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Abstract

The methods to obtain discrete analogs of continuous distributions have
been widely considered in recent years. In general, the discretization process
provides probability mass functions that can be competitive with the tra-
ditional model used in the analysis of count data, the Poisson distribution.
The discretization procedure also avoids the use of continuous distribution
in the analysis of strictly discrete data. In this paper, we seek to introduce
two discrete analogs for the Shanker distribution using the method of the in-
finite series and the method based on the survival function as alternatives to
model overdispersed datasets. Despite the difference between discretization
methods, the resulting distributions are interchangeable. However, the dis-
tribution generated by the method of the infinite series method has simpler
mathematical expressions for the shape, the generating functions, and the
central moments. The maximum likelihood theory is considered for estima-
tion and asymptotic inference concerns. A simulation study is carried out in
order to evaluate some frequentist properties of the developed methodology.
The usefulness of the proposed models is evaluated using real datasets pro-
vided by the literature.
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Resumen

Los métodos para obtener análogos discretos de distribuciones continuas
han sido ampliamente considerados en los últimos años. En general, el pro-
ceso de discretización proporciona funciones de probabilidad en masa que
pueden ser competitivas con el modelo tradicional utilizado en el análisis
de datos de conteo, la distribución de Poisson. El procedimiento de dis-
cretización también evita el uso de la distribución continua en el análisis de
datos estrictamente discretos. En este artículo, intentamos introducir dos
análogos discretos para la distribución de Shanker utilizando el método de
la serie infinita y el método basado en la función de supervivencia como al-
ternativas para modelar conjuntos de datos sobre dispersados. A pesar de la
diferencia entre los métodos de discretización, las distribuciones resultantes
son intercambiables. Sin embargo, la distribución generada por el método
de series infinitas tiene expresiones matemáticas más simples para la forma,
las funciones de generación y los momentos centrales. La teoría de máxi-
ma verosimilitud se considera para la estimación y las preocupaciones de
inferencia asintótica. Se lleva a cabo un estudio de simulación para evaluar
algunas propiedades frecuentistas de la metodología desarrollada. La utili-
dad de los modelos propuestos se evalúa utilizando conjuntos de datos reales
proporcionados por la literatura.

Palabras clave: Estimación de máxima verosimilitud; Distribuciones disc-
retas; Distribución de Shanker; Simulación del Monte Carlo; Sobredispersión.

1. Introduction

In recent decades, the building of a probabilistic distribution by discretization of a
continuous random variable has been widely addressed in the literature. The main
purpose of the discretization is to generate distributions that can be used for the
analysis of strictly discrete data. For example, in survival analysis is common to
use continuous distributions to model discrete data, so the discretization acts as
a subterfuge to avoid this process. Several applications where continuous distri-
butions were used to model discrete data can be found in Klein & Moeschberger
(1997), Meeker & Escobar (1998), Kalbfleisch & Prentice (2002), Lee & Wang
(2003), Lawless (2003), Collett (2003), Hamada, Wilson, Reese & Martz (2008),
among others. A complete survey regarding all discretization methods and some
discretized distributions can be found in Chakraborty (2015a).

One of the first proposed discretization methods is based on the definition of
a probability mass function (pmf) that depends on an infinite series. The first
traces of this method were presented by Good (1953), who proposed the discrete
Good distribution to model population frequencies of species. Such an approach
was considered by other authors to define discrete analogs, and we will point out a
few. Haight (1957) proposed the discrete Pearson III distribution to model queues
with baking and Siromoney (1964) introduced the Dirichlet’s Series distribution
as an alternative model to describe the frequency of wet days (rain-spells). After a
long break, this method was revived by Kemp (1997) that formally introduced the
discrete Normal distribution and derived its main statistical properties. The dis-
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crete Exponential distribution was proposed by Sato, Ikota, Sugimoto & Masuda
(1999) to describe the defect count frequencies on wafers or chips. Bi, Faloutsos
& Korn (2001) introduced the discrete Lognormal distribution and with applica-
tion to internet clickstream data, among others. Inusah & Kozubowski (2006)
presented the discrete Laplace distribution discussing that, relative to the dis-
crete Normal, the proposed model has closed forms for the pmf, for the generating
functions and the central moments. The skewed version of the discrete Laplace
distribution was proposed by Kozubowski & Inusah (2006). Further, Kemp (2008)
introduced the discrete Half-Normal distribution studying its relation with other
distributions and Nekoukhou, Alamatsaz & Bidram (2012) proposed the discrete
Generalized Exponential distribution as an attempt to model ranking frequencies
of graphemes in the Slovene language.

Another popular method to obtain discrete analogs of continuous random vari-
ables is the one based on the survival function (sf) of the original distribution.
This method was proposed by Nakagawa & Osaki (1975) and has the interest-
ing feature of preserving the original sf of its integer part for the generated pmf
(Kemp 2004, Chakraborty 2015a). Several authors also considered the discretiza-
tion method based on the sf, and we will point out a few. Nakagawa & Osaki
(1975) proposed the discrete Weibull distribution and discussed its main prop-
erties. The Geometric-Weibull distribution considering a discrete analog for the
Weibull component was introduced by Bracquemond & Gaudoin (2003). Roy
(2004) proposed the discrete Rayleigh distribution and presented its usefulness
in the stress-strength analysis. The discrete Burr and Pareto distributions were
introduced by Krishna & Pundir (2009) for application in reliability estimation in
series systems. Jazi, Lai & Alamatsaz (2010) proposed the discrete Inverse Weibull
distribution and discussed different estimation methods for the model parameters.
Gómez-Déniz & Calderín-Ojeda (2011) introduced the discrete Lindley distribu-
tion and illustrated its application using an automobile claim frequency data.
The discrete Gamma distribution was proposed by Chakraborty & Chakravarty
(2012), which derived several statistical properties of this model. Besides, Nek-
oukhou, Alamatsaz & Bidram (2013) presented the discrete Type II Generalized
Exponential distribution, and Hussain & Ahmad (2014) introduced the discrete
Inverse Rayleigh distribution as alternatives to model overdispersed count data.

The main aim of this paper is to use the methods of infinite series and of
the sf to propose discrete analogs for the Shanker distribution, which is a one-
parameter lifetime model proposed by Shanker (2015). We expect the proposed
models to be suitable alternatives to model overdispersed count datasets. The
Shanker distribution can be seen as a modification of the one-parameter Lindley
distribution (Ghitany, Atieh & Nadarajah 2008).

A continuous random variable X is said to have Shanker distribution if its
probability density function (pdf) can be written as

f
X
(x; θ) =

θ2

θ2 + 1
(θ + x) e−θx, x ∈ R+, (1)

where θ ∈ R+ is the shape parameter. The author has shown that this model is
a two component mixture of an Exponential distribution with scale parameter θ
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and a Gamma distribution having shape parameter 2 and scale parameter θ, with
mixing proportions given, respectively, by θ2ν−1 and ν−1, where ν = θ2 + 1. For
the one-parameter Lindley distribution the mixing proportions are, respectively,
θν−1 and ν−1, where ν = θ + 1.

A comprehensive discussion about the statistical properties of the Shanker
distribution, such as moments, hazard function, stochastic orderings, parameter
estimation, among others is also presented on the mentioned paper. The corre-
sponding sf is given by

S
X
(x; θ) =

[
1 +

θx

θ2 + 1

]
e−θx, x ∈ R+, (2)

for θ ∈ R+.
This paper is organized as follows. In Section 2, we briefly present the methods

of infinite series and of the sf to define discrete analogs of continuous distributions.
In Section 3, we introduce two types for the discrete Shanker distribution and
derive the main statistical properties of each model. In Section 4, the problem
of estimating the parameter of the proposed models is addressed, and inference
procedures are discussed. In Section 5, a simulation study is conducted in order to
evaluate the performance of the presented methodology. In Section 6, applications
of the proposed models to real datasets are considered to illustrate its usefulness.
Concluding remarks are addressed in Section 7.

2. Discretization Methods

In this section, we present two discretization methods that will be considered to
obtain discrete analogs for the Shanker distribution. It is important to point out
that the paper of Chakraborty (2015a) is possibly the only paper with exhaustive
discussion on various methods of discretization.

2.1. Discretization by Infinite Series

The method of discretization by infinite series was firstly considered by Good
(1953), which has proposed the discrete Good distribution to model population
frequencies of species. A random variable Y is said to have a discrete Good
distribution if its pmf can be written as

P (Y = y;α, δ) =
δyyα∑∞
j=1 δ

jjα
, y ∈ Z+,

for α ∈ R and δ ∈ (0, 1). The method of infinite series is characterized by the
following definition.

Let X be a continuous random variable. If X has probability density function
(pdf) f

X
(x;θ) with support on R, then the corresponding discrete random variable

Y has pmf given by
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P (Y = y;θ) =
f
X
(y;θ)∑∞

j=−∞f
X
(j;θ)

, y ∈ Z,

where θ is the vector of parameters indexing the distribution of X.
This method was studied by several authors, including Kulasekera & Tonkyn

(1992), Doray & Luong (1997), Kemp (1997) and Sato et al. (1999), which pro-
posed a version of the method when the continuous random variable of interest is
defined on R+. Thus, if the random variable X is defined on R+, the pmf of Y
becomes

P (Y = y;θ) =
f
X
(y;θ)∑∞

j=0 fX
(j;θ)

, y ∈ Z+. (3)

One of the most recent examples of the use of this method is that provided
is the discrete analogue of the generalized Exponential distribution introduced by
Nekoukhou et al. (2012) having pmf

P (Y = y;α, λ) = λx−1 (1− λx)
α−1

[ ∞∑
i=1

(
α− 1

j

)
(−1)

j
λj

1− λ1+j

]−1

, y ∈ Z+,

for α ∈ R+ and λ ∈ (0, 1).
A possible drawback of such method is the fact that, in some instances, the

generated pmf may have no closed form, which is the case of the generalized
Exponential model. However, it will be shown that this is not the case when
obtaining the discrete analog for the Shanker distribution by this method.

2.2. Discretization by Survival Function

The method of discretization by sf was proposed by Nakagawa & Osaki (1975).
This method allows us to discretize a continuous random variable from its sf.
Several properties of the survival and of the risk functions were studied by Brac-
quemond & Gaudoin (2003), Roy (2003), Kemp (2004), Chakraborty (2015a),
among others. The most important feature of this method is that it preserves
the original sf on its integer part for the generated pmf (Chakraborty 2015a).
Some other contributions in this area are given by Chakraborty & Chakravarty
(2016), Chakraborty (2015b), Chakraborty & Gupta (2015) and Chakraborty &
Chakravarty (2012). According to Roy (2003), we can define a discrete random
variable from a continuous one as follows.

Let X be a continuous random variable. If X has sf S
X
(x;θ), then the discrete

random variable Y = ⌊X⌋ has pmf given by

P (Y = y;θ) = S
X
(y;θ)− S

X
(y + 1;θ) , y ∈ Z+, (4)

where ⌊·⌋ denotes the floor function, which returns the highest integer value smaller
or equal to its argument.
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It is noteworthy to mention that if the original sf has closed form, then the
generated pmf will also have. For example, the Weibull distribution with pdf

f
X
(x;µ, θ) =

θ

µθ
xθ−1e

−
(
x

µ

)θ

, x ∈ R+,

and sf
S

X
(x;µ, θ) = e−t( x

µ )θ , x ∈ R+,

where θ, µ ∈ R+ are, respectively, the shape and the scale parameters, was one
of the first discretized distributions by this method. Nakagawa & Osaki (1975)
proposed the discrete Weibull distribution which pmf for the random variable
Y = ⌊X⌋ is given by

P (Y = y;µ, θ) = e−( y
µ )θ − e−( y+1

µ )θ , y ∈ Z+,

for (θ, µ) ∈ R2
+. It is straightforward to prove that the above equation correspond

to a proper pmf since it involves simple exponential terms.

3. The Discrete Shanker Distribution

In this section, we will consider both methods previously presented to define dis-
crete analogs for the Shanker distribution. For ease of notation, each probabilistic
model provided by these methods will be denoted by T1DS (Type I Discrete
Shanker) and T2DS (Type II Discrete Shanker) distributions, respectively. For
each version of this model, the main statistical properties as the shape, the gener-
ating functions and the central moments will be discussed.

3.1. Type I. Discrete Shanker Distribution

By considering equation (3), one can define the one-parameter T1DS distribution.
We have the following definition.

Let X be a continuous random variable having Shanker distribution (1) with
parameter θ ∈ R+. Let h (z) = ez − 1, z ∈ R. The pmf of Y having T1DS
distribution is given by

P (Y = y; θ) =
h2 (θ)

θh (θ) + 1
(θ + y) e−θ(y+1), y ∈ Z+, (5)

for θ ∈ R+.

Proposition 1. The equation (5) is a proper pmf.
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Proof . Here we have to prove that
∑∞

y=0 P (Y = y; θ) = 1 for θ ∈ R+. Then,

∞∑
y=0

P (Y = y; θ) =

∞∑
y=0

h2 (θ)

θh (θ) + 1
(θ + y) e−θ(y+1)

=
h2 (θ) e−θ

θh (θ) + 1

{
θ

∞∑
y=0

e−θy +

∞∑
y=0

ye−θy

}

=
h2 (θ) e−θ

θh (θ) + 1

{
θeθ

h (θ)
+

eθ

h2 (θ)

}
= 1,

which concludes the proof.

For a random variable Y behaving accordingly a T1DS distribution, we will
adopt the notation Y ∼ T1DS (θ). The pmf (5) does not involves complicated
expressions and therefore, the probabilities can be straightforwardly computed, as
for example

P (Y = 0; θ) =
θh2 (θ) e−θ

θh (θ) + 1
,

for θ ∈ R+. Figure 1 depicts the behavior of the pmf (5) for selected values of θ.
We have derived some theoretical properties of the T1DS distribution. These

properties are stated in the following propositions.

Proposition 2. Let Y ∼ T1DS (θ). The sf of Y is given by

S (y; θ) =
e−θy [1− (θ + y)h (−θ)]

θh (θ) + 1
, y ∈ Z+,

for θ ∈ R+.

Proof . By definition, S (k; θ) = P (Y > k; θ) = 1− P (Y 6 k; θ). Then,

S (k; θ) = 1−
k∑

y=0

h2 (θ)

θh (θ) + 1
(θ + y) e−θ(y+1)

= 1− h2 (θ) e−θ

θh (θ) + 1

{
θ

k∑
y=0

e−θy +

k∑
y=0

ye−θy

}

= 1− h2 (θ) e−θ

θh (θ) + 1

{
θ
(
eθ − e−θk

)
h (θ)

− ke−θk

h (θ)
+

eθ
(
1− e−θk

)
h2 (θ)

}

=
e−θy [1− (θ + y)h (−θ)]

θh (θ) + 1
,

which concludes the proof.
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Figure 1: Behavior of the pmf of the T1DS distribution (upper-left-panel: θ = 0.5,
upper-right-panel: θ = 1.0, lower-left-panel: θ = 1.5 and lower-right-panel:
θ = 2.0).

Proposition 3. Let Y ∼ T1DS (θ). The probability generating function (pgf) of
Y is given by

G (s) =
h2 (θ)

[
θ
(
eθ − s

)
+ s

]
[θh (θ) + 1] (eθ − s)

2 ,

for s ̸= eθ.
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Proof . By definition, G (s) = E
(
sY

)
. For s ̸= eθ, we have that

G (s) =

∞∑
y=0

sy
h2 (θ)

θh (θ) + 1
(θ + y) e−θ(y+1)

=
h2 (θ) e−θ

θh (θ) + 1

{
θ

∞∑
y=0

sye−θy +

∞∑
y=0

ysye−θy

}

=
h2 (θ) e−θ

θh (θ) + 1

{
θ

1− se−θ
+

se−θ

(1− se−θ)
2

}

=
h2 (θ)

[
θ
(
eθ − s

)
+ s

]
[θh (θ) + 1] (eθ − s)

2 ,

which concludes the proof.

Proposition 4. Let Y ∼ T1DS (θ). The moment generating function (mgf) of Y
is given by

M (t) =
h2 (θ)

[
θ
(
eθ − et

)
+ et

]
[θh (θ) + 1] (eθ − et)

2 , (6)

for t ̸= θ.

Proof . By definition, M (t) = E
(
etY

)
. For t ̸= θ, we have that

M (t) =

∞∑
y=0

ety
h2 (θ)

θh (θ) + 1
(θ + y) e−θ(y+1)

=
h2 (θ) e−θ

θh (θ) + 1

{
θ

∞∑
y=0

e−y(θ−t) +

∞∑
y=0

ye−y(θ−t)

}

=
h2 (θ) e−θ

θh (θ) + 1

{
θ

1− e−(θ−t)
+

e−(θ−t)(
1− e−(θ−t)

)2
}

=
h2 (θ)

[
θ
(
eθ − et

)
+ et

]
[θh (θ) + 1] (eθ − et)

2 ,

which concludes the proof.

Proposition 5. Let Y ∼ T1DS (θ). The cumulant generating function (cgf) of Y
is given by

C (t) = 2 log [h (θ)] + log
[
θ
(
eθ − et

)
+ et

]
− log [θh (θ) + 1]− 2 log

(
eθ − et

)
,

for t ̸= θ.

Proof . Straightforward. Since C (t) = log [M (t)], the result follows.
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Proposition 6. Let Y ∼ T1DS (θ). The characteristic function (cf) of Y is given
by

ϕ (t) =
h2 (θ)

[
θ
(
eθ − eit

)
+ eit

]
[θh (θ) + 1] (eθ − eit)

2 ,

for t ∈ R and i =
√
−1 is the imaginary number.

Proof . Straightforward. The result is obtained by noticing that ϕ (t) = M (it).

It can be easily noticed that equation (6) is infinitely differentiable on t, since it
involves exponential terms of its argument. Thus, from Proposition 4, the ordinary
moments of Y can be derived by

µ′
r =

h2 (θ)

[θh (θ) + 1]

{
θ
dr

dtr
1

(eθ − et)
+

dr+1

dtr+1

1

(eθ − et)

}
t=0

, r > 1,

for θ ∈ R+. Hence, the mean (µ) and the variance (σ2) of Y are given, respectively,
by

µ = µ′
1 =

θh (θ) +
(
eθ + 1

)
[θh (θ) + 1]h (θ)

,

and
σ2 = µ′

2 − (µ′
1)

2
=

[
θ2h2 (θ) +

(
eθ + 3

)
θh (θ) + 2

]
eθ

[θh (θ) + 1]
2
h2 (θ)

.

A normalized measure of dispersion can be obtained by using the variance-to-
mean relationship. This measure is the well-known index of dispersion (ID) which,
in this case, is given by

ID =
σ2

µ
=

[
θ2h2 (θ) +

(
eθ + 3

)
θh (θ) + 2

]
eθ

[θh (θ) + 1] [θh (θ) + (eθ + 1)]h (θ)
. (7)

Analogously, the coefficient of variation (CV) of Y has the form

CV =
σ

µ
=

eθ/2
√
[θ2h2 (θ) + (eθ + 3) θh (θ) + 2]

θh (θ) + (eθ + 1)
.

Another useful measure is the zero-modification (ZM) index

ZM = 1 + µ−1 log [P (Y = 0)] ,

which is defined based on the Poisson distribution. This index can be easily
interpreted since ZM > 0 indicates zero-inflation, ZM < 0 indicates zero-deflation
and ZM = 0 indicates no zero-modification. For the T1DS distribution, we have
that the ZM index is given by

ZM = 1 +
[log (θ) + 2 log [h (θ)]− log [θh (θ) + 1]− θ] [θh (θ) + 1]h (θ)

θh (θ) + (eθ + 1)
. (8)
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The asymmetry degree and the flatness of a probabilistic model are usually
measured by its coefficients of skewness and kurtosis, respectively. The first one
can be computed by the third central moment, normalized by the variance raised
to the power 3/2 and the latter is given by the fourth central moment divided
by the square of the variance. These coefficients are essential to characterize the
shape of any distribution but, for the T1DS model, extensive and very complicated
expressions were obtained for such measures. For this reason, the expressions of
these coefficients are omitted here. However, Table 1 summarizes, for selected val-
ues of θ, the nature and the behavior of these coefficients along with the measures
previously stated in the propositions.

Table 1: Theoretical descriptive statistics under T1DS distribution.

θ
Measures

Mean Variance ID CV ZM Skewness Kurtosis
0.5 3.4604 8.0707 2.3322 0.8208 0.3239 1.3979 5.9460
1.0 1.1639 1.8413 1.5820 1.1658 0.2119 1.5946 6.5432
1.5 0.4938 0.6527 1.3209 1.6351 0.1344 2.0171 8.2771
2.0 0.2405 0.2842 1.1819 2.2170 0.0819 2.5495 10.9373
2.5 0.1271 0.1404 1.1048 2.9487 0.0492 3.2249 15.0018
3.0 0.0703 0.0748 1.0616 3.8808 0.0295 4.1028 21.5466

When assessing equation (8) more deeply, we have obtained that ZM → 0 as
θ → ∞ and ZM → 1 as θ → 0. This implies that, besides the usual case (ZM = 0),
the T1DS distribution is suitable to deal with zero-inflation, but is not indicated
to modeling zero-deflated datasets. Further, the coefficient of variation, the coeffi-
cient of skewness, and the coefficient of kurtosis are increasing as θ increases. On
the other hand, the larger values for the mean, variance and index of dispersion
are obtained for small values of θ. The T1DS distribution may be considered an
interesting alternative to model overdispersed datasets (σ2 > µ). This can be seen
by noticing that the index of dispersion is a decreasing function on θ and also
ID → 1 as θ → ∞ and ID → ∞ as θ → 0+. In fact, limθ→0 ID is undefined since
the lateral limits are not equal, but the results presented in Table 1 allow us to
conclude that ID increases as θ approaches zero. Therefore, as ID is always greater
than 1, we conclude that σ2 > µ for all θ ∈ R+.

Proposition 7. Let Y ∼ T1DS (θ). The mode (y0) of Y is given by

y0 =

{
0, if r (θ) < 0

⌈r (θ)⌉ , if r (θ) > 0,
(9)

where r (θ) = h−1(θ)− θ is a real-valued threshold and ⌈·⌉ is the ceiling function,
which returns the lowest integer value greater or equal to its argument. If r (θ) = k,
k ∈ Z+, then the T1DS distribution is bimodal with modes k and k + 1.

Proof . The ratio of consecutive probabilities is given by

P (Y = y + 1; θ)

P (Y = y; θ)
=

[
1 +

1

(θ + y)

]
e−θ, y ∈ Z+, (10)
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for θ ∈ R+. From (10), it is clear that P (Y = y + 1; θ) = P (Y = y; θ) if y =
r (θ) = h−1(θ)− θ. More generally, we have the following relations

i) P (Y = y + 1; θ) < P (Y = y; θ) if y > r (θ);

ii) P (Y = y + 1; θ) = P (Y = y; θ) if y = r (θ);

iii) P (Y = y + 1; θ) > P (Y = y; θ) if y < r (θ).

Now, let k ∈ Z+. By (i), if r (θ) < 0 then y0 = 0 since y ∈ Z+. If r (θ) > 0 and
r (θ) ̸= k then P (Y = r (θ) ; θ) = 0 and therefore, by (i) and (iii), y0 = ⌈r (θ)⌉,
that is, P (Y = ⌈r (θ)⌉ ; θ) > P (Y = k; θ) for all k ̸= ⌈r (θ)⌉. Finally, if r (θ) > 0
and r (θ) = k then

P (Y = k − 1; θ)
(iii)
< P (Y = k; θ)

(ii)
= P (Y = k + 1; θ)

(i)
> P (Y = k + 2; θ) ,

and therefore, both k and k + 1 are modes, implying bimodality. This concludes
the proof.

Proposition 8. The T1DS distribution has an increasing hazard rate.

Proof . Since (10) is a decreasing function on y, P (Y = k; θ) is log-concave and
therefore, the T1DS distribution has an increasing hazard rate. Hence, the proof.

For instance, if θ = 0.5 then r(θ) ≈ 1.04 and hence, y0 = 2, as can be seen in the
upper-left-panel of the Figure 1. In addition, it can also be proved that equation
(5) satisfies P2 (Y = y; θ) > P (Y = y − 1; θ)P (Y = y + 1; θ) for r (θ) ̸= k, which
implies unimodality (see Theorem 3 by Keilson & Gerber (1971)). The relation-
ship between log-concavity, unimodality and increasing hazard rate of discrete
distributions has been discussed by Grandell (1997).

Proposition 9. The T1DS distribution has heavy tails as θ approaches zero.

Proof . The heavy-tail (HT) index is defined by the ratio (10) when y → ∞. A
discrete distribution is said to have heavy tails if HT → 1 when y → ∞. Hence,

lim
θ→0

HT = lim
θ→0

{
e−θ lim

y→∞

[
1 +

1

(θ + y)

]}
= lim

θ→0
e−θ = 1,

which concludes the proof.

3.2. Type II. Discrete Shanker Distribution

By considering equations (2) and (4), one can define the one-parameter T2DS
distribution. We have the following definition.
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Let X be a continuous random variable having Shanker distribution (1) with
parameter θ ∈ R+. Let h (z1, z2) = 1 + z1 (z1 + z2), z1 ∈ R+ and z2 ∈ Z+. The
pmf of Y = ⌊X⌋ having T2DS distribution is given by

P (Y = y; θ) =
e−θy

θ2 + 1

[
h (θ, y)− h (θ, y + 1) e−θ

]
, y ∈ Z+, (11)

for θ ∈ R+.

Proposition 10. The equation (11) is a proper pmf.

Proof . The result comes analogous to the proof of Proposition 1.

For a random variable Y distributed accordingly a T2DS distribution, we will
adopt the notation X ∼ T2DS (θ). For this version, the probabilities can be easily
computed as noticed for the T1DS distribution. Then,

P (Y = 0; θ) =
1

θ2 + 1

[
h (θ, 0)− h (θ, 1) e−θ

]
,

for θ ∈ R+. Figure 2 depicts the behavior of the pmf (11) of Y , using selected
values for θ.

We have also derived some theoretical properties of the T2DS distribution.
These properties are stated in the following propositions.

Proposition 11. Let Y ∼ T2DS (θ). The sf of Y is given by

S (y; θ) =
h (θ, y + 1) e−θ(y+1)

θ2 + 1
, y ∈ Z+,

for θ ∈ R+.

Proof . The result comes analogous to the proof of Proposition 2.

Proposition 12. Let Y ∼ T2DS (θ). The pgf of Y is given by

G (s) =

(
θ2 + 1

) (
e2θ + s

)
−
[(
θ2 + 1

)
(s+ 1)− θ (s− 1)

]
eθ

(θ2 + 1) (s− eθ)
2 ,

for s ̸= eθ.

Proof . The result comes analogous to the proof of Proposition 3.

Proposition 13. Let Y ∼ T2DS (θ). The mgf of Y is given by

M (t) =

(
θ2 + 1

) [(
eθ − et − 1

)
eθ + et

]
+ θeθ (et − 1)

(θ2 + 1) (et − eθ)
2 , (12)

for t ̸= θ.
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Figure 2: Behavior of the pmf of the T2DS distribution (upper-left-panel: θ = 0.5,
upper-right-panel: θ = 1.0, lower-left-panel: θ = 1.5 and lower-right-panel:
θ = 2.0).

Proof . The result comes analogous to the proof of Proposition 4.

Proposition 14. Let Y ∼ T2DS (θ). The cgf of Y is given by

C (t) = log
{(

θ2 + 1
) [(

eθ − et − 1
)
eθ + et

]
+ θeθ

(
et − 1

)}
−

log
(
θ2 + 1

)
− 2 log

(
et − eθ

)
,

for t ̸= θ.

Proof . The result comes analogous to the proof of Proposition 5.

Proposition 15. Let Y ∼ T2DS (θ). The cf of Y is given by

ϕ (t) =

(
θ2 + 1

) [(
eθ − eit − 1

)
eθ + eit

]
+ θeθ

(
eit − 1

)
(θ2 + 1) (eit − eθ)

2 ,
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for t ∈ R and i =
√
−1 is the imaginary number.

Proof . The result comes analogous to the proof of Proposition 6.

For this version, it is also clear that equation (12) is infinitely differentiable on
t. Therefore, from Proposition 13, the ordinary moments of Y can be derived by

µ′
r =

{
eθ

[
dr

dtr

(
eθ − et − 1

)
(et − eθ)

2 +
θ

θ2 + 1

dr

dtr
(et − 1)

(et − eθ)
2

]
+

dr

dtr
et

(et − eθ)
2

}
t=0

, r > 1,

for θ ∈ R+. Hence, the mean and the variance of Y are given, respectively, by

µ =

(
θ2 + 1

) (
eθ − 1

)
+ θeθ

(θ2 + 1) (eθ − 1)
2 ,

and

σ2 =

(
eθ − 1

)
θ4 +

(
e2θ − 1

)
θ3 +

[
2
(
e2θ + 1

)
− 5eθ

]
θ2

(θ2 + 1)2(eθ − 1)4
+(

e2θ − 1
)
θ +

(
eθ − 2

)
eθ + 1

(θ2 + 1)2(eθ − 1)4
.

Now, the ID of Y is given by

ID =

(
eθ − 1

)
θ4 +

(
e2θ − 1

)
θ3 +

[
2
(
e2θ + 1

)
− 5eθ

]
θ2

[(θ2 + 1) (eθ − 1) + θeθ] (θ2 + 1) (eθ − 1)
2 +(

e2θ − 1
)
θ +

(
eθ − 2

)
eθ + 1

[(θ2 + 1) (eθ − 1) + θeθ] (θ2 + 1) (eθ − 1)
2 ,

and the CV has the form

CV =

√
g (θ)

(θ2 + 1) (eθ − 1) + θeθ
,

where

g (θ) =
(
eθ − 1

)
θ4 +

(
e2θ − 1

)
θ3 +

[
2
(
e2θ + 1

)
− 5eθ

]
θ2+(

e2θ − 1
)
θ +

(
eθ − 2

)
eθ + 1.

As for the T1DS distribution, the coefficients of skewness and kurtosis of the
T2DS distribution are represented by an extensive and very complicated expres-
sion. These expressions will also be omitted, but Table 2 summarizes, for selected
values of θ, the nature and the behavior of these coefficients along with the mea-
sures previously presented in this subsection.
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Table 2: Theoretical descriptive statistics under T2DS distribution.

θ
Measures

Mean Variance ID CV ZM Skewness Kurtosis
0.5 3.1088 7.8607 2.5292 0.9009 0.3915 1.4522 6.1036
1.0 1.0423 1.7050 1.6356 1.2528 0.2300 1.7173 7.0468
1.5 0.4578 0.6090 1.3307 1.7047 0.1379 2.1104 8.7843
2.0 0.2290 0.2709 1.1830 2.2732 0.0824 2.6168 11.3721
2.5 0.1231 0.1361 1.1046 2.9967 0.0492 3.2770 15.3967
3.0 0.0688 0.0727 1.0609 3.9229 0.0294 4.1470 21.9449

For this version, the ZM index is given by

ZM = 1 +

[
log

[
h (θ, 0)− h (θ, 1) e−θ

]
− log

(
θ2 + 1

)] (
θ2 + 1

) (
eθ − 1

)2
(θ2 + 1) (eθ − 1) + θeθ

. (13)

The limit properties of (13) are equal to those obtained for (8), that is, ZM → 0
as θ → ∞ and ZM → 1 as θ → 0. This implies that the T2DS distribution is also
suitable to deal with zero-inflation, but is not indicated to modeling zero-deflated
datasets. On the other hand, since θ ∈ R+, the central moments of the T2DS
distribution present the same behavior concerning those derived from the T1DS
distribution. Moreover, since equation (13) presents the same limit properties of
equation (7), we conclude that the T2DS distribution may also be considered as
an alternative to model overdispersed datasets.

Proposition 16. Let Y ∼ T2DS (θ). The mode (y0) of Y is given by (9), where

r (θ) =
2

(eθ − 1)
− θ2 + 1

θ
,

is a real-valued threshold. If r (θ) = k, k ∈ Z+, then the T2DS distribution is
bimodal with modes k and k + 1.

Proof . The ratio of consecutive probabilities is given by

P (Y = y + 1; θ)

P (Y = y; θ)
=

[h (θ, y + 1)− h (θ, y + 2)] e−θ

[h (θ, y)− h (θ, y + 1)]
, (14)

for θ ∈ R+. Thus, the result comes analogous to the proof of Proposition 7.

Proposition 17. The T2DS distribution has an increasing hazard rate.

Proof . One can notice that equation (14) is also a decreasing function on y.
In this case, if follows that P (Y = k; θ) is log-concave and therefore, the T2DS
distribution has an increasing hazard rate. Hence, the proof.

For the T2DS distribution, it can also be proved that equation (11) satisfies
P2 (Y = y; θ) > P (Y = y − 1; θ)P (Y = y + 1; θ) for r (θ) ̸= k, which implies uni-
modality. In addition, one can notice that the form of the mode of the T2DS
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distribution is exactly equal to the T1DS model but, in this case, if θ = 0.5 then
r(θ) ≈ 0.58 and hence, the mode is 1, as can be seen in the upper-left-panel of the
Figure 2.
Proposition 18. The T2DS distribution has heavy tails as θ approaches zero.

Proof . By considering the HT index previously defined, we have that

lim
θ→0

HT = lim
θ→0

{
e−θ lim

y→∞

[h (θ, y + 1)− h (θ, y + 2)]

[h (θ, y)− h (θ, y + 1)]

}
= lim

θ→0
e−θ = 1,

which concludes the proof.

4. Maximum Likelihood Estimation

In this section, we will address the issue of estimating the parameter θ of both
versions of the discrete Shanker distribution. We have adopted the frequentist ap-
proach, and here we will derive the maximum likelihood function for the T1DS and
T2DS models. Using these functions, one can obtain point estimates for param-
eter θ in each case. Moreover, suitable estimates for the confidence intervals can
be obtained using large-sample approximations, that is based on the asymptotic
properties of the maximum likelihood estimators.

4.1. Inference Under T1DS Distribution

Let Y = (Y1, . . . , Yn) a random sample of size n from the T1DS distribution and
y = (y1, . . . , yn) its observed values. The log-likelihood function for parameter θ
can be expressed as

ℓn (θ;y) = −n {θ (y + 1)− 2 log [h (θ)] + log [θh (θ) + 1]}+
n∑

i=1

log (θ + yi) , (15)

where y is the sample mean. The maximum likelihood estimator (MLE) of θ can
be obtained by direct maximization of the log-likelihood function. Thus, the first
order derivative of (15) respect to θ (score function) is given by

Un (θ;y) =
d

dθ
ℓn (θ;y) = −n (y + 1) +

2neθ

h (θ)
−

n
[
θeθ + h (θ)

]
θh (θ) + 1

+

n∑
i=1

1

θ + yi
.

There is no closed-form solution for the MLE of θ and therefore, standard opti-
mization algorithms such Newton-Raphson based methods may be used to obtain
numerical estimates. By the maximum likelihood theory, a consistent estimator
for the variance of θ̂ is obtained by the inverse of the Fisher information, that is,

In (θ) =E
[
− d

dθ
Un (θ;Y)

]
=n

[
2eθ

h2 (θ)
−

1 + eθ
[
θ (θ − 1) +

(
eθ − 4

)]
[θh (θ) + 1]

2 +
h2 (θ) e−θ

θh (θ) + 1
ζ
(
e−θ, 1, θ

)]
,
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where ζ is the Lerch-Phi function (Bateman & Erdélyi 1953) defined as ζ (z, a, v) =∑∞
j=0 z

j (j + v)
−a for |z| < 1.

Finally, in order to obtain intervallic estimates for θ, one can use large-sample
approximations for the 100× (1− α)% two-sided confidence interval (CI), that is,

θ̂ ± z1−α/2

√
I−1
n (θ̂),

where z1−α/2
is the upper (α/2)th percentile of the standard Normal distribution.

4.2. Inference Under T2DS Distribution

Let Y = (Y1, . . . , Yn) a random sample of size n from the T2DS distribution and
y = (y1, . . . , yn) its observed values. The log-likelihood function for parameter θ
can be expressed as

ℓn (θ;y) = −n
[
θ y + log

(
θ2 + 1

)]
+

n∑
i=1

log
[
h (θ, yi)− h (θ, yi + 1) e−θ

]
, (16)

where y is the sample mean. The MLE of θ can be obtained by direct maximization
of the log-likelihood function. The first order derivative of (16) respect to θ is given
by

Un (θ;y) =− n

[
y +

2θ

θ2 + 1

]
+

n∑
i=1

(2θ + yi) + [θ (θ + yi + 1)− (2θ + yi + 1) + 1] e−θ

[(θ + yi) θ + 1]− [(θ + yi + 1) θ + 1] e−θ
.

Now, in order to estimate the variance of θ̂, one have to obtain the Fisher
information of θ. In this case, this quantity has the form

In (θ) =
nθ2

[
θ
(
θ2 + θ + 3

)
+ 1

]2
6F5

(
1, a1, a1, a2, a2, b1; a3, a3, b2, a4, a4; e

−θ
)

(θ2 + 1)
3
[(θ2 + 1) (eθ − 1)− θ] eθ

,

where pFq is the generalized hypergeometric function (Slater 1966), whose argu-
ments are given by

a1 =
[θ (θ + 2θ + 3) + 2] eθ −

[
θ
(
θ2 + 4θ + 3

)
+ 4

]
−√

c1

2 (θ2 + 1) (eθ − 1)
,

a2 =
[θ (θ + 2θ + 3) + 2] eθ −

[
θ
(
θ2 + 4θ + 3

)
+ 4

]
+

√
c1

2 (θ2 + 1) (eθ − 1)
,

a3 =
θeθ

(
θ2 + 3

)
−
[
θ
(
θ2 + 2θ + 3

)
+ 2

]
−√

c1

2 (θ2 + 1) (eθ − 1)
,

and
a4 =

θeθ
(
θ2 + 3

)
−
[
θ
(
θ2 + 2θ + 3

)
+ 2

]
+

√
c1

2 (θ2 + 1) (eθ − 1)
,
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where c1 = θ2
(
θ2 + 3

)2 (
e2θ + 1

)
−
[
θ2

(
2θ4 − 8θ2 − 10

)
+ 4

]
eθ,

b1 =

(
θ2 + 1

) (
eθ − 1

)
− θ

θ (eθ − 1)
and b2 =

[(
θ2 + 1

)
+ θ

]
eθ − (θ + 1)

2

θ (eθ − 1)
.

Again, there is no closed-form solution for the MLE of θ. In this case, we can
adopt the same procedure presented in the previous subsection to obtain point
and intervallic estimates for parameter θ.

5. Simulation Study

In this section, we have estimated, using B = 10, 000 Monte Carlo simulation,
the biases, the mean squared error, the coverage probabilities and the coverage
lengths of the MLE θ̂ of both versions of the discrete Shanker distribution. To
run the simulation, we have considered θ = 0.3, 0.6, 0.8, 1.0, 1.5, 1.8 and 2.0 and
sample sizes ranging from 20 to 200 by 30. The inverse-transform method for
discrete distributions (Rubinstein & Kroese 2008) was implemented to generate
the pseudo-random samples. The simulation process was performed using Ox
Console (Doornik 2007). The quantities of interest were estimated by the following
expressions.

• BIAS(θ̂) =
1

B

∑B
i=1(θ̂i − θ).

• MSE(θ̂) =
1

B

∑B
i=1(θ̂i − θ)2.

• CLθ(n) =
3.92

B

∑B
i=1 sθ̂i .

• CPθ(n) =
1

B

∑B
i=1 I{θ̂i − 1.96ŝθ̂i < θ < θ̂i + 1.96ŝθ̂i}, where I{·} denotes

the indicator function.

For both versions, the behavior of the average bias and average mean squared
error are shown in Figures 3 and 4. The results for the coverage probabilities and
the coverage lengths are reported in Tables 3 and 4.

From Figures 3 and 4, in each scenario and for T1DS and T2DS distributions,
we have that the bias of θ̂ is positive and tends to zero when the sample size
increases. Also, the mean squared error of θ̂ tends to zero in each case. For the
coverage probabilities, we have CPθ(n) around 0.94 and 0.96 for both discretiza-
tions, and the coverage length tends to zero when the sample size increases. Table
5 reports the percentage of times, out of 10, 000 Monte Carlo simulations, that
the Voung’s test (Vuong 1989) judges that the generated data is coming from the
same distribution.
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Figure 3: (left-panel) Estimated bias for θ̂ – by infinite series. (right-panel) Estimated
bias for θ̂ – by survival function (� : θ = 0.3, ⃝ : θ = 0.6, △ : θ = 0.9,
+ : θ = 1.0, × : θ = 1.5, 3 : θ = 1.8 and ▽ : 2.0).
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Figure 4: (left-panel) Estimated MSE for θ̂ – by infinite series. (right-panel) Estimated
MSE for θ̂ – by survival function (� : θ = 0.3, ⃝ : θ = 0.6, △ : θ = 0.9,
+ : θ = 1.0, × : θ = 1.5, 3 : θ = 1.8 and ▽ : 2.0).

Using the same simulation scenarios as previously described, we have esti-
mated the probability of correct selection (PCS) using the difference between the
maximized log-likelihood functions as the discrimination criterion. Let ℓk be the
log-likelihood function of the TkDS distribution. We choose T1DS or T2DS as
the preferred model if the statistic Tn = ℓ1(θ̂;y) − ℓ2(θ̂;y) is greater than or less
than zero, respectively. Estimates of the PCS’s are shown in the Figure 5.
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Table 3: Estimated coverage probability and length of coverage probability for θ̂ (T1DS
distribution).

Quantity n
Values for θ

0.3 0.6 0.9 1.0 1.5 1.8 2.0

CPθ(n)

20 0.9528 0.9510 0.9522 0.9552 0.9628 0.9590 0.9599
50 0.9476 0.9503 0.9496 0.9537 0.9533 0.9588 0.9571
80 0.9516 0.9503 0.9515 0.9517 0.9517 0.9492 0.9588
110 0.9502 0.9490 0.9518 0.9528 0.9506 0.9533 0.9586
140 0.9494 0.9501 0.9500 0.9522 0.9490 0.9513 0.9547
170 0.9508 0.9486 0.9503 0.9504 0.9505 0.9504 0.9559
200 0.9500 0.9512 0.9497 0.9486 0.9507 0.9515 0.9502

CLθ(n)

20 0.1790 0.3264 0.4897 0.7087 0.9965 1.3622 1.7805
50 0.1121 0.2041 0.3041 0.4333 0.6001 0.8011 1.1449
80 0.0884 0.1610 0.2395 0.3403 0.4690 0.6233 0.8103
110 0.0753 0.1371 0.2038 0.2894 0.3979 0.5279 0.6840
140 0.0667 0.1215 0.1805 0.2560 0.3517 0.4662 0.6033
170 0.0605 0.1102 0.1636 0.2320 0.3186 0.4222 0.5456
200 0.0558 0.1016 0.1508 0.2138 0.2934 0.3887 0.5021

Table 4: Estimated coverage probability and length of coverage probability for θ̂ (T2DS
distribution).

Quantity n
Values for θ

0.3 0.6 0.9 1.0 1.5 1.8 2.0

CPθ(n)

20 0.9685 0.9658 0.9615 0.9574 0.9661 0.9687 0.9667
50 0.9614 0.9498 0.9483 0.9531 0.9568 0.9534 0.9558
80 0.9584 0.9554 0.9531 0.9503 0.9536 0.9490 0.9529
110 0.9541 0.9680 0.9572 0.9496 0.9494 0.9513 0.9563
140 0.9573 0.9608 0.9631 0.9516 0.9497 0.9506 0.9578
170 0.9567 0.9548 0.9587 0.9504 0.9506 0.9500 0.9556
200 0.9542 0.9456 0.9480 0.9482 0.9517 0.9514 0.9542

CLθ(n)

20 0.2035 0.3714 0.5576 1.2078 1.0897 1.4578 1.8686
50 0.1226 0.2272 0.3420 0.4805 0.6547 0.8588 1.1078
80 0.0953 0.1779 0.2683 0.3770 0.5114 0.6678 0.8545
110 0.0806 0.1510 0.2279 0.3205 0.4336 0.5654 0.7214
140 0.0710 0.1335 0.2017 0.2835 0.3832 0.4993 0.6362
170 0.0642 0.1209 0.1827 0.2570 0.3471 0.4522 0.5755
200 0.0590 0.1113 0.1682 0.2367 0.3198 0.4163 0.5295

Table 5: Percentage of times out of 10,000 that the null hypothesis is not rejected.

θ

Data generated from T1DS Data generated from T2DS
Sample size Sample size

20 50 100 200 500 20 50 100 200 500
0.3 75.93 74.32 68.55 60.03 53.95 92.87 92.59 88.54 80.74 71.12
0.6 88.66 88.02 87.93 86.14 75.83 94.54 94.45 93.04 91.52 84.05
0.9 94.01 93.45 93.08 91.97 89.05 96.42 95.89 95.13 94.70 92.87
1.0 95.65 94.33 94.22 93.28 91.06 96.70 96.17 95.79 95.69 93.78
1.5 99.49 98.75 96.75 95.38 94.79 99.59 99.17 97.52 96.30 95.78
1.8 99.86 99.75 98.29 95.98 94.71 99.88 99.82 98.82 96.55 95.62
2.0 99.95 99.93 99.30 96.97 95.28 99.97 99.92 99.36 97.17 95.70
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Figure 5: Left-panel: Estimated PCS when data are generated from T1DS distribution.
Right-panel: Estimated PCS when data are generated from T2DS (� : θ =
0.3, ⃝ : θ = 0.6, △ : θ = 0.9, + : θ = 1.0, × : θ = 1.5, 3 : θ = 1.8, and
▽ : θ = 2.0).

6. Application to real data

In this section, both versions of the discrete Shanker distribution are considered to
model two real datasets from different areas. The goodness-of-fit of the proposed
models is compared with those accessed by the Poisson (P) and Negative Binomial
(NB) distributions. The parameterizations considered to fit the NB model is the
same implemented in the R software. For the first application, we have considered
the total number of borers per hill in each plot for a control group and three
treatment groups. This dataset was firstly analyzed by Bliss & Fisher (1953). In a
field experiment of insect pests on the corn borer, four treatments were arranged
in 15 randomized blocks. At the end of the season, eight hills of corn were selected
randomly in each plot, and the borers were recorded. Here, we are considering the
data from the second treatment (Saha (2008), Table 9). The second one relates
to the number of contract strikes in US manufacturing beginning each month
between January 1968 and December 1976 (Kennan 1985). All computations to
obtain the results presented in this section were performed using the R environment
(R Development Core Team 2017). The executable scripts are available from the
authors upon justified request.

Table 6 presents some descriptive statistics for each dataset. The raw data
used in this section can be found in Appendix A. The initial analysis highlights
the presence of overdispersion (see the index of dispersion), justifying the choice
of the discrete Shanker distribution to describe such data. Moreover, the sample
mode of the second dataset is greater than 0 and so, if one of the versions of our
model fit these data, then we expect a value smaller than 0.50 for the MLE of θ
in this case.
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Table 6: Variables and descriptive statistics for each dataset.

Dataset Variable n Mean Median Var. ID (%) CV (%)

1
Number of borers

120 1.48 1.00 3.19 215.26 120.46
per hill

2
Number of

108 5.24 5.00 14.07 268.52 71.58
contract strikes

In Table 7 we present the frequency distribution of each sample. The expected
frequencies were obtained through the estimated probabilities, that were computed
using the MLEs. Frequencies in bold relate to those one closer to the observed
ones. The results show that the proposed models provide reliable fit in both cases.

Table 7: Observed and expected frequencies from the fitted models.

Counts Observed Expected
P NB T1DS T2DS

Dataset 1
0 43 27.23 44.28 39.17 41.26
1 35 40.38 31.08 34.51 32.67
2 17 29.95 19.10 21.84 20.77
3 11 14.81 11.17 12.15 11.95
4 5 5.49 6.38 6.32 6.50

> 5 9 2.13 7.27 5.72 6.45
Dataset 2

0 5 0.57 5.42 4.29 7.26
1 12 3.00 10.11 11.43 11.72
2 14 7.86 12.69 13.90 13.10
3 11 13.72 13.94 13.86 12.77
4 9 17.98 12.66 12.60 11.59
5 14 18.84 11.25 10.84 10.07
6 9 16.46 9.53 9.01 8.48

> 7 34 28.98 28.64 27.34 27.55

Table 8: Parameter estimates and gof measures for the fitted models.

Model Par. MLE (SE) 95% CI
χ2 (p-value) d.f.Lower Upper

Dataset 1
P µ 1.483 (0.111) 1.265 1.701 38.59 (< 0.001) 4

NB µ 1.483 (0.162) 1.167 1.800 1.47 (0.689) 3
ϕ 1.333 (0.644) 0.601 2.065

T1DS θ 0.884 (0.048) 0.789 0.978 3.71 (0.446) 4
T2DS θ 0.820 (0.050) 0.723 0.918 2.36 (0.671) 4

Dataset 2
P µ 5.241 (0.220) 4.809 5.672 76.64 (< 0.001) 6

NB µ 5.241 (0.369) 4.517 5.964 3.69 (0.594) 5
ϕ 2.897 (0.644) 1.634 4.159

T1DS θ 0.357 (0.022) 0.312 0.401 4.31 (0.635) 6
T2DS θ 0.330 (0.022) 0.288 0.373 4.67 (0.586) 6
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The MLEs, SEs, and 95% asymptotic CIs for the parameters of each fitted
model are presented in Table 8. The goodness-of-fit was assessed using the χ2

statistic. For Dataset 1, the chi-squared value for the T2DS distributions is
χ2 = 2.36, with a corresponding p-value ≈ 0.68, highlighting the adherence of
the T2DS distribution. Also, for Dataset 2, we have obtained χ2 = 4.67 (p-value
≈ 0.59) for the T1DS model. The goodness-of-fit accessed by T1DS distribution
was found to be quite similar to T2DS model. Model selection was performed
using the Akaike information criterion with correction for finite samples (AICc),
the Bayesian information criterion (BIC), and the Hannan-Quinn information cri-
terion (HQC). These measures are presented in Table 9. One can notice that the
smaller values of the given criteria are provided by one of the discrete Shanker ver-
sions. Therefore, we may conclude that exists evidence that the proposed models
adhere well to the considered datasets and hence, they can be regarded as excellent
alternatives for the modeling of count data in the presence of overdispersion.

Table 9: Comparison criteria for the fitted models.

Model
Dataset 1 Dataset 2

AICc BIC HQC AICc BIC HQC
P 440.41 443.16 441.51 641.64 644.28 642.69

NB 404.71 410.18 406.87 570.69 575.94 572.75
T1DS 405.14 407.90 406.24 569.42 572.06 570.47
T2DS 403.65 406.40 404.75 570.55 573.19 571.60

7. Concluding Remarks

In this paper, two versions of the discrete Shanker distribution were introduced as
alternatives to model overdispersed count datasets. To derive the proposed mod-
els, we have considered the methods of infinite series and survival function. Some
statistical properties as the mean, variance, coefficients of variation, skewness, and
kurtosis for each version were discussed. Also, it was shown that both versions
of the discrete Shanker distribution are suitable options to deal with zero-inflated
datasets. Moreover, we have derived the log-likelihood, the score function, and we
have considered asymptotic intervallic estimation for parameter θ of both versions.
Also, we have performed a Monte Carlo simulation study where the bias, the mean
squared error, and the coverage lengths of the MLEs as well the coverage probabil-
ity of the asymptotic CIs were computed. These measures indicate the suitability
of the considered methodology. The usefulness of the proposed models was eval-
uated by fitting each one to two datasets with characteristics of overdispersion.
The model selection was performed using the AICc, BIC, and HQC criteria. The
goodness-of-fit was assessed by the χ2 statistic. The obtained results demonstrate
that the T1DS and T2DS distributions can be competitive with standard discrete
models provided by literature.
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Appendix A. Raw Datasets

The two real datasets used in the paper to illustrate the usefulness of the
proposed models are provided in Table A1.

Table A1: Real datasets used in Section 6.
Dataset 1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 2 2
2 2 2 2 2 2 2 2 2
2 2 2 2 2 3 3 3 3
3 3 3 3 3 3 3 4 4
4 4 4 5 5 5 5 6 7
7 8 8

Dataset 2
5 4 6 16 5 8 8 9 10
10 7 1 6 5 6 5 13 6
10 13 4 8 5 0 2 2 2
8 4 11 4 8 9 9 4 0
9 8 5 5 10 3 5 4 6
6 5 1 2 2 2 2 4 3
2 3 1 2 0 1 1 1 1
5 7 2 9 3 6 9 3 3
5 9 10 9 15 18 13 10 9
7 7 0 3 3 4 2 1 2
2 3 0 5 5 1 1 1 1
8 5 9 6 3 4 6 2 3
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