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Abstract

We review recent developments related to inference for functions defined
at spatial locations. We also consider time series of functions defined at
irregularly distributed spatial points or on a grid. We focus on kriging,
estimation of the functional mean and principal components, and significance
testing, giving special attention to testing spatio–temporal separability in the
context of functional data. We also highlight some ideas related to extreme
value theory for spatially indexed functional time series.
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Resumen

Revisamos desarrollos recientes relacionados con la inferencia de fun-
ciones definidas en locaciones espaciales. Tambin consideramos series de
tiempo funcionales definidas en puntos espaciales irregularmente distribui-
dos en una cuadrcula. Nos centramos en el kriging, la estimacin de la media
funcional y de los componentes principales, y en la prueba de significancia,
dando especial atencin a pruebas de separabilidad de espacio-tiempo en el
contexto de datos funcionales. Tambin destacamos algunas ideas relaciones
con la teora de valores extremos para series de tiempo funcionales indexadas
en el espacio.

Palabras clave: datos funcionales; estadstica espacial.

aPhD. E-mail: Piotr.Kokoszka@colostate.edu
bPhD. E-mail: mreimherr@psu.edu

101



102 Piotr Kokoszka & Matthew Reimherr

1. Introduction

The objective of this paper is to review some recent developments in inference
for geostatistical functional data. We thus consider data which are a collection
of curves at spatial locations {sk}. Each t 7→ X(sk; t) is a curve. For example,
the {sk} can be locations of meteorological stations, and X(sk, t) can be some
measurement, for example temperature or wind speed at time t. A sample of
geostatistical spatial data has the form

{X(sk, t), sk ∈ S, t ∈ T , k = 1, 2, . . . , N} .

The spatial domain S is typically a subset of the two–dimensional plane or sphere.
The points sk at which observations are available are generally scattered over S in
some irregular manner. In some applications, e.g. satellite pictures, these points
form a grid, but the methodology we discuss in this paper has been motivated by
and generally applies to irregularly spaced locations sk. Some more general data
structures consisting of time series of functions observed at spatial locations will
also be considered.

Just as in the case of scalar geostatistical data, the model for functional geosta-
tistical data is the random field {X(s), s ∈ S}, with the difference that now each
X(s) is a random function. We assume that each X(s) is an element of the Hilbert
space L2 = L2(T ), with the interval T = [0, 1] chosen merely for convenience. We
assume that each X(s) is square integrable, i.e.

E ∥X(s)∥2 =

∫
EX2(s; t)dt < ∞.

If we assume that S is the whole Euclidean space, we can define strict stationarity
by the condition

{X(s1 + h), X(s2 + h), . . . , X(sm + h)} d
= {X(s1), X(s2), . . . , X(sm)} . (1)

If this is the case, then E ∥X(s)∥2 does not depend on s. Square integrability and
strict stationarity imply that the mean function

µ(t) = EX(s; t)

and the covariances

C(h; t, u) = Cov(X(s; t), X(s+ h;u))

exist and do not depend on s. When working with functional geostatistical data,
it is important to keep in mind that the function h 7→ C(h; t, u) is nonnegative
definite only if t = u. In that case, C(·; t) := C(·; t, t) is the spatial covariance
function of the scalar field {X(s; t)}. It is often assumed that the covariances
are isotropic, i.e. C(h; t, u) = C(h; t, u) depends only on h = ∥h∥. Unless stated
otherwise, in the remainder of this paper, we assume that the field {X(s)} is square
integrable, strictly stationary, and isotropic.
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We also consider a more complex data structure; at spatial locations we observe
time series of functions. The data have the form Xn(s; t), where n is year, s is
a spatial location, and t is time within a year. For example Xn(s; t) can be the
curve of daily temperatures, the unit of t is day, in year n, and at location s.
Other examples are: total daily precipitation, wind strength, wind direction, solar
radiation. Many of these daily time series are either maxima, minima or averages
of data obtained in higher temporal resolutions. Historical records can be treated
as geostatistical data, as meteorological stations are not uniformly distributed.
However, computer weather prediction models produce complete records at dense
grids that extend many decades into the future.

The paper is organized as follows. In Section 2, we review the subject of
kriging in the context of functional data. Kriging is a fundamental tool in the
field of spatial statistics, and so is a suitable starting point. We then turn, in
Section 3, to the subject of estimation of the the mean function and the functional
principal components from a sample of spatially distributed curves. Most methods
of Sections 2 and 3 are implemented in the R package geofd. Examples of code are
given in Chapter 9 of Kokoszka & Reimherr (2017). Section 4 is devoted to several
significance tests in the context of spatial functional data. Testing of separability is
presented in a separate section, Section 5, due to its importance in many inferential
procedures for spatio–temporal data. We conclude with fairly recent research on
extreme events defined in terms of spatially indexed functional time series. This
work, whose many aspects are still under development, is outlined in Section 6.

It is not our objective to present a complete review of the subject, but rather to
explain those recent developments which have attracted our interest. We strive not
to merely provide references, but to explain the central points in detail that will
allow the reader to gain sufficient understanding to decide if a specific development
is relevant to her work or not.

We assume that the reader is familiar with the fundamental concepts of spatial
statistics, explained, e.g., in initial chapters of Wackernagel (2003), Schabenberger
& Gotway (2005) or Sherman (2011). Chapter 3 of Gelfand, Diggle, Fuentes &
Guttorp (2010) also provides a sufficient introduction. Some familiarity with the
fundamental concepts of functional data analysis would also be helpful; Chapters
1 and 3 of Kokoszka & Reimherr (2017) provide enough background.

2. Kriging

We observe functions X(sk) at spatial locations s1, s2, . . . , sN . Suppose s is
a different location, and we want to predict the function X(s) using the func-
tions X(s1), X(s2), . . . , X(sN ). In the functional setting, the available data can
be represented as a matrix of scalars

[X(sk; tj), k = 1, 2, . . . , N, j = 1, 2, . . . , J ] ,

assuming all functions are observed at the same points tj . In some situations, the
points tj may depend on the location sk, so the scalar data points are X(sk, tkj).
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There are many approaches to computing a predictor X̂(s) of the unobserved curve
X(s). We start with a method which is the most direct extension of the approach
used for scalar data.

Taking a functional point of view, we treat each curve X(sk) as an indivisible
data object. We want to determine the weights wk for the predictor of the form

X̂(s) = µ+

N∑
k=1

wk(X(sk)− µ). (2)

Since the X(sk) are now functions, we calculate the weights by minimizing the
expected L2 distance between X̂(s) and X(s). We thus want to find weights
w1, w2, . . . , wN which minimize

E
∥∥∥X̂(s)−X(s)

∥∥∥2 = E

∫ (
X̂(s; t)−X(s; t)

)2
dt.

Observe that

∥∥∥X̂(s)−X(s)
∥∥∥2

=

∥∥∥∥∥µ+

N∑
k=1

wk(X(sk)− µ)−X(s)

∥∥∥∥∥
2

=

⟨
N∑

k=1

wk(X(sk)− µ)− (X(s)− µ),

N∑
ℓ=1

wℓ(X(sℓ)− µ)− (X(s)− µ)

⟩

=

N∑
k,ℓ=1

wkwℓ ⟨X(sk)− µ,X(sℓ)− µ⟩

− 2

N∑
k=1

wk ⟨X(sk)− µ,X(s)− µ⟩+ ⟨X(s)− µ,X(s)− µ⟩ .

Define the functional spatial covariances as

C(s, s′) = E [⟨X(s)− µ,X(s′)− µ⟩] . (3)

Notice that for any two spatial points, C(s, s′) is a real number, as opposed to an
operator. Using this notation, we see that

E
∥∥∥X̂(s)−X(s)

∥∥∥2 =

N∑
k,ℓ=1

wkwℓC(sk, sℓ)− 2

N∑
k=1

wkC(sk, s) + C(s, s).

Finding the kriging weights is thus based on the same equations as for scalar data,
but using the functional covariances (3). Therefore, the weights wk are found by
solving the system of equations

N∑
ℓ=1

C(sk, sℓ)wℓ = C(sk, s), k = 1, 2, . . . N. (4)
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To implement this approach in practice, we must estimate the covariances
C(sk, sℓ) and C(sk, s). We now explain how this can be done. Using the assump-
tions of stationarity and isotropy, we see that

C(s, s′) = E

∫
(X(s; t)− µ(t)) (X(s′; t)− µ(t)) dt

=

∫
C(∥s− s′∥ ; t)dt,

where
C(h; t) = Cov(X(s+ h; t), X(s; t)), h = ∥h∥ ,

is the spatial covariance function of the scalar field {X(·; t)} obtained by fixing t.
For each t, the covariance function h 7→ C(h; t) can be estimated by any method
that is applicable to covariance estimation for scalar spatial data; this is typically
done by estimating the semivariogram.

The kriging predictor is often expressed in a slightly different way. We want to
find a predictor X⋆(s) of the form X⋆(s) =

∑N
k=1 λkX(sk), subject to the condition∑N

k=1 λk = 1. By contrast, equations (4) do not imply that
∑N

k=1 wk = 1. In many
applications, the weights wj are very close to the weights λj , and the predicted
function X̂(s) and X⋆(s) are also very close.

In addition to these simple methods, (Delicado, Giraldo, Comas & Mateu 2010)
give references to several other methods of kriging functional data. Another rela-
tively simple kriging method they discuss, which gives predictions as good as more
complex methods can be summarized as follows. The predictor has the form

X̂(s; t) =

N∑
k=1

wk(t)X(sk; t),

where the unknown functions wk(·) satisfy
∑N

k=1 wk(t) = 1, for each t. The
observed functions X(sk) and the unknown weight functions wk(·) are expanded
using some basis system:

X(sk; t) =

M∑
m=1

ckmBm(t), wk(t) =

M∑
m=1

bkmBm(t).

In particular, one can use the estimated FPC’s v̂m as the Bm. The coefficient
matrix B = [bkm, 1 ≤ k ≤ N, 1 ≤ m ≤ M ] is also found by minimizing E∥X̂(s)−
X(s)∥2. This approach is similar to the method of co–kriging used for multivariate
data, e.g. Wackernagel (2003).

We have assumed so far that EX(s; t) = µ(t) does not depend on the location
s. Caballero, Giraldo & Mateu (2013) and Menafoglio, Secchi & Rosa (2013)
show how to perform kriging under a more flexible assumption that EX(s; t) =∑L

ℓ=1 βℓ(t)fℓ(s).
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3. Estimation of the mean function and of the FPC’s

To estimate the mean function, we use the weighted average

µ̂(t) =

N∑
k=1

wkX(sk; t), (5)

and the problem becomes how to compute the optimal weights wk. As in Section 2,
in (5) we treat the curves X(sk) as indivisible statistical objects, and so we apply
one weight to the whole curve. One could consider weights wk(t), defined as
functions, but the simple approach we describe in this section is easy to implement,
and produces estimates which significantly improve on the simple average. Figure 1
illustrates the difference between the simple average (wk = 1/N) and the weighted
average we are about to derive, using annual temperature curves in Canada. There
are plenty of locations in the southern part of Canada, especially in the densely
populated South–East of the country, and very few in the North. If we postulate
the model X(sk; t) = µ(t) + ε(sk; t), then µ should represent the typical annual
temperature profile for the whole country. The simple average will mostly reflect
temperature curves in the region where there are many stations, i.e. mostly in
the South. To obtain a more informative kriged mean function, stations far in the
North must receive larger weights. Some stations in the south will receive even
slightly negative weights.
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Figure 1: Gray lines: annual temperature curves at 35 locations in Canada (averaged
over several decades). Dashed line: simple average of these curves. Continu-
ous black line: mean function estimated by functional kriging.

We define the optimal weights as those that minimize

E

∥∥∥∥∥
N∑

k=1

wkX(sk)− µ

∥∥∥∥∥
2

=

∫ { N∑
k=1

wkX(sk; t)− µ(t)

}2

dt, (6)
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subject to the condition
∑n

k=1 wk = 1 which ensures that Eµ̂ = µ. The method
of Lagrange multipliers leads to the following system of N + 1 linear equations:

N∑
k=1

wk = 1,

N∑
k=1

wkC(sk, sn)− r = 0, n = 1, 2, . . . N, (7)

in which w1, w2, . . . , wN , r are N+1 unknowns. The functional covariances C(sk, sn)
can be estimated as explained in Section 2.

A fundamental tool of functional data analysis is the Karhunen–Loéve ex-
pansion. Every function X in L2 can be represented as X(t) =

∑∞
j=1 ξjvj(t),

where the vj are orthonormal functions known as the functional principal compo-
nents (FPC’s). The main feature of this expansion is that the function X(p)(t) =∑p

j=1 ξjvj(t) is a very good approximation of the function X(·) even for small p;
in many applications p = 3 is sufficient. A small number of scores ξ1, ξ2, . . . , ξp
thus encodes an infinitely dimensional function. Details are explained in Chapter
11 of Kokoszka & Reimherr (2017). The functions vj are the eigenfunctions of the
covariance function c(t, s) = Cov(X(t), X(s)). Therefore, if the spatially indexed
functions X(s) have the same distribution, then each of them admits the expansion

X(s; t) = µ(t) +

∞∑
i=1

ξi(s)vi(t). (8)

We now explain how to estimate the vj in (8) under the assumptions of station-
arity and isotropy stated in Section 1. We also assume that µ(t) = 0; in practice we
would subtract the estimated mean function. We describe one of the two methods
proposed by Gromenko, Kokoszka, Zhu & Sojka (2012). Both methods have very
similar finite sample performance, and have significantly smaller MSE’s compared
to the standard method which does not take spatial dependence into account.

It is assumed that the vj admit the expansion

vj(t) =

K∑
α=1

x(j)
α Bα(t), (9)

where the Bα are elements of an orthonormal basis, for example Fourier basis
(splines will not work because they are not orthogonal). The expansion (9) is
already an estimation step. We would take K so large that each observed function
X(sk) is well approximated by the sum X(K)(sk; t) =

∑K
α=1 bα(sk)Bα(t). The

exact expansion is

X(s; t) =

∞∑
α=1

bα(s)Bα(t), bα(s) = ⟨X(s), Bα⟩ .

The bα(sk) form an observable field.
The vj are determined (up to a sign) by the conditions C(vj) = λjvj and

∥vj∥ = 1, where C(·) = E[⟨X(s), ·⟩X(s)] is the covariance operator. Using the
orthonormality of the Bj , we obtain
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C(Bj) = E

[⟨ ∞∑
α=1

bα(s)Bα, Bj

⟩ ∞∑
i=1

bi(s)Bi

]
(10)

= E

[
bj(s)

∞∑
i=1

bi(s)Bi

]

=

∞∑
i=1

E[bi(s)bj(s)]Bi.

Thus, to estimate C, we must estimate the means E[bi(s)bj(s)].
Fix i and j, and define the scalar field z by z(s) = bi(s)bj(s). We can postulate a

parametric model for the covariance structure of the field z(·), and use an empirical
variogram to estimate µz = Ez(s) as a weighted average of the z(sk). Denote the
resulting estimate by r̂ij . The empirical version of (10) is then

Ĉ(Bj) =

K∑
i=1

r̂ijBi. (11)

Relation (11) defines the estimator Ĉ which acts on the span of Bj , 1 ≤ j ≤ K.
Its eigenfunctions are of the form x =

∑
1≤α≤K xαBα. Observe that

Ĉ(x) =
∑
α

xα

∑
i

r̂iαBi =
∑
i

(∑
α

r̂iαxα

)
Bi.

On the other hand, λx =
∑

i λxiBi. Since the Bi form an orthonormal basis, we
obtain

∑
α r̂iαxα = λxi. Setting

x = [x1, x2, . . . , xK ]T , R̂ = [r̂ij , 1 ≤ i, j ≤ K],

we can write the above as a matrix equation

R̂x = λx. (12)

Denote the solutions to (12) by

x̂(j) = [x̂
(j)
1 , x̂

(j)
2 , . . . , x̂

(j)
k ]T , λ̂j , 1 ≤ j ≤ K. (13)

The x̂(j) satisfy
∑K

α=1 x̂
(j)
α x̂

(i)
α = δij . Therefore the v̂j defined by

v̂j =

K∑
α=1

x̂(j)
α Bα (14)

are also orthonormal (because the Bj are orthonormal). The v̂j given by (14) are
the estimators of the FPC’s, and the λ̂j in (13) of the corresponding eigenvalues.

A natural question to ask is what happens if one applies standard software
to the observed curves X(sk), 1 ≤ k ≤ K, in order to estimate the FPC’s, vj ,
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in (8). The usual method, implemented in the function pca of the fda package
(and in many other packages) is to use the the eigenfunctions of the sample co-
variance operator. It is suitable for a sample of iid curves or for curves forming a
regularly spaced functional time series, but not for geostatistical functional data.
We illustrate with an example. A comprehensive theory and more examples were
developed by Hörmann & Kokoszka (2013). This material is also presented in
Chapter 18 of Horváth & Kokoszka (2012).

For mean zero functions, the sample covariance operator Ĉ is defined by

ĈN (x) = N−1
N∑

k=1

⟨Xk, x⟩Xk.

The usual estimated FPC’s are defined by ĈN (v̂j) = λ̂j v̂j . Consider a functional
random field

X(s; t) =

∞∑
j=1

ξj(s)ej(t), s ∈ Rd, t ∈ [0, 1], (15)

where {ej , j ≥ 1} is a complete orthonormal system and the ξj(s) are mean zero
random variables with E[ξj(s)ξj(s+ h)] = λjρj(h), h = ∥h∥, where

∑∞
j=1 λj < ∞

and each ρj(·) is a positive correlation function. Recall that C(·) = E[⟨X(s), ·⟩X(s)].
Direct verification shows that C(x) =

∑∞
j=1 λj ⟨ej , x⟩ ej , so the λj are the eigenval-

ues of C, and the ej the corresponding eigenfunctions, i.e. vj = ej . Now consider
a sequence sn → 0. Because of the positive dependence, X(sn) is close to X(0), so
ĈN , as an arithmetic average, is close to the random operator X⋆ = ⟨X(0), ·⟩X(0).
Observe that X⋆(X(0)) = ∥X(0)∥2X(0). Thus X(0) is an eigenfunction of X⋆.
Since it is random, it cannot be close to any of the vj , even asymptotically.

The above is only an intuitive illustration of the point that if the spatial loca-
tions at which functions are observed have dense clusters, or if the the dependence
is strong, then the eigenfunctions of ĈN do not consistently estimate the FPC’s
vj in (8).

4. Independence, Trend and Change Point Tests

In this section, we discuss several significance tests for geostatistical functional
data. These tests are analogs of simpler tests for iid curves. The spacial depen-
dence between the curves requires more complex forms of the test statistics. In
addition, these statistics typically require complex numerical procedures to com-
pute them. We therefore merely describe what has been done, and provide suitable
references.

We begin with a test of independence of two functional random fields. It was
proposed by Gromenko et al. (2012), and is described in detail in Chapter 17
of Horváth & Kokoszka (2012). The data are observed at N spatial locations:
s1, s2, . . . , sN . At location sk, we observe two curves: X(sk) and Y (sk). We
assume that the sample {X(sk)} is a realization of a random field {X(s), s ∈ S},
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and the sample {Y (sk)} is a realization of a random field {Y (s), s ∈ S}. We want
to test the null hypothesis:

H0: for each s ∈ S, the random functions X(s) and Y (s) are independent

against the alternative that H0 does not hold. The test statistic detects departures
from H0 that manifest themselves in the lack of the correlation between the projec-
tions ⟨x,X(s)⟩ and ⟨y, Y (s)⟩, for any x, y ∈ L2. In practice, the lack of correlation
can be tested only for x and y from sufficiently large finite dimensional subspaces,
those spanned by the first p FPC’s of X(s), and the first q FPC’s of Y (s). The idea
of the test, thus requires that the pairs (X(s), Y (s)) have the same distribution for
every s ∈ S. The construction of the test assumes that both fields, {X(s), s ∈ S}
and {Y (s), s ∈ S} are stationary. The test statistic ŜN is constructed from the
inner products ⟨X(sk), v̂j⟩ , 1 ≤ j ≤ p and ⟨Y (sk), ûj⟩ , 1 ≤ j ≤ q, where the v̂j
are estimated FPC’s of the X–sample and the ûj of the Y –sample. The v̂j and
the ûj be computed as described in Section 3. Under H0, the test statistic ŜN

converges, as N → ∞, to a chi–square distribution with pq degrees of freedom.
Once the v̂j and the ûj are computed, the tests statistic can be computed without
difficulty using package fda. Since the critical values are those of the chi-square
distribution, the test is easy to apply.

The problem of testing the equality of two mean functions, each defined for
functions observed over a different spatial region, is considered in Gromenko &
Kokoszka (2012).

Our next test is motivated by an interesting and extensively studied problem
of space physics. The account presented here is based on Gromenko & Kokoszka
(2013) and Gromenko, Kokoszka & Sojka (2017). We first describe the space
physics problem, and then explain the idea of the test.
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Figure 2: Gray lines represent ionosonde measurements obtained at observatories lo-
cated in mid-latitude northern hemisphere, with the scale on the left-hand
side. The black line represents the observed solar radio flux with the scale on
the right-hand side.
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Increased concentration of greenhouse gases in the upper atmosphere is as-
sociated with global warming in the lower troposphere (the atmosphere roughly
below 10 km). Roble & Dickinson (1989) suggested that the increasing amounts
of these radiatively active gases, mostly CO2 and CH4, would lead to a global
cooling in the ionosphere (atmosphere roughly 300 km above the Earth’s surface).
Rishbeth (1990) pointed out that this would result in a thermal contraction of the
ionosphere. The height of the ionosphere can be approximately computed using
data from a radar–type instrument called the ionosonde. Relevant measurements
have been made for many decades by globally distributed ionosondes. In principle,
these observations could be used to quantitatively test the hypothesis of Roble &
Dickinson (1989). The difficulty in testing the contraction hypothesis comes from
several sources. The height of the ionosphere depends on magnetic coordinates,
the season, long term changes in the strength and direction of the internal mag-
netic field, and, most importantly, on the solar cycle; more solar radiation leads to
greater ionization. This is illustrated in Figure 2. Another difficulty stems from
the fact that ionosonde records are not complete. Most observation stations do
not operate continuously for many decades. They start and end operation at dif-
ferent times, some of them are out of service for many years, or even decades. In
the mid-latitude northern hemisphere, there are 81 ionosonde stations, but at any
given time, data from no more than 40 are available, as shown in Figure 3. This
means that the estimation methods described in Section 3 cannot be used, as they
require complete records to compute various integrals. More complex methods
that work for incomplete records are needed.
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Figure 3: Number of available stations in the mid–latitude northern hemisphere.

Let Y (sk; τi) be the original record at location sk, measured from 1958 to
2015, possibly with long gaps. The set of all locations is {sk, 1 ≤ k ≤ K}, and
the set of time points at which measurements may be available is {τi, 1 ≤ i ≤ T};
in Gromenko, Kokoszka & Sojka (2017) these are months from January 1958 to
December 2015. The following spatio–temporal model is postulated:
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Y (s; τ) = µ(s; τ) + ε(s; τ) + θ(s; τ), (16)

where s is a generic location in a region of interest, and τ is continuous time. A
simple form of the mean function relevant to the space physics problem is

µ(s; τ) = β1 + β2 τ + β3 SRF(τ) + β4 M(s; τ),

where SRF(τ) is the solar radio flux, cf. Fig. 2, and M(s; τ) is a suitable function
computed from the coordinates of the internal magnetic field. The interest lies in
the estimation of the mean function, and testing if it contains a linear trend, i.e.
testing H0 : β2 = 0. The function µ(·, ·) is treated as an unknown determinis-
tic functional parameter. The second term, ε(s; τ), describes the spatio–temporal
variability away from the mean function. Stochastic modeling of this term is
needed to develop inferential procedures. The term θ(s; τ) represents a random
error, which can be associated with measurement error. The details of the esti-
mation and testing procedures are too complex to describe here. The conclusion
is that β2 is significantly negative, confirming the hypothesis of global ionospheric
contraction. The software to perform the test is available and can be used to
test for the presence of global trends in other data of this type, for example in
near-surface temperatures.

We conclude this section with a discussion of change-point detection for the
mean function. The presentation is based on Gromenko, Kokoszka & Reimherr
(2017). General theory for change points for scalar data is presented in Csörgő &
Horváth (1997), several extensions to functional data are presented in Horváth &
Kokoszka (2012). In the spatio–temporal setting we consider here, the data are
assumed to follow the model

Xn(s, t) = µn(s; t) + εn(s; t).

In most applications, n denotes year, s, as before, spatial location, and t time
within a year. For a fixed s, {Xn(s), n = 1, 2, . . .} is a time series of functions, one
function per year. While we assume that the curves are observed densely in time,
they are only observed at a finite number of spatial locations {sk : k = 1, . . . ,K}.
The goal is to determine if the mean functions, µn, are the same across n or if there
is a change in the mean. In other words, we aim to evaluate the null hypothesis

H0 : µ1 = µ2 = · · · = µN against HA : µ1 = . . . µn∗ ̸= µn∗+1 = · · · = µN .

The alternative of a sudden change at a single year n∗ is to be viewed as a math-
ematical approximation. As with all testing problems, the null hypothesis of no
change is tested, and the alternative specifies the violations of the null hypothesis
which will be detected with the highest power. The tests described below, will
also detect different violations of H0, including gradual changes taking place over
a few years.

To carry out the tests, we assume that the covariance structure of the εn is
separable, a test of which will be discussed in section 5. In particular, we assume
that

Cov(εn(s; t), εn(s′; t′)) = v(t, t′)u(s, s′).
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Notice that the decomposition above is unique only up to a constant, we thus
assume that

∫
v(t, t) dt = 1. Gromenko, Kokoszka & Reimherr (2017) consider

three different test statistics based on CUSUM’s (cumulative sums), each of which
uses the expansion (8) applied to the annual curves in different ways. They do not
require a specific procedure for estimating v(t, t′) and U = {u(sk, sk′)}, instead
formulating their tests assuming they have consistent estimates. Examples of how
to estimate these quantities are given in their appendix, as well as in Aston, Pigoli
& Tavakoli (2016) and Constantinou, Kokoszka & Reimherr (2017). The first test
involves using a temporal FPCA, normalizing by the corresponding eigenvalues,
and then pooling across space. The tests statistics is

Λ̂1 =
1

N2

K∑
k=1

ŵk

p∑
i=1

λ̂−1
i

N∑
r=1

⟨
r∑

n=1

Xn(sk)−
r

N

N∑
n=1

Xn(sk), v̂i

⟩2

.

The pooling weights, ŵk, can be chosen however the user prefers, but in practice,
using weights as described in Section 3 works well. It has now become well rec-
ognized in the FDA community that dividing by estimated eigenvalues can cause
stability problems with certain data. Thus a second test statistic was also proposed
which omits normalizing by the λ̂i:

Λ̂2 =
1

N2

K∑
k=1

ŵk

p∑
i=1

N∑
r=1

⟨
r∑

n=1

Xn(sk)−
r

N

N∑
n=1

Xn(sk), v̂i

⟩2

.

For p large, Λ̂2 is essentially an approximation of the third and final test statistic

Λ̂∞
2 =

1

N2

K∑
k=1

ŵk

p∑
i=1

λ̂−1
i

N∑
r=1

∥∥∥∥∥
r∑

n=1

Xn(sk)−
r

N

N∑
n=1

Xn(sk)

∥∥∥∥∥
2

.

Each statistic has a slightly different limiting distribution. In particular, under
H0

Λ̂1
d→

K∑
k=1

w(k)
d∑

i=1

∫
B2

ik(t) dt

Λ̂2
d→

K∑
k=1

w(k)

d∑
i=1

λi

∫
B2

ik(t) dt

Λ̂∞
2

d→
K∑

k=1

w(k)

∞∑
i=1

λi

∫
B2

ik(t) dt,

where Bik(t) are Brownian bridges which satisfy

Cov(Bik(t), Bi′k′(t′)) = 1i=i′ min{t, t′}(1−min{t, t′})σ(sk, sk′).

These asymptotics can be used for choosing rejection regions with proper Type
1 error. To do so, one can use Monte Carlo, though (Gromenko, Kokoszka &
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Reimherr 2017) also provide a normal approximation which works well when
considering a relatively large number of spatial points. These tests can be im-
plemented using the scpt package in R, which is available from http://www.
personal.psu.edu/~mlr36/codes.html and includes an example code for imple-
menting the methodology.
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Figure 4: The spatial field showing the L2 distance between the mean log–precipitation
before and after 1966. There is an increase in precipitation throughout the
year in the area around location 4, decrease in the first half of the year in
the area around location 1. Locations close to 2 and 3 do not show a large
change nor a consistent pattern.

If a change point is detected, its location can be identified as the year when a
test statistics attains maximum. Gromenko, Kokoszka & Reimherr (2017) applied
the above test procedures (with suitable finite sample calibration) to test if the
precipitation pattern over the midwest US states has changed. All tests led to the
same conclusion: one change point in second half of the sixties. The pattern of the
change is shown in Fig. 4. The biggest changes are in the area around Michigan
Lake and south–west of the lake. To visualize the spatial distribution of change,
the authors used the spatial field

ϕ̂(s) = ∥µ̂1(s)− µ̂2(s)∥,
where

µ̂1(s; t) = r̂−1
r̂∑

n=1

Xn(s; t), µ̂2(s; t) = (N − r̂)
−1

N∑
n=r̂+1

Xn(s; t).

They performed kriging with the exponential covariance model to obtain the heat
map shown in Fig. 4. The application of the significance tests confirms that the
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heat map shows a statistically significant change over a region, not a variation in
the magnitude of change which may be due to chance.

5. Separability Tests

The second order structure of a random field of functions is described by the
covariance function σ(s, s′; t, t′) = Cov(X(s, t), X(s′, t′)). Theoretical and com-
putational aspects of most procedures can be significantly simplified if one can
assume that

σ(s, s′; t, t′) = u(s, s′)v(t, t′), (17)

that is, if the spatio–temporal covariance function factors into the product of a
purely spatial and purely temporal covariance functions. The above condition
is, for example, required to develop the change point methodology described in
Section 4. If (17) holds, we say that the functional random field is separable. In
particular, the spatial dependence structure is the same for any time t. Tests
whose null hypothesis is (17) have been proposed by (Liu, Ray & Hooker 2017),
(Aston et al. 2016) and (Constantinou et al. 2017). We discuss the latter two
approaches here.

We begin by discussing two different procedures for estimating v(t, t′) and
U = {u(sk, sk′)}. Aston et al. (2016) used partial trace operators to estimate these
quantities, while (Constantinou et al. 2017) combined bases expansions with a
“flip-flop” approach, which basically iterates between estimating v and U. Partial
trace operators are used to eliminate either the temporal or spatial component of
the covariance, in particular, define the estimated covariance function as

σ̂(sk, s
′
k, t, t

′) =
1

N

N∑
n=1

Xn(sk, t)Xn(sk′ , t′).

(In the above formula, and in the remainder of this section, we assume that the
mean function is zero.) Then the spatial covariance is estimated using

Ûkk′ =

∫
σ̂(sk, s

′
k, t, t) dt,

and the temporal covariance is estimated using

v̂(t, t′) =

∑K
k=1 σ̂(sk, sk, t, t

′)∑
k

∫
σ̂(sk, sk, t, t) dt

.

The normalization above ensures that the trace of v(t, t′) is normalized to be
1, though other normalizations are possible. One thing to note is that the full
covariance σ̂ does not actually need to be estimated, as one can move to estimating
the Û and v̂ directly.

The second approach to estimating v and U comes form (Constantinou et al.
2017) and begins with basis expansions. In particular, one approximates each
temporal curve using J basis functions:
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Xn(sk, t) ≈
J∑

j=1

ξjn(sk)ej(t).

The basis ej(t) can either be deterministic or data driven, such as FPCA. Testing
separability of Xn is then translated into testing separability of ξjn(sk), so that
the null becomes

H0 : Cov(ξjn(sk), ξj′n(sk′) = Vjj′Ukk′ .

However, this is now a multivariate problem and we can utilize multivariate meth-
ods for estimating V and U, in particular, the maximum likelihood estimators,
assuming the data are Gaussian, satisfy

V̂ =
1

N

N∑
n=1

ΞnÛ
−1Ξ⊤

n Û =
1

N

N∑
n=1

Ξ⊤
n V̂

−1Ξn,

where Ξn = {ξjn(sk)} is a J×K matrix. To compute these estimators, one chooses
an initial value, for example Û0 = I, and then iterates between the two estimates,
hence the name “flip-flop method".

With these estimators in hand, one can now carry out a number of different
tests. To construct these tests first define

Σ := E vec(Ξn) vec(Ξn)
⊤,

where vec is the vectorization operator, which stacks the columns of a matrix into
a vector. Under H0 one can show that

Σ = V ⊗U,

where ⊗ is the Kronecker product. Constantinou et al. (2017) consider three
different approaches

TW = N(V̂ ⊗ Û− Σ̂)⊤Ŵ+(V̂ ⊗ Û− Σ̂),

TL = N(J log det(Û) +K log det(V̂)− log det(Σ̂)),

TF = N∥V̂ ⊗ Û− Σ̂∥2F .

The first test uses the Moore–Penrose generalized inverse of the estimated covari-
ance matrix of V̂ ⊗ Û − Σ̂ , Ŵ+, to normalize the difference and create a Wald
type test statistic. The form for Ŵ is complex, but can be found in Constantinou
et al. (2017). The generalized inverse is necessary since the symmetry of the ma-
trices and the non-uniqueness of U and V create a number of linear constraints.
This turns out to be a fairly unstable test statistic in terms of Type 1 error, and
works well only for very small J and K. The second test is derived from the
likelihood ratio and had previously been explored in the multivariate literature in
?. This test is also quite unstable, but only when using a chi-squared distribution
as an asymptotic approximation. Mitchell, Genton & Gumpertz (2006) provided
a Monte-Carlo method which provides a much more stable (in terms of type 1
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error) test. The last test forgoes normalizing the test statistic and instead uses
an asymptotic distribution given by a weighted sum of chi-squares. This test is
very stable and, in the settings considered by Constantinou et al. (2017) exhib-
ited excellent power. Lastly, we note that Aston et al. (2016) provided a testing
procedure that focussed on testing the separability in the directions dictated by
the eigenfunctions. They utilized a bootstrap approach instead of asymptotic dis-
tributions, and their individual tests can be pooled to construct a global test for
evaluating separability overall.

6. Spatio-Temporal Extremes

In this section, we summarize the work of (French, Kokoszka, Stoev & Hall
2019) which deals with the computation of probabilities of heat waves. The
raw data are spatially–indexed time series of daily temperature measurements,
X(sk, j), denoting the temperature at a spatial location sk, k = 1, . . . ,K, on day
j. As argued above, due to the natural annual climate cycle, for each site, we
partition {X(si, j)} into years, and view the resulting 365-dimensional vectors as
samples from a functional time series:

Xn(sk; ·) = {Xn(sk; ti), i ∈ {1, 2, . . . 365}} . (18)

Here, t 7→ Xn(sk; t) is the temperature curve at site sk for year n, viewed as a
function of time t in days. In contrast to the setting of previous sections, the data
used by French et al. (2019) are not historical records, but data generated by a
computer climate model. These artificial data are of much higher quality than
historical records; there are no gaps, and the daily records are available at 16,100
locations forming a grid covering much of North America. It is, at this point, not
clear how to extend the methodology of (French et al. 2019) to historical records.
The advantage of using computer model data is that they are predicted future
temperatures (French et al. 2019 work with the period 2041-2070), which are
more relevant to the prediction of future heat waves. On the other hand, these
data do depend on a model, and the poor quality, geostatistical historical records
are the real data.

French et al. (2019) propose many functionals that can quantify a heat wave,
but here we focus on one specific approach that explains the general idea. A heat
wave is characterized by its spatial and temporal extents and by its intensity. The
intensity is typically quantified by a threshold. Public health concerns call for a
fixed threshold, like 1050F. However, in climate studies of large spatial regions,
with many climatic zones, such a fixed threshold is not appropriate. Also the vari-
ability of temperatures depends greatly on the geographical location, with coastal
locations exhibiting much smaller variability than locations far away from large
bodies of water. It is therefore reasonable to work with standardized temperatures

Zn(sk, ti) =
Xn(sk, ti)−X(sk, ti)

SD(sk, ti)
, (19)
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where

X(sk, ti) =
1

N

N∑
n=1

Xn(sk, ti) and SD2(sk, ti) =
1

N − 1

N∑
n=1

(Xn(sk, ti)−X(sk, ti))
2.

(20)
If the Zn(sk, ti) exceed a fixed threshold z, e.g. z = 2, for a number of neighboring
locations and over a period of time, then we have observed a heat wave (the
Zn(sk, ti) are practically normal). The severity of a heat wave increases with the
size of the region, the duration and the threshold z that is exceeded. Suppose the
Xn(sk, ti) are maximum daily temperatures, and set

Z⋆
n(sk, tj) =

1

ℓ

∑
tj−ℓ<ti≤tj

Zn(sk, ti).

This is the average maximum temperature over the ℓ days preceding day tj . Next,
define

Z⋆
n(tj) = min

1≤k≤K
Z⋆
n(sk, tj).

If Z⋆
n(tj) > z, then the average maximum temperature over ℓ days over K (neigh-

boring) locations exceeds, z; this corresponds to a heat wave defined by this specific
functional. We are interested in the probability of a heat wave in any given year.
We assume that this probability does not depend on year n. We thus want to
compute, for some relevant z > 0,

p(z) = P (∃ j : Zn(tj) > z) = P

(
max
1≤j≤J

Z⋆
n(tj) > z

)
= P (MJ > z),

where J = 365, and
MJ

d
= MJ,n := max

1≤j≤J
Z⋆
n(tj).

The concatenated sequence Z⋆(tj) is stationary and weakly dependent, so (see e.g.
Beirlant, Goegebeur, Segers & Teugels 2006, Chapter 10), there are sequences aJ
and bJ such that

lim
J→∞

P

(
MJ − bJ

aJ
≤ z

)
→ H(z),

where H is a univariate Generalized Extreme Value distribution function. The
function H depends on three parameters, which can be estimated, together with
the constants aJ and bJ , using now standard R implementations.

Figure 5 shows examples of regions corresponding to 50, 150 and 450 neighbor-
ing locations. Figure 6 shows a map of the probability of a heat wave for d = 50
for three durations ℓ, with (a) corresponding to ℓ = 3, (b) to ℓ = 10, and (c) to
ℓ = 30. When ℓ = 3, there is a surprisingly high probability of localized heat
waves over the Labrador Peninsula. Such short heat spells may occur with prob-
ability approaching 50%, that is on average every second year. While our EVT
approximation may break down for such high probabilities, it is nevertheless obvi-
ous that that part of Canada will see heat spells much more frequently than in the
past. Generally, we see that the area around the Hudson Bay will experience an
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increased frequency of hot spells lasting a few days. There is a noticeable drop in
the probability of such a heat wave around the Rocky Mountain range. The prob-
ability is also very low along the Eastern seaboard of the United States. Increasing
the duration to ℓ = 10 days, dramatically reduces the probability of a heat wave of
the corresponding magnitude. The reader will note the different probability scale.
Many parts of Canada once again show an increased probability of a heat wave
of this magnitude, as well as parts of Iowa and Illinois, certain regions in Texas,
and, most visibly, the Pacific Ocean off the Southern California coast. Increas-
ing the duration to approximately 1 month (ℓ = 30), causes the probability of a
heat wave to drop even further; generally, throughout North America, heat waves
of this magnitude will occur with probability of less than 1%, i.e. once per one
hundred years, on average. Over the Canadian plains and the Canadian Rockies,
this probability increases only slightly to about 1.5%. There are two patches, in
Arizona and Southern Texas, with probabilities elevated to 2-3%.

Figure 5: A map of the neighborhood structures for different locations using 50, 150,
and 450 nearest neighbors. Each × marks a neighborhood centroid and the
sequences of grey shading mark the extents of the increasing neighborhood
sizes.
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Figure 6: Probability of a heat wave with amplitude more than 2 standard deviations
above the mean for spatial extent d = 50 and durations of (a) ℓ = 3, (b)
ℓ = 10, and (c) ℓ = 30.

7. Conclusions

This article has focused on aspects of the statistical analysis of functions and
time series of functions distributed over space that have attracted our interest. No
claim is made that this survey is complete. There have been developments in the
analysis of functional data arising in brain and other medical studies that have
important spacial aspects, but do not readily fit into the more traditional and well
understood paradigms of spatial statistics. One can expect that as new data sets
consisting of functions that exhibit some form of spatial dependence arise, new
tools may need to be developed to extract useful information.
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