estimated by its transition probabilities
(Zucchini & MacDonald 2009).

3. Estimation by EM Algorithm

A commonly used method of fitting HMMs is the EM algorithm introduced
by Dempster, Laird & Rubin (1977) for the computation of maximum likelihood
estimates based on incomplete data. Also Pereira, Marques & da Costa (2012)
have studied the performance of the estimates produced by EM algorithm for
mixture model. Here, we use this tool for the estimation of parameters of HMM
with forward and backward probabilities (Baum 1972), which are also adopted for
decoding and state prediction of HMM. For t = 1, 2, . . . , T , the (row) vector αt is
as follows:

αt = π′P (x1)AP (x2) . . .AP (xT ) = π′P (x1)

T∏
s=2

AP (xs),

with π denoting the initial distribution of the MC. The elements of αt are called
forward probabilities. For t = 1, 2, . . . , T , and j = 1, 2, . . . ,m, we have the joint
probability

αt(j) = Pr(X(t) = x(t),Ht = j), (4)
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which is the jth component of αt. Now, the vector of backward probabilities βt,
for t = 1, 2, . . . , T , is defined by

βt = π′P (xt+1)AP (xt+2) · · ·AP (xT )1
′ =

(
T∏

s=t+1

AP (xs)

)
1′.

The jth component of βt is the conditional probability and the elements of βt are
called backward probabilities. For t = 1, 2, . . . , T − 1, and j = 1, 2, . . . ,m, we have
the conditional probability

βt(j) = Pr(X
(T )
t+1 = x

(T )
t+1

∣∣∣Ht = j), (5)

where Xb
a denotes the vector (Xa, Xa+1, . . . , Xb). For t = 1, 2, . . . , T , and i =

1, 2, . . . ,m, the probability

Pr(X(t) = x(t),Ht = j) = αt(i)βt(i), (6)

and consequently αtβ
′
t = Pr(X(T ) = x(T )) = LT , for each t. In HMM, this

property is used for applying the EM algorithm and in local decoding. For t =
1, 2, . . . , T , firstly

Pr(Ht = j | X(t) = x(t)) =
αt(i)βt(i)

LT
, (7)

and secondly,

Pr(Ht−1 = j,Ht = k | X(t) = x(t)) =
αt−1(j)ajkpk(xt)βt(k)

LT
. (8)

The EM algorithm is an iterative method for performing maximum likelihood esti-
mation when some data are missing. In this case, the complete-data log-likelihood
(CDLL) –the log-likelihood of the parameters of interest θ, based on both the ob-
served data and the missing data– is to be maximized. The algorithm is started
by choosing values for the parameters Θ. Then, the following steps are repeated:

• E step: Compute the conditional expectations of those functions of the miss-
ing data that appear in the CDLL.

• M step: Maximize, with respect to Θ, CDLL with the functions of the missing
data replaced by their conditional expectations.

The sequence of states h1, h2, . . . , hT followed by the MC is defined by the zero-one
random variables and is given by

uj(t) = 1 if and only if ht = j (t = 1, 2, . . . , T )

vjk(t) = 1 if and only if ht−1 = j and ht = k (t = 2, 3, . . . , T ).
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Now, the log-likelihood of the observations x1, x2, . . . , xT and the missing data
h1, h2, . . . , hT are given by

log
(
Pr
(
X(T ), h(T )

))
= log(πh1

T∏
t=2

aht−1,ht

T∏
t=1

pht(xt))

= log πh1
+

T∑
t=2

log (aht−1,ht
) +

T∑
t=1

log pht
(xt).

Hence, the CDLL is

log(Pr(X(T ), h(T ))) =

m∑
j=1

uj(1) log πj +

m∑
j=1

m∑
k=1

(
T∑

t=2

vjk(t)

)
log ajk

+

m∑
j=1

T∑
t=1

uj(t) log pj(xt)).

Here, π is to be understood as the initial distribution of the MC (the distribution
of H1), not necessarily the stationary distribution. Of course, it is not reasonable
to try to estimate the initial distribution from just one observation at time 1,
especially as the state of the MC itself is not observed. The EM algorithm for
HMMs proceeds as follows:

• E step: Replace the quantities vjk(t) and uj(t) by their conditional expec-
tations given the observations x(T ), then it is given by

ûj(t) = Pr(Ht = j | x(T )) =
αt(j)βt(j)

LT

v̂jk(t) = Pr(Ht−1 = j,Ht = k | x(T )) =
αt−1(j)ajkpk(xt)βt(k)

LT
.

• M step: Replace vjk(t) and uj(t) by v̂jk(t) and ûj(t) and maximize the CDLL
with respect to the three sets of parameters: the initial distribution π, the
transition probability matrix A and the parameters of the state-dependent
distributions λ11, λ12, . . . , λ1m, λ21, λ22, . . . , λ2m.

M step splits neatly into three separate maximizations: term 1 depends only on the
initial distribution π, term 2 on the transition probability matrix A and term 3 on
the state-dependent parameters of GPD and they are estimated using numerical
maximization Zucchini & MacDonald (2009).

4. A Simulation Study

This section shows the results of a simulation study conducted on the per-
formance of the GP-HMM model. We assessed the performance of the estimates
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using the mean squared error (MSE) on the simulated data. The simulations were
repeated on different sample sizes ranging from 500 to 10 000 and on different pa-
rameter values. Prior to checking the results obtained for the parameter estimates,
we had run the EM algorithm with m = 2, . . . , 6 states to select the appropriate
number of states of the GP-HMM. For this purpose, we computed the AIC and
BIC for each GP-HMM. Upon computation, both Akaike information criterion
(AIC) and Bayesian information criterion (BIC) gave the lowest value for m = 2
state. So, we chose, two state GP-HMM for further computation. The initial
values of the parameters are given below

a11 = 0.9, a12 = 0.1, λ11 = 10, λ12 = 30, λ21 = 0.7, and λ22 = 0.6.

We had run 50 replications of the EM algorithm on the simulated data and then
computed the MSE and biases (given in brackets), the results of which to shown
in Table 1. It shows that MSE and biases of the estimate of the parameters tend
to become zero as the sample size increases. Also, the mean estimates of the
parameters come closer to the true parameter values.

5. Real Data Application

The GP-HMM model is applied to a real-life data set. A series of monthly
Leptospirosis incidence counts in the state of Kerala in South India during the
2006-2017 period is considered for the analysis. The data are sourced from the
official website of the Directorate of Health Services, Government of Kerala, India.
A graphical representation of the said data, with 144 time points, is shown in figure
1. As many as 14,460 cases, having the mean value 100.42 and variance 3,342.41,
are subjected to study. In this case, the sample variance is greater than its mean,
which shows the data is clearly overdispersed. As per the data, February 2014
recorded the minimum Leptospirosis cases of 20, while the maximum of 292 was
reported in September 2008. two models, HMM with Poisson distribution and
GP-HMM, were estimated and compared on the basis of -LogL, AIC and BIC.
Table 2 presents the relevant comparison. In this, table k represents the number
of parameters. For P-HMM k = m2 and GP-HMM k = m(m + 1). The model
is considered to be the most apt one, which can be identified using BIC. So the
model with two-state GP-HMM is the most appropriate.

Table 1: MSE(Bias) of the GP-HMM parameters for 50 simulation runs of the EM
algorithm with m = 2 states.

N 500 1000 5000 10000
a11 0.0020(0.0374) 0.0005(0.0148) 5.674e−05(−0.0027) 2.5e−05(0.0005)

a12 0.0020(−0.0374) 0.0005(−0.0148) 5.674e−05(0.0027) 2.5e−05(0.0005)

λ11 0.2884(0.0118) 0.1547(−0.1520) 0.1588(−0.3633) 0.0102(0.0428)
λ12 0.0003(−1.1530) 0.0006(1.6355) 0.0002(−0.7830) 1.9e−05(−0.1919)

λ21 0.0005(−0.0080) 0.0042(0.0003) 0.0001(0.0090) 1.4e−05(0.0013)

λ22 0.0003(0.0058) 0.0006(−0.0195) 0.0002(0.0125) 1.9−05(0.0019)
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Table 2: comparison of Poisson and GP HMMs by AIC and BIC.
Model k -LogL AIC BIC
Poisson-Hidden Markov Model
Simple Poisson 1 2696.54 5395.08 5398.05
2-state P-HMM 4 1298.16 2610.31 2631.10
3-state P-HMM 9 889.58 1813.15 1863.64
4-state P-HMM 16 806.29 1674.57 1766.64
5-state P-HMM 25 802.92 1703.84 1849.34
Generalized Poisson-Hidden Markov Model
Simple GP 2 768.76 1541.51 1547.45
2-state GP-HMM 6 741.06 1496.12 1516.92
3-state GP-HMM 12 727.18 1482.36 1523.93
4-state GP-HMM 20 721.87 1489.74 1558.05

Figure 1 shows the result of fitting four state P-HMM and two state GP-HMM
to the leptospirosis series using EM estimates. The four-state model is fitted to the
leptospirosis series by using HMM with Poisson distribution, while the two-state
model is fitted to the data using GPD as state dependent distribution. However,
on close analysis of the results, the GP-HMM model seems to fit the data better.
The estimated transition probability matrices for four-state P-HMM and two-state
GP-HMM are

AP−HMM =


0.7244 0.2756 0.0000 0.0000

0.2230 0.5452 0.1982 0.0337

0.0479 0.5435 0.2796 0.1290

0.0000 0.0000 0.6022 0.3978


and

AGP−HMM =

[
0.8335 0.1665

0.1322 0.8678

]
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Figure 1: The state-dependent means (horizontal lines), left: 4 state P-HMM and right:
2 state GP-HMM, compared to the observations.
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The Poisson parameters estimated by the HMM are

λ = ( 46.3694 101.4253 165.2471 250.2855 )

and the GP parameters are λ1 = ( 18.9565 32.6556 ) and λ2 = ( 0.6512 0.7615 ).
The whole analysis is done using R software. The package HMMpa is used for
modelling Witowski & Foraita (2013).

6. Discussion and Conclusion

We propose to deal with overdispersion and underdispersion in time series of
count data by introducing GPD in HMM. Here, the is EM algorithm used for the
estimation of the parameters, by implementing the R-package (Witowski & Foraita
2013). Also, the validity of the estimates is verified by carrying out a simulation
study. We take out an original data –monthly count of cases Leptospirosis in
Kerala between 2006 and 2017– to show that GP-HMM performs much better than
P-HMM. Leptospirosis, according to the World Health Organization, is a bacterial
disease detected in places which witness excess rainfall and flooding. It transmits
to humans through the cuts on the skin or through the mucous membranes of the
eyes, nose and mouth with water contaminated with the urine of infected animals.
In this study, the occurrences of the bacterial disease are modelled using the HMM
because of the dependent nature of the leptospirosis data. The P-HMM is the most
widely used method for modelling such data. In this case, we develop GP-HMM for
fitting leptospirosis series and compare it with P-HMM using AIC and BIC. From
all these findings, we prove that GP-HMM is much better compared to P-HMM.

For modelling overdispersed count data, a suitable model is a mixture of Pois-
son model. It can be seen that the negative binomial distribution (NBD) and
GPD are in fact mixtures of Poisson models, where the mixing distributions are
continuous distributions. The mixing distribution in the case of NBD is a gamma
distribution and is suitable for modelling data with excess zeroes (Joe & Zhu 2005).
However, GPD is better suited when more mass is concentrated on the tail of
the distribution compared to NBD. Further, also GPD is suitable for both over-
dispersed and under-dispersed data. This might be the reason for getting better
fit on GP-HMM for the data in our example. When excess zero and heavy tail
are present, we may use a zero-inflated GP-HMM for modelling serially correlated
data. We will concentrate our attention on this aspect in our further study. The
results based on our simulation study and example will help both theoreticians
and practitioners for making inference on unequal mean-variance scenario in the
case of serially correlated time series count data.
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