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Abstract
Copula functions have been extensively used in applied statistics, becom-

ing a good alternative for modeling the dependence of multivariate data.
Each copula function has a different dependence structure. An important is-
sue in these applications is the choice of an appropriate copula function model
for each case where standard classical or Bayesian discrimination methods
could be not appropriate to decide by the best copula. Considering only
the special case of bivariate data, we propose a procedure obtained from a
recently dependence measure introduced in the literature to select an appro-
priate copula for the statistical data analyses.

Key words: Copula functions; Discrimination of copulas; Dependence mea-
sure; Ledwina measure; Selection method.

Resumen
Las funciones de la cpula se han utilizado ampliamente en las estadsticas

aplicadas, convirtindose en una buena alternativa para modelar la dependen-
cia de los datos multivariados. Cada funcin de la cpula tiene una estructura
de dependencia diferente. Un tema importante en estas aplicaciones es la
eleccin de un modelo de funcin de cpula apropiado para cada caso en el que
los mtodos de discriminacin clsicos o bayesianos estndar no sean apropiados
para decidir por la mejor cpula. Considerando solo el caso especial de datos
bivariados, proponemos un procedimiento obtenido a partir de una medida
de dependencia recientemente introducida en la literatura para seleccionar
una cpula apropiada para los anlisis de datos estadsticos.
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1. Introduction

In many different areas of knowledge such as medicine, engineering, economy
and ecology, it is possible to have a set of observations obtained from variables
whose natural behavior has some dependence structure. To model this depen-
dence, there are many statistical techniques, models and indexes introduced in
the literature as for instance frailty models, correlation coefficients, concordance
coefficients, etc. (See Goethals, Janssen & Duchateau 2008).

Since the introduction of Sklar’s theorem (Sklar 1959), many parametric, non-
parametric and semiparametric models were proposed derived from different cop-
ula functions assuming different probability distributions, including methods for
constructing models for copulas from different probability distributions (e.g., see,
Durante & Sempi 2015, Nelsen 2006), most of which are parametric models.
Copula functions have been used extensively in different applications including
sea storm data (Corbella & Stretch 2013); analysis of the dependence struc-
ture between the stocks in different foreign exchange markets (Wang, Wu &
Lai 2013); operational risk management (Arbenz 2013); risk evaluation of droughts
(Zhang, Xiao, Singh & Chen 2013); risk assessment of hydroclimatic variability
(Janga Reddy & Ganguli 2012); modeling wind speed dependence (Xie, Li &
Li 2012); the dependence between crude oil spot and futures markets (Chang 2012);
and stochastic modeling of power demand (Lojowska, Kurowicka, Papaefthymiou,
van der Sluis et al. 2012).

Copula function are used to link marginal distributions with a joint distri-
bution. For specified univariate marginal distribution functions F1(t1), F2(t2),
. . . , Fm(tm), the function C(F1(t1), F2(t2), . . . , Fm(tm)) = F (t1, t2, . . . , tm), which
is defined using a copula function C, results in a multivariate distribution. On the
other hand, any multivariate distribution function F can be written in the form of
a copula function; i.e, if F (t1, t2, . . . , tm) is a joint multivariate distribution func-
tion with univariate marginal distribution functions F1(t1), F2(t2), . . . , Fm(tm),
there is a copula function C(u1, u2, . . . , um), so that:

F (t1, t2, . . . , tm) = C(F1(t1), F2(t2), . . . , Fm(tm)) (1)

If every Fi is continuous, then C is unique and ui = Fi. For the special case of
bivariate distributions, m = 2.

The approach to formulating a multivariate distribution using a copula is based
on the concept that a simple transformation can be made of each marginal vari-
able so that each transformed marginal variable has a uniform distribution. Then
the dependence structure can be expressed as a multivariate distribution on these
obtained uniforms, and a copula is a multivariate distribution with marginally
uniform random variables. Consequently there are many families of copulas that
differ in the details of their dependence structure. In the bivariate case, let T1

and T2 be two random variables with continuous distribution functions F1 and F2.
The probability integral transformation can be applied separately to both random
variables to define U1 = F1(t1) and U2 = F2(t2), where U1 and U2 have uniform
(0, 1) distributions, but are usually dependent if T1 and T2 are dependent (Inde-
pendent T1 and T2 imply that U1 and U2 are independent). Specifying dependence

Revista Colombiana de Estadstica 42 (2019) 61–80



A Method to Select Bivariate Copula Functions 63

between T1 and T2 is the same as specifying dependence between uniform random
variables U1 and U2. In this case, there is a need to specify a bivariate distribution
between two uniform distributions, i.e, a copula.

Within each application field, it is needed in general, a suitable measure of the
strength of dependence of the two random variables in each application. Depen-
dence scalar measure indexes or global measures of dependence for two random
variables have been studied by many authors as Jogdeo (1982), Lancaster (1982),
Drouet & Kotz (2001), Balakrishnan & Lai (2009) and in many cases the use of
scalar dependence bivariate indexes could be not the best way to represent com-
plex dependence structure, so other dependence structures have been introduced in
the literature, see Kowalczyk, Pleszczynska et al. (1977), Bjerve & Doksum (1993),
Drouet & Kotz (2001) and Bairamov, Kotz & Kozubowski (2003). Considering the
case of two dependent random variables, generally it is very difficult to establish
non linear dependence structures using indexes making necessary the use of copula
functions but, it is very common to have difficulties to decide on the best copula
function to be fitted by the data since the literature has not yet presented many
discrimination methods for copula models. In a recent paper, Ledwina (2015)
proposed a new function valued measure of dependence for two random variables
T1 and T2 also presenting its basic properties.This proposed measure has a simple
form which explores only cumulative distribution functions taking values in the
[−1, 1] interval treating both variables symmetrically. The correlation order or the
equivalent concordance order is the quadrant order restricted to the class of dis-
tributions where fixed margins are preserved. The Ledwina dependence measure
that assumes two random variables T1 and T2 is expressed as:

q(t1, t2) =
F (t1, t2)− F1(t1)F2(t2)

w(t1, t2)
for (t1, t2) ∈ D (2)

where
w(t1, t2) =

√
F1(t1)F2(t2)(1− F1(t1))(1− F2(t2))

and D = {(t1, t2) : 0 < Fi(ti) < 1} Fi(ti) = P (Ti ≤ ti) are the marginal distri-
bution functions of Ti, i = 1, 2 and F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2) is the joint
distribution function for T1 and T2.

A simple empirical estimator for the Ledwina dependence giving in (2) is pro-
posed considering the bivariate data set of n pairs (t1i, t2i), i = 1, . . . , n replacing
F (t1, t2), F1(t1) and F2(t2) with their respective empirical estimates,

Fn(t1, t2) =
Number of obs T1 ≤ t1, Number of obs T2 ≤ t2

n

Fn(t1) =
Number of obs T1 ≤ t1

n
(3)

Fn(t2) =
Number of obs T2 ≤ t2

n

for fixed values t1 and t2.
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Given that q treats both variables T1 and T2 symmetrically, knowledge of q and
the marginal distributions allows one to recover the joint distribution function for
T1, T2. Properties of q and further details can be found en (Ledwina 2015).

Using equation (2) it is possible to obtain a copula-based measure of de-
pendence assuming joint distribution functions F (t1, t2) with continuous margins
F1(t1) and F2(t2), as follows:

q(u1, u2) =
C(u1, u2)− u1u2

w(u1, u2)
, (u1, u2) ∈ [0, 1]2 (4)

where, √
w(u1, u2) = [u1u2(1− u1)(1− u2)]

u1 = F1(t1) u2 = F2(t2) C(u1, u2) = F (t1, t2)

In this paper, it is proposed an index obtained by a modification of the Led-
wina measure and with the evaluation of its performance considering five copula
functions. This paper is organized as follows: in Section 2, it is introduced some
special copula functions; in Section 3, it is proposed a method for discrimination
of different copula functions developed with the Ledwina dependence measure;
in Section 4, it is presented the results obtained from a simulation study and in
Section 5, it is presented some concluding remarks.

2. Some Special Copula Functions

In this section, it is introduced some copula functions that are explored in the
present study. In all cases, u1 = F1(t1) = P (T1 ≤ t1), u2 = F2(t2) = P (T2 ≤ t2);
C(u1, u2) = F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2) and θ is the dependence parameter.

2.1. Clayton Copula

The Clayton (1978) copula function models asymmetrical data structures with
high dependence in the left tail indicating an expanding cloud. The Clayton copula
is know as the Pareto bivariate copula since it is possible to obtain it from the
survival function of the the bivariate Pareto distribution (Hutchinson and Lad
1990). Additionally this copula function is considered as a special case of the
Lomax copula function. The Clayton copula function has the following analytical
structure:

C(u1, u2) =
(
u

−θ

1 + u
−θ

2 − 1
)− 1

θ (5)

for θ ∈ (−1,∞)\{0}. When θ → ∞ the dependence is perfect and positive and if
θ → 0 the variables are independent.
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Figure 1: Plots of data under different Clayton dependence structures.

2.2. Frank Copula

The Frank copula function (Frank 1979) is appopriate to model weak depen-
dence structures with positive linear trend. This copula function has the following
analytical structure:

C(u1, u2) = −1

θ
log

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
(6)

for θ ∈ (−∞,∞) \{0}. The maximum dependence value is reached when θ →
∞ and the minimum when θ → −∞. When θ → 0 it is possible to assume
independence between the variables.
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Figure 2: Plots of data under different Frank dependence structures.

2.3. Gumbel-Hougaard copula

The Gumbel-Hougaard copula function introduced by for details see Gumbel
(1960a), Gumbel (1961) and (Hougaard 1986) is useful to model data structures
with strong dependence in upper tail and weak dependence in lower tail where it is
expected that the upper data show a strong correlation and the lower data shows
weakly correlation. The analytical form of the Gumbel-Hougaard copula function
is defined as:
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C(u1, u2) = e−[(− log(u1))
θ+(− log(u2))

θ]
1
θ (7)

with θ ≥ 1. The perfect dependence is obtained when θ → 0 and if θ = 1 the is
possible to assume independence between the variables.
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Figure 3: Plots of data under different Gumbel-Hougaard dependence structures.

2.4. Farlie-Gumbel-Morgenstern Copula (FGM Copula)

The first reference on the FGM copula functions family is the Eyraud in 1938
(For details see Nelsen 2006). This copula can be considered when the data set to
be analyzed shows a weak and non linear dependence structure (Meintanis 2007).
In this case, the scater plots obtained from the data are very similar with the plots
obtained from data sets of independent variables. The FGM copula (Nelsen 2006)
is defined by,

C(u1, u2) = u1u2[1 + θ(1− u1)(1− u2)] (8)

for −1 ≤ θ ≤ 1. Therefore, it is possible to assume independence between the
variables when θ = 0. This copula function models weak linear dependence
structures
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Figure 4: Plots of data under different FGM dependence structures.

2.5. Gumbel-Barnett Copula (GB Copula)

The GB copula introduced by Gumbel (1960a) and Barnett (1980), has an
analytical structure defined by,
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C(u1, u2) = u1 + u2 − 1 + (1− u1)(1− u2)exp[−θln(1− u1)ln(1− u2)] (9)

for 0 ≤ θ ≤ 1. Independence corresponds to θ = 0. Two random variables
whose dependence structure can be fitted with a bivariate Gumbel distribution do
not present linear correlations. This copula function can be obtained from tjoint
bivariate Gumbel distribution with standard exponential marginal distributions.
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Figure 5: Plots of data under different GB dependence structures.

3. Algorithms to Simulate Data with Dependence
Structure Type Copula

The algorithms used to simulate data from the copula function structures pre-
sented in section 2 were obtained from different sources. The FGM data were simu-
lated using an algorithm published in the Johnson & Kotz (1972) book, algorithms
to simulate data with Clayton, Frank and Gumbel-Hougaard were obtained from
studies published by Hofert (2008). To simulate data from the Gumbel-Barnett
copula function, an algorithm was developed by the authors based on the results
presented by Gumbel (1960b).

3.1. Data with Copula Clayton Dependence

The data with dependence structure type Clayton copula were simulated using
the algorithm as follows:

• Set a value for the parameter of dependence θ

• Generate u1 ∼ U(0, 1) and w ∼ U(0, 1)

• Replace in u2 =
[(

w− θ
θ+1 − 1

)
u−θ
1 − 1

]− 1
θ the u1 and w values

• The u1 and u2 values have dependence with type Clayton copula function
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3.2. Data with Dependence Type Copula Frank

The data with dependence structure type Frank copula were simulated using
the algorithm as follows:

• Set a value for the parameter of dependence θ

• Generate u1 ∼ U(0, 1) and w ∼ U(0, 1)

• Replace in u∗
2 = − 1

θ log
(
− w(e−θ−1)

e−θu1 (w−1)−w
+ 1
)

the u1 and w values

• The u1 and u2 values have dependence with type Frank copula function

3.3. Data with Dependence Type Copula Gumbel-Hougaard

The data with dependence structure type Gumbel-Hougaard copula were sim-
ulated using the algorithm as follows:

• Set a value for the parameter of dependence θ

• Generate an observation x from a positive stable distribution

X ∼ st

(
1

θ
, 1,
(
cos
( π

2θ

))θ
,1{θ=1}, 1

)
• Generate v1 ∼ U(0, 1) and v2 ∼ U(0, 1)

• Let ui = exp

(
−
(
− log vi

x

) 1
θ

)
; i ∈ {1, 2} where the pair (v1, v2) have a

dependence structure Gumbel-Hougaard

• Repeat m times the previous steps to obtain a vector of pairs of data with
Gumbel-Hougaard dependence structure

3.4. Data with Dependence Type Copula Fgm

The data with dependence structure type FGM copula were simulated using
the algorithm as follows:

• Set a value for the parameter of dependence θ

• Generate v1 ∼ U(0, 1) and v2 ∼ U(0, 1)

• Let u1 = v1

• Compute
A = θ(2u1 − 1)− 1

and
B =

(
1− 2θ (2u1 − 1) + θ2(2u1 − 1)

2
+ 4θv2 (2u1 − 1)

) 1
2
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• Let u2 =
2v2

B −A

• Repeat m times the previous steps to obtain a vector of pairs of data with
FGM dependence structure

3.5. Data with Dependence Type Copula Gumbel-Barnett

In this case, the algorithm used was:

• Set a value for the parameter of dependence θ

• Generate u2 ∼ U(0, 1) and w ∼ U(0, 1)

• Replace u2 in y = − log(1− u2)

• Obtain a value of x as solution of the non-linear equation 1−(1+θx)e−(1+θy)x−
w = 0

• Let u1 = 1−exp(−x) and u2 = 1−exp(−y) one pair of values with Gumbel-
Barnett dependence structure

• Repeat m times the previous steps to obtain a vector of pairs of data with
Gumbel-Barnett dependence structure

4. Relationship Between the Kendall’s Tau and the
Copula Parameter of Dependence

In general, for some copula function families it is possible to have θ̃n = g(τ)
being g a differentiable function. The relationship between the concordance mea-
sure Kendall’s tau τ and the copula function parameter can be very important
to estimate the dependence parameter using the moments method. According to
Nelsen (2006) it is possible to obtain an expression for the kendall’s tau from the
copula function as follows;

τ = 4

1∫
0

1∫
0

CY(u1, u2)cY(u1, u2) du1du2 − 1 (10)

Solving (10) for each copula function considered, it is obtained in Table 1 the
results of interest.

Where:

D1(θ) =
1

θ

θ∫
0

t

et − 1
dt
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Table 1: Kendall’s tau and copula function parameters
Copula function τ τ̂ θ̂τ
Clayton θ

θ+2
[0, 1]\{0} 2τ̂

1−τ̂

Frank 1 + 4
θ
[D1(θ)− 1] [−1, 1]\{0} It has not close form

Gumbel-Hougaard 1− 1
θ

[0, 1] 1
1−τ̂

5. Estimation of the Copula Dependence
Parameter

Given that the copula function is a expression of a multivariate probability
distribution , under a statistical point of view, it is possible to associate a likelihood
function given the data and to use standard maximum likelihood or Bayesian
methods to get estimates for the dependence parameter.

5.1. Maximum Likelihood Estimation

To obtain the maximum likelihood estimates (MLE), it is needed to have den-
sity function,

cY(u1, u2) =
∂CY(u1, u2)

∂u1∂u2
(11)

In this way, the MLE are obtained maximizing the log likelihood function

ℓn(θ) =

n∑
i=1

log
(
cY(F̂Y1

(y1i), F̂Y2
(y2i))

)
(12)

For each considered copula function introduced in section 2, the log likelihood
function was derived as follows:

• Clayton copula function

ℓn(θ) = n log (θ + 1)−(2+θ−1)

n∑
i=1

(
u−θ
1i + u−θ

2i − 1
)
−(θ + 1)

n∑
i=1

log (u1iu2i)

• Gumbel-Hougaard copula function

ℓn(θ) = (θ − 1)

[
n∑

i=1

log (− log (u1i)) +
n∑

i=1

log (− log (u2i))

]
−

n∑
i=1

(
log (u1i) log (u2i)−

(
(− log (u1i))

θ
+ (− log (u2i))

θ
)θ−1

)
+

n∑
i=1

log

(
(θ − 1) +

(
(− log (u1i))

θ
+ (− log (u2i))

θ
)θ−1)

+
(
θ−1 − 2

) n∑
i=1

log
(
(− log (u1i))

θ
+ (− log (u2i))

θ
)
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• Frank copula function

ℓn(θ) = n
(
log (θ) + log

(
1− e−θ

))
− θ

n∑
i=1

(u1i + u2i)

−2
n∑

i=1

log
((
e−θ − 1

)
+
(
e−θu1i − 1

) (
e−θu2i − 1

))
• FGM copula function

ℓn(θ) =

n∑
i=1

log (1 + θ (1− 2u1i) (1− 2u2i))

• Gumbel-Barnett copula function

ℓn(θ) = −θ
n∑

i=1

(log (1− u1i) log (1− u2i))

+
n∑

i=1

log ((θ log (1− u1i)− 1) (θ log (1− u2i)− 1)− θ)

5.2. Bayesian Estimation

To estimate the dependence parameters using Bayesian methods, it was as-
sumed non informative prior distributions considering the range of values in the
parametric space. In general, the posterior distribution for the dependence param-
eter has the form: π(θ | u1,u2) ∝ π(θ)L(θ | u1,u2) where π(θ) is the prior distri-
bution and L(θ | u1,u2) is the likelihood function. For all cases, a Uniform(a, b)
distribution was assumed as a non informative distribution for the dependence
parameter. To obtain values for the hyperparameters (a,b), it was assumed the
existence of an expert in the subject of study, whose knowledge can be expressed
through Kendall’s tau. When the expert opinion for the dependence level was
weak it was assumed τ ∈ (0, 0.33) if in according with the expert, the expected
dependence was moderate then τ ∈ (0.33, 0.66) and for a strong dependence it
was assumed τ ∈ (0.66, 1). Using the relationship between the Kendall’s tau and
dependence parameter presented in (10), it was obtained the intervals showed in
Table 2.

Table 2: Prior intervals for dependence parameter and non informative prior distribu-
tions.

Copula function Weak Moderate Strong Non informative prior
Clayton [0,0.98) [0.98,3.88) [3.88,10) Uniform(0, 10)

Frank [0,3.26) [3.26,9.78) [9.78,24) Uniform(0, 24)

Gumbel
Hougaard [1,1.49) [1.49,2.94) [2.94,10) Uniform(1, 10)

To estimate the dependence parameter of the FGM and Gumbel Barnett copula
functions it was assumed a Uniform(0,1) prior distribution. For the FGM copula
function, it was considered a positive range of values in the parameter space a
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commonly approach assumed for this copula function. The obtained posterior
distributions are:

• Clayton copula

π

(
θ|u1

∼
, u2
∼

)
∝ (θ + 1)

n

10

n∏
i=1

(
u−θ
1i + u−θ

2i − 1
)
u
−(θ+1)
1i u

−(θ+1)
2i

• Frank copula

π

(
θ|u1

∼
, u2
∼

)
∝

θn
(
1− e−θ

)n
e
−θ

(
n∑

i=1
(u1i+u2i)

)

10
n∏

i=1

((e−θ − 1) + (e−θu1i − 1) (e−θu2i − 1))
2

• Gumbel-Hougaard copula

π

(
θ|u1

∼
, u2
∼

)
∝ k1

10

n∏
i=1

(− log (u1i))
θ
(− log (u2i))

θ

u1iu2i

where:

k1 =

(
(θ − 1) +

(
(− log (u1i))

θ
+ (− log (u2i))

θ
)θ−1)

(
(− log (u1i))

θ
+ (− log (u2i))

θ
)(θ−1−2)

• FGM copula

π

(
θ|u1

∼
, u2
∼

)
∝ 1

10

n∏
i=1

(1 + θ (1− 2u1i) (1− 2u2i))

• Gumbel-Barnett copula

π

(
θ|u1

∼
, u2
∼

)
∝ k2

n∏
i=1

((θ log (1− u1i)− 1) (θ log (1− u2i)− 1)− θ)

where:

k2 =
1

10
e
−θ

n∑
i=1

(log(1−u1i) log(1−u2i))
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6. The Goodness-Of-Fit (GOF) Method

This method to evaluate the goodness of fit of data to copula functions, was
developed by Deheuvels (1981) and Genest & Rémillard (2004). The idea is to
compare the empirical copula Cn defined as:

Cn(u1, u2) =
1

n

n∑
i=1

I (U1i 6 u1, U2i 6 u2) (13)

with the parametric copula function C(u, v) using a statistical hypothesis test. In
this way, the authors define the Cramer-Von Mises Statistic as:

Sn =

n∑
i=1

(Cn(û1i, û2i)− C(û1i, û2i))
2 (14)

and the asymptotic distribution of the test statistics Sn was derived from the
process Cn(u1, u2) depending on the unknown distribution C(û1, û2).

7. An Approach to Decide by an Appropriate
Copula Function Using the Ledwina
Dependence Measure

To discriminate the best copula function among k different functions that could
be candidates to be fitted by the sample data (n pairs of observations), it is
proposed from a modification of (2) the following discrimination index given by,

I(model[j]) =

√√√√ n∑
i=1

(q(u1i, u2i)− q∗(u1i, u2i))2 j = 1, 2, .....k (15)

where;
q(u1i, u2i) = {[C(u1i, u2i)− (u1iu2i)]w(u1i, u2i)} (16)

q∗(u1i, u2i) = {[Cn(u1i, u2i)− (u1iu2i)]w(u1i, u2i)} (17)

w(u1i, u2i) =
1√

(u1iu2i(1− u1i)(1− u2i)
i = 1, . . . , n

Given that to compute q it is necessary to estimate C(u1, u2), the dependence
parameter θ must be estimated using some statistical method reported in the
literature (for instance, maximum likelihood). To obtain q∗ it is needed to compute
Fn(t1, t2), Fn(t1) and Fn(t2) as in equation (3). When the k indexes are computed,
the model with minimum value for (15) is choosed as the best model to be fitted
by the data.
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8. A simulation Study

Using the algorithms in section 3, we conducted a simulation study to evalu-
ate the performance of our proposed index. We carried out our procedure 1000
times considering three different sample sizes (n = 50, 100, 500, 1000) to simulate
vectors of pairs of observations (t1i, t2i i = 1, 2, . . . , n) for each of the five cop-
ula functions introduced in section 2. With each data set, it was estimated the
dependence parameter using maximum likelihood and Bayesian methods. From
these estimates, it is estimated the cumulative probability C(u1, u2) associated to
each pair of observations. This procedure was used considering the simulated data
from each assumed copula function. With the values of C(u1i, u2i) it is computed
q(u1i, u2i) applying equation (3). Each data set was used to compute the empiri-
cal copula and to obtain q∗(u1i, u2i). Finally, it was computed the proposed index
given by equation (13) considering each copula function.

The obtained results were compared with those obtained using the Goodness
Of Fit (GOF) method to select copula functions, where the null hypothesis is the
model fitted by the data set (See details in Kojadinovic, Yan & Holmes 2011). The
GOF procedure could be problematic when there is rejection of the null hypothesis
which indicates a particular copula function but there is no indication of the best
copula to be fitted by the data set. Observe that this hypothesis test must be
applied for each proposed copula function. For each simulated data set it was
fitted all copula functions introduced in section 2 and the procedure was carried
out 1000 times. Following, it was counted the number of times that each procedure
identified the true copula model.

8.1. Selection of Values for the Copula Dependence
Parameter

(Weiss 2011) studied different dependence levels measured with Kendall’s tau.
In accordance with those authors, we decided to use three dependence levels within
the range of values that the dependence parameter can take for each copula func-
tion: Weak dependence (τ = 0.2), moderate dependence (τ = 0.5) and strong
dependence (τ = 0.8). For each established tau value, it was obtained the asso-
ciated value of the copula parameter in each of five considered models. For the
dependence parameters of the Gumbel-Barnett and FGM copula functions it was
used the same values assumed by Tovar & Achcar (2012), Tovar & Achcar (2013).
See Table 3.

Table 3: Values assumed for the copula dependence parameters in the simulation study.

Weak Moderate Strong
Clayton 0.50 2.00 8.00
Frank 1.86 5.73 18.19
Gumbel Hougaard 1.25 2.00 5 .00
FGM 0.20 0.50 0.90
Gumbel Barnett 0.20 0.50 0.90
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9. Results of the Simulation Study

Table 5 shows the results obtained when using the proposed method to select
the best copula function among the five assumed copulas. The percentage of
times that the method selected the copula, changes in sample size, the level of
dependence and the method that was used to estimate the dependence parameter
are reported. Table 3 also presents the results obtained using the GOF method
for the classifications under the same study scenarios. When the structure of the
data dependence was modeled using in a Clayton copula function, the proposed
method had no problems in selecting the correct copula a good percentage of
the time (regardless of the level of dependence or sample size) although with
small amounts of data (n = 50) a minimum amount of misclassified samples were
observed. When comparing the classification rates with those obtained using the
GOF method, it can be said that, contrary to what was observed for the proposed
method, the GOF procedure requires large amounts of data (500 or more) to obtain
high percentages of correct classifications for all levels of dependence.

If the data have a Frank copula dependence structure, our procedure identifies
the copula less than 50% of the time when the dependence is weak and the sample
size is below 100. With larger sample sizes, the percentage of correct classification
increases, coming close to the unit when the sample size is 1000. For moderate and
strong dependences, the percentages of a good classification improve noticeably;
and when the sample size is 1000, no classification errors were observed. For this
copula function, the inferential method used to estimate the dependence parameter
of the copula might have a negligible effect on the percentage of correct responses.
For this copula, the GOF method can identify the real copula function only when
there are large amounts of data in the sample, regardless of the strength of the
dependence between the variables. For the data with a weak Gumbel-Hougaard
type of dependence, the proposed method obtained a good percentage of classi-
fication when the samples were over 500 and the parameter was been estimated
using the maximum likelihood method. For those cases where we fitted the copula
function using a Bayesian estimate, the results were quite poor.

For a moderate GH dependence, the rating capacity of the proposed method is
good with sample sizes over 100, regardless of the procedure used in the estimation
of the dependence parameter. If the GH dependence is strong but there are only
100 or fewer data, it is necessary to get maximum likelihood estimates in order to
obtain good ranking results. For dependence structures with this copula function,
the GOF method had difficulties in identifying the correct copula. Its capacity for
identification is good only when there are amounts of data higher than 500 and the
GH dependence is moderate or strong. For weak dependence structures using a
Gumbel-Barnett copula function,the proposed method of classification has better
performance with maximum likelihood estimators and sample sizes of at least 100
observations although in this case it is possible to get rates up to 20% of poor
classifications. For moderate-level dependence with a sample size of at least 500
observations, it is possible to obtain a high probability of identifying the correct
copula function; and if the dependence structures are strong, the rating capacity is
quite good when the parameter is estimated using maximum likelihood, regardless
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of the sample size. The GOF method cannot identify this dependence structure
so in most cases, it classified data with a GB dependence as if they had an FGM
or Frank dependence.

When it was evaluated situations with a dependence structure modeled by
a FGM copula function, it was observed that in all cases the ratios of correct
classification were under 40% when based on a maximum likelihood estimator for
the parameter. If the estimate was obtained using Bayesian methods, the results
could be worse. For this copula function, the rates of identification using the GOF
method were close to zero in all cases. When the data have a FGM dependence, this
method tends to classify them as a Frank or Gumbel-Barnett type of dependence.

Table 4: Proportions of accuracy in the identification of copula functions using the
proposed method and the GOF method.

Weak Moderate Strong

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

ML 0.97 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00
Clayton Bayes 0.96 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00

GOF 0.22 0.65 0.93 0.95 0.18 0.76 0.92 0.96 0.12 0.63 0.95 0.99

ML 0.36 0.40 0.77 0.95 0.65 0.89 1.00 1.00 0.66 0.83 1.00 1.00
Frank Bayes 0.40 0.72 0.90 0.97 0.59 0.90 1.00 1.00 0.87 1.00 1.00 0.49

GOF 0.01 0.03 0.11 0.21 0.17 0.56 0.96 0.96 0.49 0.85 0.95 0.99

Gumbel- ML 0.45 0.59 0.93 0.98 0.69 0.84 0.99 1.00 0.93 1.00 1.00 1.00
Hougaard Bayes 0.24 0.17 0.02 0.00 0.56 0.69 0.97 0.99 0.20 0.24 1.00 0.96

GOF 0.04 0.04 0.57 0.86 0.25 0.56 0.99 0.93 0.22 0.59 0.96 0.96

ML 0.21 0.23 0.27 0.27 0.17 0.30 0.41 0.41 0.22 0.24 0.42 0.42
FGM Bayes 0.49 0.12 0.00 0.00 0.44 0.12 0.01 0.01 0.29 0.29 0.30 0.30

GOF 0.00 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Gumbel- ML 0.41 0.80 0.80 0.85 0.78 0.78 0.96 0.97 0.91 0.92 1.00 1.00
Barnett Bayes 0.40 0.60 0.65 0.65 0.70 0.75 0.95 0.96 0.30 0.30 0.40 0.30

GOF 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01

10. Conclusions

In this paper it was proposed a new method to select the copula function that
best fits a bivariate data set. This methodology was based on a modification
of a previous dependence measure introduced by Ledwina (2015), which uses a
weighted difference between cumulative probabilities based on the assumption of
dependence and independence, respectively. In this study it was conducted a sim-
ulation study to evaluate the performance of our empirical procedure in order to
obtain an index; in this way, it was compared the results with those obtained using
the inferential procedure proposed by Deheuvels (1981) and Genest & Rémillard
(2004) (i.e., the GOF method). In our study it was evaluated the true classifi-
cation capacity using data sets of pairs of observations simulated from the five
copula functions commonly used in the literature and presented in section 2. The
performance of the proposed procedure was better when compared to the GOF
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method for all data sets. The method easily identifies data from copula functions
with an analytical structure such as the Clayton copula regardless some addi-
tional topics as the sample size or the dependence level. For structures type Frank
copula function, the performance of the method depends of the sample size and
it works better for moderate and strong dependence.If the dependence structure
is like Gumbel-Hougaard copula function, to obtain a correct classification it is
necessary to have sample sizes greater than 100. With dependence structures like
Gumbel-Barnett copula function, the observed percentages of correct classification
are better when the maximum likelihood estimation method is used to obtain the
proposed index. If a Uniform(0,1) prior distribution is assumed for the depen-
dence parameter and the dependence level is strong, the method does not classify
correctly, and the performance of the measure could be improved if informative
prior distributions are considered but this topic is beyond the scope of this pa-
per and will be topic of a new study. In general, when the dependence structure
shares similarities with other copula functions, the correct classification depends
on different aspects such as sample sizes and the strength of dependence. The
proposed procedure fails to identify data with dependence that can be modeled
using the FGM copula function. It can be deduced that very weak linear depen-
dence structures (close to independence) would be difficult to identify using the
proposed method, given that, the procedure measures the difference between the
observed probabilities assuming a proposed copula and the independence copula
weighted by a factor that in the FGM copula case is a part of its structure. In this
way, it is possible to deduce that for this copula functions family, it is necessary to
conduct a detailed study on the performance of discrimination measures as it was
proposed in this study. In our study, we used the GOF method to compare the
classification capacity of the proposed method since we considered that method is
the most general among those we found in the literature. It is important to point
out that other methods have been proposed in the literature but for some specific
copula function families (For instance see, Topçu 2016).
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