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Abstract

Extreme value theory (EVT) is an important tool for predicting effi-
cient gains and losses in economic and environmental domains. Moreover,
EVT was initially developed for use with normal and gamma parametric
distribution patterns. However, economic and environmental data present a
heavy-tailed distribution in most cases, which is in contrast with the above
patterns. Thus, the framing of extreme events using EVT presented great
difficulties. Furthermore, it is nearly impossible to use conventional models
to make predictions about non-observed events that exceeded the maximum
number of observations. In some situations, EVT is used to analyze only
the maximum values of a given dataset, which provides few observations.
In such cases, it is more effective to use the r largest order statistics. This
study proposes Bayesian estimators for the parameters of the r largest order
statistics. We use a Monte Carlo simulation to analyze the experimental data
and observe certain estimator properties, such as mean, confiance interval,
credibility interval, bias, and root mean square error (RMSE); estimation
provided inferences for these parameters and return levels. In addition, this
study proposes a procedure for selecting the r-optimal of the r largest order
statistics based on the Bayesian approach and applying the Markov chains
Monte Carlo (MCMC) method. Simulation results reveal that the Bayesian
approach produced performance similar to that of the maximum likelihood
estimation. Finally, the applications developed using the Bayesian approach
showed a gain in accuracy compared with other estimators.
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Resumen
La teoría de valores extremos (EVT) es una herramienta importante para

predecir ganancias y pérdidas eficientes en ambientes económicos y ambien-
tales. Además, la EVT se desarrolló inicialmente para uso con patrones
de distribución paramétricos normales y gamma. Sin embargo, los datos
económicos y ambientales presentan una distribución de cola pesada en la
mayoría de los casos, lo que contrasta con los patrones anteriores. Así, la
formulación de eventos extremos con EVT presenta grandes dificultades.
Además, es casi imposible usar modelos convencionales para obtener predic-
ciones sobre eventos no observados que excedieron el número máximo de
observaciones. En algunas situaciones, EVT es utilizado para analizar so-
lamente los valores máximos de un conjunto de datos dado, que propor-
cionan poca información. En tales casos, es más eficiente usar las r es-
tadísticas de orden superior. Este trabajo propone estimadores bayesianos
para los parámetros de las r estadísticas de orden superior. Utilizamos
simulaciónes de Monte Carlo para analizar los datos experimentales y ob-
servar ciertas propiedades del estimador como: media, intervalos de confi-
anza y credibilidad, sesgo y error cuadrático medio (RMSE). Este tipo de
estimación proporciona inferencias para estos parametros y niveles de re-
torno. Tambien, proponemos un procedimiento para seleccionar el r-óptimo
de la distribución de las r estadísticas de orden superior basadas en el en-
foque bayesiano y aplicando el método de Monte Carlo para cadenas de
Markov (MCMC). Los resultados de la simulación muestran que el enfoque
bayesiano produce un rendimiento similar al de la estimación de máxima
verosemelianza. Finalmente, las aplicaciones desarrolladas utilizando el en-
foque bayesiano mostraron una ganancia en la precisión en comparación con
otros estimadores.

Palabras clave: Monte Carlo para cadena de Markov; Valores extremos;
Inferencia bayesiana.

1. Introduction

Meteorological events such as prolonged droughts, floods, and earthquakes are
raising grave concerns about the future of society. According to Parmesan, Root
& Willig (2000), extreme changes in temperature have a greater influence on en-
vironmental changes than fluctuations in mean temperature. Moreover, Sang &
Gelfand (2009) have confirmed that the evolution of climatic extremes is more
significant than average climate trends.

The motivation to work with generalized extreme value (GEV) came from
the distribution of maximum and minimum values for example, monthly or an-
nual maxima, for which it is necessary to know the Fx of daily distribution.
Nevertheless, this distribution is unidentified owing to a minor number of ob-
servations being crucial to obtaining asymptotic results in some cases. Fisher
& Tippett (1928) theorem shows results for the distribution of maximum and
minimum values.

Mises (1936) and Jenkinson (1955) first proposed GEV distribution. This
function is denoted here by H and has the following distribution function:
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H(y | ξ, σ, µ) =
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(1)

where 1 + ξ
(
y−µ
σ

)
> 0. The model has three parameters: location (µ), scale

(σ), and shape (ξ). The limiting case ξ → 0 Hξ corresponds to the Gumbel
distribution. The ξ < 0 or ξ > 0 case corresponds to the Weibull or Fréchet
distribution, respectively.

The model density is given by

hµ,ξ,σ(y)=


exp
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− 1
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1
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σ )}} 1

σ exp{( (y−µ)
σ )} if ξ=0 and y∈R.

As there are innumerable applications of the GEV model, this study does not
aim to utilize GEV, but rather to use the r largest order statistics. One motivation
from the literature is the work of Smith (1986) who dedicated himself to answer
the following question: suppose we have not only an annual maximum, but the ten
largest values from a given data set. How can we use that data to obtain better
estimates than those obtained using only annual maximum values?

The same issue was previously raised by Pirazzoli (1982) and Pirazzoli (1983),
who collected the ten highest water levels (with some exceptions) for each year
from 1887 to 1981 and used these values to study the extreme the value distribution
of the sea level in Venice.

Next, consider x1, x2, . . . , xm a vector of the original data. The data are
grouped into sequences of observations of size n. For sufficiently large n, each
maximum length sequence is extracted, thereby finding a sample with k maximum
values. Therefore n×k, Mn,1, . . . ,Mn,k. The resulting distribution is modeled ac-
cording to the GEV. By inverting equation (1.1), we obtain estimates of extremes
quantiles p of the maximum, turning zp = H−1(1− p) and consequently achieving
the following:

zp =

{
µ− σ

ξ [1− (− log(1− p))−ξ] if ξ ̸= 0;

µ− σ log(− log(1− p)), if ξ = 0.
(2)

Another way to conduct high quantile estimation is through quantile regres-
sion. In this model, which can be seen in the work of Yu & Moyeed (2001) and in
the Bayesian approach of Kozumi & Kobayashi (2011), a regression model for the
quantile p of the response variable is proposed, in this case being a different model
for each p ∈ (0, 1). In the context of extreme values, we can obtain any quantile p
not requiring modeling for each p by using equation (2). Nascimento, Gamerman
& Lopes (2011) considered regression structures in relation to generalized Pareto
distribution (GPD) parameters. Yet another approach is to propose the variances
of high quantiles over time through a structure of dynamic models. Gonçalves,
Migon & Bastos (2019) presented this approach for quantile regression, whereas
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Nascimento, Gamerman & Lopes (2016) performed the modeling for GPD param-
eters. Furthermore, Huerta & Sansó (2007) presented this approach for GEV,
where it was possible to obtain any quantile p variances over time through a
unique model.

This study aims to use the r largest order statistics with a Bayesian approach
in the construction of posterior distribution of the parameters and calculations
of high quantiles for the r largest order statistics and the selection of r-optimal.
Moreover, results are compared with GEV distribution and the library available
in the R (EVA) (Bader, Yan & Zhang 2017), which contains functions for the
generating points of r largest order statistics the and estimation of its parameters
(µ, σ, ξ) through the maximum likelihood method.

Section 2 presents the model of r largest order statistics, which is based on
the work of Coles, Bawa, Trenner & Dorazio (2001) and the Bayesian inference
procedure. Section 3 shows the simulations from the proposed model with differ-
ent configurations of the parameters and values of r. We compare the Bayesian
method efficiency with the maximum likelihood method proposed by Smith (1984)
and implemented in R through the EVA package (Bader & Yan 2016). Section
4 illustrates the model of the r largest order statistics employing the Bayesian
method applied in two situations: the temperature in ◦C of Teresina, the capital
of Piauí (a Brazilian state), and the return level of the São Paulo Stock Ex-
change (BOVESPA). Experimental results show improvement in the precision of
parameter estimation and return levels when the r largest order statistics are
used compared with standard GEV distribution. Section 5 summarizes the main
conclusions of this work. The Appendix contains the details of random number
generation from the r largest order statistics distribution.

2. R Largest Order Statistics Distribution

One reason for the difficulty in framing extreme values is the limited quan-
tity of information available with which to estimate the parameters. In par-
ticular, extremes are rare and may result in a huge variability, thereby provid-
ing less information about the occurrence probabilities of a specific phenomenon
(Nascimento 2012). Thus, an alternative for analyzing extreme events in blocks of
size n is to use the r largest order statistics.

M (k)
n = K-th largest value of (X1, . . . , Xn).

It is important to note that these blocks are not independent. For example,
a second, larger observation of a block is dependent on the larger value, and so
on. Coles et al. (2001) showed that it is possible to identify a distribution of the
r largest order statistics when ξ ̸= 0. The density is given as follows:
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f(z(1), . . . , z(r) | µ, σ, ξ) = exp

{
−
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, (3)

where z(r) ≤, . . . ,≤ z(1).
Where r = 1, (3) is reduced to the GEV family as in (1). Where ξ = 0 for (3),

it is understood as a limit form when ξ → 0 is taking the density family function
below.

f(z(1), . . . , z(r) | µ, σ) = exp

{
− exp

[
−
(
z(r) − µ

σ

)]}
×

r∏
k=1

σ−1 exp

[
−
(
z(k) − µ

σ

)]
. (4)

If r = 1 is reduced to the Gumbel density family, those densities correlate with
the largest r inside one block only or in a dataset with m blocks of size n. Thus,
we have a total of m× r observations.

2.1. Prior Distribution

Considering the density given in (2.1), we first specified a prior distribution
for each component of the parametric vector (µ, σ, ξ) . For σ, the parameter is nec-
essarily positive; thus, we considered a Gamma(a, b) prior distribution as defined
in (Nascimento 2012). However, µ and ξ, may have negative values. Therefore,
according to Nascimento (2012) the prior distributions N(µ0, σ

2
µ) and N(ξ0, σ

2
ξ )

are normal. Thus, the joint prior distribution of the parameters is given by

p(µ, σ, ξ) ∝ σa−1 exp(−bσ) exp(−(µ− µ0)
2/(2σ2

µ)) exp(−(ξ − ξ0)
2/(2σ2

ξ )).

Following this, we chose a non-informative scenario prior with large variances of
a = 0.001, b = 0.001, µ0 = 0, σ2

µ = 103, ξ0 = 0, and σ2
ξ = 1. Identical values were

used for GEV in the MCMC4Extremes package in R (Do Nascimento & Moura e
Silva 2016). Thus, the negative values of ξ were limited to [−0.5, 0], as situations
where ξ < −0.5 are extremely rare in environmental data (Coles & Tawn 1996).

2.2. Posterior Distribution

Regarding r largest order statistics distribution, we have seen the distribution
density given in equation (2.1). Taking the log-likelihood function as the product
of the densities in (z1, . . . , zn), we have the following function when ξ ̸= 0:
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Stating that 1 + ξ(z(k) − µ)/σ > 0, for k = 1, . . . , ri, i = 1, . . . ,m; otherwise,
the log-likelihood is zero.

Finally, the proportional function of the posterior distribution was obtained
by taking π(µ, σ, ξ) ∝ p(µ, σ, ξ)el(µ,σ,ξ). However, in performing some algebraic
manipulations, it is possible to verify that the posterior distribution does not have
a known form see algorithm in appendix. Thus, a form to sample posterior distri-
bution points was developed using the Metropolis–Hastings algorithm (Gamerman
& Lopes 2006). The algorithm convergence was evaluated performing three simul-
taneous chains with different initial values. The convergence chains were visually
measured using the chain behaviors. They were separated in blocks and each was
updated according to Metropolis rules once most parameters were without full
posterior conditional distributions within a closed form.

2.3. Selection of Value of rrr

Selection of the r-optimal is an important task. High values of r approximate to
the distribution given in (1.1) coupled with the low values of r produced a smaller
data set and higher variances. We considered the Bayesian-adapted criteria used
by Bader et al. (2017), in which the null hypothesis of the r largest order statistics
is given by: H

(r)
0 . The r largest order statistics distribution fit the sample of the

r largest order statistics well.
Next, we examine a statistic for testing the null hypothesis H(r)

0 and construct-
ing a Balakrishnan, Kannan & Nagaraja (2007) punctuation function and matrix
information.

The Fisher information matrix I(θ) was based on the work of Tawn (1988).
Owing to the instability of the maximum likelihood estimators, this matrix is
necessary for ξ > −0.5. Thus, the statistic punctuation is given by

Vn =
1

n
ST (θ̂n)I

−1(θ̂n)S(θ̂n).

Thus, two proposals for Vn approximation were used.

2.3.1. Parametric Bootstrap: (PB Score)

The first solution is the parametric bootstrap. The procedure for testing H
(r)
0

is from Bader et al. (2017). It is important to emphasize that this is a computa-
tionally robust method.
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2.3.2. Test of Differential Entropy: (ED)

The other test was based on the differential entropy of the r largest order
statistics and r−1 largest order statistics. This entropy is a continually uncertain
variable, in which the density function was based on that of (Singh 2013).

E[− ln f(y)] = −
∫ ∞

−∞
f(y) log f(y)dy.

The log-likelihood difference between the r largest order statistics and the
r − 1 largest order statistics provided a deviation measurement for H

(r)
0 , showed

a large difference in the estimated deviation, and suggested a possible incorrect
specification of H(r)

0 .

2.3.3. Hypothesis Testing Procedure

As there are R hypotheses H
(r)
0 , r = 1, . . . , R were tested in sequence for the

proposed method. Thus, we found an imposed condition where the hypothesis
should be rejected in the following order: If Hr

0 is rejected, r < R then H
(k)
0 will

be rejected for all r < k ≤ R.
Despite the extensive research on multiple sequential test, such as Benjamini

(2010a), Shaffer (1995) and Benjamini (2010b), and the false discovery rate control
FDR by Benjamini & Hochberg (1995) and Benjamini & Yekutieli (2001), there
is no definitive procedure for false discovery rate control in the ordered samples
obtained until the work of G’Sell, Wager, Chouldechova & Tibshirani (2016).

Considering a null hypothesis sequence H1, . . . , Hm, the ordered test rejected
H1, . . . , Hm to some k ∈ {0, 1, . . . ,M}, (k is the largest integer value on which
the hypothesis is rejected), and p1, . . . , pm ∈ [0,1], the p-values corresponded to
m hypothesis. The methods of G’Sell et al. (2016) transformed the p-values in a
monotone sequence and proposed two rejection rules, each of which returned a cut
k̂ so that H1, . . . , Hk was rejected. The first was named ForwardStop.

k̂F = max

{
k ∈ {1, . . . ,m};−1

k

k∑
i=1

log(1− pi) ≤ α

}
,

and the second was called StrongStop

k̂S = max

k ∈ {1, . . . ,m}; exp

 m∑
j=k

log pj
j

 ≤ αk

m

 ,

where α is a pre-defined level, and both rules allow FDR Control to the level α
for the supposition of the p-values. Moreover, ForwardStop defined the threshold
rejection of the largest k in which the mean of the first k p-values transformed
was sufficiently short. Otherwise, StrongStop offered a greater guarantee than
ForwardStop. If the not null p-values actually precede the p-values, this method
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controls the family-wise error rate (FWER) (Shaffer 1995) at the α level along
with the FDR. Hence, this α was referred to the FDR and to StrongStop, and α
was referred to the FWER.

2.4. Return Level to the rrr Largest Order Statistics

Owing to the difficulty in finding the cumulative distribution of r largest order
statistics, maximum return levels can be used; i.e., we used the accumulated value
of the GEV distribution (Soares & Scotto 2004).

Parameter estimation for the proposed model allowed for the estimation of
the expected levels in t time periods, which are represented by the quantile p =
1−1/t of the GEV quantile formula described in equation (2). For example, when
estimating monthly maximum temperature data, the estimated quantile of 95% is
considered high as it was expected to occur once every t = 20 periods of time.

In situations where the parameter estimation ξ̈ < 0, the distribution was upper
bounded, Thus, one may find the estimate of the maximum value that the data
can assume given by

z̈0 = µ̈− σ̈

ξ̈
.

3. Simulation

To demonstrate the parameter efficiency, the estimation points of the r largest
order statistics were simulated through the R package EVA of (Bader & Yan
2016). Different configurations of parameter values were analyzed with a view to
understanding the estimated characteristics of the parameters and verify whether
the proposed methodology provided accurate and satisfactory results.

This was simulated using sample sizes of 50, 75, and 100 of the r largest order
statistics for µ = 0, σ = 1 and ξ ∈ {−0.25, 0.25}. Furthermore, all parameters
were estimated according to the Bayesian approach and by the maximum likelihood
method (Smith 1984) implemented in R by Bader & Yan (2016). The r largest
order statistics were tested for r ∈ {1, 2, 3, 4, 5, 10}. Parameter selection and the r
largest were identical to those used by Bader et al. (2017).

Figure 1 represents the r largest order statistics density with µ = 0, σ ∈ {1, 2},
ξ ∈ {−0.25, 0.25}, and r = 1. As ξ increased, the density began to show a heavier-
tailed behavior; i.e., the ξ chosen tended to show two possible situations in the
data behavior.

The Bayesian approach was applied throughout the MCMC algorithm. Two-
hundred iterations were used as burn-in; that is, 200 iterations were utilized for
the initial estimation process. Following this, the subsequent 10000 iterations were
kept for simulations inference with a sample size n = 50 after discharge.

Two-hundred iterations were also used for burn-in, and 10000 iterations were
kept for simulation inference with n = 75. For simulations with a sample size
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of n = 100, 200 iterations were used for burn-in and 10 000 iterations were kept
for inference. Approximately one in every 10000/n (n ∈ {50, 75, 100}) simulations
were used as samples, and the selection of the burn-in and the number of iterations
were the same as those from Nascimento (2012). The code was developed in R-
3.3.1 (Kohl 2015) using one AMD Dual Core Pro Netbook with 2 Gb of RAM.
The processing time allowed for 6 iterations per second when n = 100.

Figure 1: Density of r-largest order statistics with µ = 0, σ ∈ {1, 2}, ξ ∈ {−0.25, 0.25}
and r = 1, continuous line (ξ = −0.25, σ = 1), dotted line (ξ = 0.25, σ = 1),
dashed line (ξ = −0.25, σ = 2), dashed and dotted line (ξ = 0.25, σ = 2).

Metropolis (Hastings 1970) was used in the R simulations and aimed to evaluate
maximum likelihood of θ̂, estimator vector, and Bayesian (distribution posterior
mean) θ̈ of the r largest order statistics distribution. Furthermore, we considered
the size of the sample, the true values of the parameters, and the r largest to be
the same as previously mentioned.

In all the Monte Carlo experiments, 10 000 Monte Carlo reproductions were
used to evaluate the performance for each type of estimation, calculating the mean,
bias, CI 95% (confiance interval and credibility interval), and the RMSE of the
estimators.

The simulations results are shown in Tables 1 and 2. The Bayesian estimation
produced satisfactory results in all proposed configurations. This was particularly
true for the ξ parameter, where an RMSE less than or equal to using four decimal
digits in relation to the maximum likelihood estimators for ξ. Shown in bold
in Table 1 are cases where the Bayesian estimators presented lower RMSE and
less bias in relation to the maximum likelihood estimator. Hence, the Bayesian
estimators were superior in 61.1% of the biases and 64.8% of the RMSEs. In
Table 2, we can see the low RMSE on the estimation of the ξ parameter using the
Bayesian approach. Although the Bayesian estimators produced better results in
only 13.0% of the biases and 44.4% of the RMSEs, both procedures were generally
similar, as were both estimators approaches. It is important to note that the red
intervals are those that did not contain true parameter values; most of these cases
contained the maximum likelihood estimators.

Note that the means in Tables 1 and 2 represent the means of the simulations
for each scenario and have the objective of being close to the true values of the
parameters (µ = 0, σ = 1, ξ = −0.25) in Table 1 and (µ = 0, σ = 1, ξ = 0.25) in
Table 2. Thus, only in cases for µ = 0 will the bias coincide with the mean of the
simulated values. For more details on MCMC efficiency, see the Appendix.
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In this simulation, a comparison of return levels was also made according to
the configuration of the last parameters in Table 1 and 2 (n = 100, µ = 0, σ = 1,
ξ ∈ {−0.25, 0.25}), the estimation for using the maximum likelihood estimation
(MLE, also known as classical inference), and the Bayesian estimation.

According to Figure 2, the Bayesian return levels and MLE were similar, mean-
ing that in both cases they contained the mean return line as true parameters
(black line).

1e−01 1e+00 1e+01 1e+02 1e+03

−
2

−
1

0
1

2
3

Return Period

R
et

ur
n 

Le
ve

l

 ξ = − 0.25

MLE

Bayesian

1e−01 1e+00 1e+01 1e+02 1e+03

0
5

10
15

20

Return Period

R
et

ur
n 

Le
ve

l

 ξ = 0.25

MLE

Bayesian

Figure 2: Return levels of 95%, for the MLE (dashed line) and Bayesian approach
(dotted line) and the mean return line of the true parameter (black line) with
µ = 0, σ = 1, ξ ∈ {−0.25, 0.25} and r = 10.

During r-optimal selection, a comparison between Bayesian estimation and
MLE was developed in which both tests (ED test) showed similar behaviors (Figure
3). Moreover, the Bayesian approach may also be used in the r-optimal choice.
Finally, Figures 3 shows that all configurations indicate that the cut-off point at t
0.05 for the r-optimal choice, when r = 10, it satisfied the proposed simulation.

As shown in Figure 4, the comparison between the Bayesian estimation and
MLE were equivalent when using the PB Score test. Also, note that at the inter-
section of the three methods, the cut-off point occurred at 0.05 for the r-optimal
selection when r = 10. Thus, the results shown in Figure 3 and Figure 4 are
efficient for r-optimal selection.
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Figure 3: P-values using the ForwardStop, StrongStop and unadjusted methods, for
the ED test, applied in simulated data, with µ = 0, σ = 1, ξ = −0.25 and
r = 10. The blue line represents the cut-off point for 0.05, continuous line
with ball represents the p-values obtained by the Bayesian method and the
dashed line with triangle represents the p-values obtained by the maximum
likelihood method.

4. Applications

In this section, the results from the actual data analysis of extreme values in
environmental and financial sciences are presented.

Temperature of Teresina-PI

The first analysis was performed on a dataset consisting of the temperature
measurements of Teresina city, capital of Piauí, which is located in the northeast-
ern region of Brazil. Specifically, this dataset comprised the daily temperature
maximum in ◦C of Teresina-PI collected from January 2012 to November 2015.
However, owing to temperature seasonality, we decided to select only the three
hottest months, namely, September, October, and November. This was under-
taken to reduce data dependence.

As shown in Table 3, the average daily maximum temperature in the selected
period was 37.83 ◦C with a standard deviation of 1.73 ◦C. The lowest recorded
maximum was 30.5 ◦C and the highest recorded was 41.1 ◦C.
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Figure 4: P-values using the ForwardStop, StrongStop, and unadjusted methods, for
the PB Score test, applied in simulated data with µ = 0, σ = 1, ξ = −0.25,
and r = 10. The blue line represents the cut-off point for 0.05 continuous line
with ball represents the p-values obtained by the Bayesian method and the
dashed line with triangle represents the p-values obtained by the maximum
likelihood method.

Table 3: Descriptive analysis of the daily maximum temperature of Teresina-PI. 2012-
2015, only the months of September, October and November.

Min. Q1 Median Mean S.D. Q3 Max.
30.5 37.3 38.2 37.83 1.73 39 41.1

When using only the maximum monthly value, we made a total of 48 observa-
tions. In order to choose the r largest order statistics, the mechanism described
in subsection (2.3) was used and the parameters estimates were derived using the
Bayesian method (as opposed to the maximum likelihood method used by Bader
et al. 2017).

The ED test and the parametric bootstrap were used with 10000 replicates.
As shown in Figure 5 the unadjusted sequence test produced the only rejection of
H

(r)
0 to the level of α = 0.05 when considering a cut-off p-value 0.05. According

to Bader et al. (2017), the unadjusted sequence test also produced the correct r
selection. However, it is a more conservative method as it selects a small r.
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Thus, using the ED method, the non-sequential test rejected H
(r)
0 for r = 6;

i.e., between r = 6 and r = 5 there existed a large deviation in the expected
difference. In addition, this was also rejected for H

(1)
0 , . . . , H

(5)
0 , which indicates

that the distribution of r largest order statistics is best suited where r=6.

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

S
tro

n
g
s
to

p
 

p−value p−value p−value 
 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 
 

  

E
D

 

P
B

 S
c
o
re

 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

F
o
rw

a
rd

S
to

p
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0

 

U
n
A

d
ju

s
te

d
 

Figure 5: P-values using the ForwardStop, StrongStop and unadjusted methods, for ED
and PB Score tests, applied at temperature in ◦C of Teresina, in the period
of 2012-2015, for the months of September, October, and November. The
blue line represents the cut-off point to 0.05.

The Bayesian approach was used to estimate the parameters for r = 1, . . . , r =
10, with MCMC (Gamerman & Lopes 2006). Furthermore, Table 4 contains the
credible interval of 95%, and the parameter estimates for r = 6 were µ̈ = 40.037,
σ̈ = 0.451, and ξ̈ = −0.311. Note that as r increased, estimator accuracy improved.

Figure 6 contains the return levels for t = 100 with credible intervals of 95%
for the distribution of r largest order statistics. Where r = 2, r = 3, . . . , r = 10,
the dotted lines represent 95% of credibility interval for the predictive distribution
(continuous line). Note that from r = 6, the return levels exhibit similar behavior
in terms of range amplitude, which reinforces the choice of r = 6.

Also shown in Figure 6, the approximate temperature of 40 ◦C always occurred
at least once in each of the months of September, October and November at the
return level (r = 6). Thus, considering only the referred months, that temper-
ature value is expected to occur every year. Note that as ξ < 0, the maximum
temperature that could occur was approximately 42 ◦C.
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Table 4: Parameter estimates for r largest order statistics and credible interval of 95%,
with r = 1, . . . , r = 10; in bold are the estimates for r-optimal (r = 6), for
each parameter the lower limit (2.5%), the posterior mean and the upper limit
(97.5%).

r µ̈ σ̈ ξ̈

1 39.265 39.595 40.005 0.369 0.530 0.934 -0.518 -0.100 0.482
2 39.453 39.747 40.158 0.377 0.481 0.780 -0.368 -0.017 0.701
3 39.651 39.868 40.144 0.377 0.465 0.700 -0.312 -0.097 0.298
4 39.793 39.979 40.260 0.417 0.473 0.627 -0.426 -0.283 -0.075
5 39.816 40.011 40.310 0.417 0.474 0.643 -0.440 -0.316 -0.103
6 39.856 40.037 40.317 0.416 0.451 0.638 -0.409 -0.311 -0.124
7 39.877 40.058 40.285 0.408 0.446 0.574 -0.410 -0.322 -0.173
8 39.924 40.098 40.361 0.416 0.448 0.573 -0.460 -0.363 -0.223
9 39.975 40.119 40.356 0.411 0.448 0.564 -0.464 -0.380 -0.245
10 39.980 40.151 40.386 0.411 0.443 0.530 -0.473 -0.399 -0.290

BOVESPA
The second analysis was performed using a dataset derived from the mean

return index of the São Paulo stock exchange (BOVESPA). São Paulo is the largest
city in Brazil and is located in the southeast region. More specifically, this dataset
comprised the maximum annual returns (business days only) of the São Paulo
stock exchange from January 2000 to December 2014.

As shown in Table 5, the average daily maximum return in the 2000-2014 time
period was 1.36, with a standard deviation of 1.25. The highest daily return was
14.66 on 10/14/2018, at the height of the world economic crisis.

Table 5: Descriptive analysis of the maximum daily return of BOVESPA. 2000-2014.

Min. Q1 Median Mean S.D. Q3 Max.
0 0.48 1.05 1.36 1.25 1.89 14.66

Using only the maximum monthly returned a total of 15 observations. Thus,
using the same analysis routine performed in the first application, we obtained
the rejected H

(r)
0 at the α = 0.05 level. In all three cases, the PB Score test

had p-values < 0.05. Moreover, using an intersection of these three methods, we
identified the first r-optimal lower that satisfied the three cases for r = 8. As
shown in Figure 7, we used the PB Score test and chose r = 8. Using the Forward
Stop and Strong Stop methods for the PB Score, the H

(1)
0 ,H

(2)
0 , . . . , H

(7)
0 were

rejected and the first k̂ < α, was returned to r = 8.
The Bayesian approach was used to estimate the parameters for r = 1, . . . , r =

8 (cases r > 8 were omitted because they had similar results for r = 8) and by
MCMC (Gamerman & Lopes 2006). Table 6 contains the credible interval of 95%,
for r = 8 and the parameter estimates are: µ̈ = 6.775, σ̈ = 1.770 and ξ̈ = 0.176,
and note that as r increases, the estimators become more accurate.

Revista Colombiana de Estadstica 42 (2019) 143–166



Value Theory Applied to r Largest Order Statistics 159

0 20 40 60 80 100

40
45

50
55

r=2

re
tu

rn
s

0 20 40 60 80 100

40
42

44
46

48

r=3

re
tu

rn
s

0 20 40 60 80 100

40
.0

40
.5

41
.0

41
.5

42
.0

42
.5

r=4

re
tu

rn
s

0 20 40 60 80 100

40
.0

40
.5

41
.0

41
.5

42
.0

r=5

re
tu

rn
s

0 20 40 60 80 100

40
.0

40
.5

41
.0

41
.5

42
.0

r=6

re
tu

rn
s

0 20 40 60 80 100
40

.0
40

.5
41

.0
41

.5
42

.0

r=7

re
tu

rn
s

0 20 40 60 80 100

40
.5

41
.0

41
.5

r=8

re
tu

rn
s

0 20 40 60 80 100

40
.5

41
.0

41
.5

r=9

re
tu

rn
s

0 20 40 60 80 100

40
.5

41
.0

41
.5

r=10

re
tu

rn
s

Figure 6: Return levels for the r largest statistics-order statistics, with r = 2, . . . , 10,
dashed lines are the 95% limits of the credibility intervals and the continuous
line is the posterior mean.

As shown in Figure 8, the mean return from the BOVESPA was approximately
11% at least once every twelve years at the return level (r = 8). In addition, we
found that the return chart for r = 8 was more compact than the others, which
returned estimates with a shorter interval reinforced the choice of r = 8.
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Figure 7: P-values using the ForwardStop, StrongStop, and unadjusted, for ED and PB
Score tests, applied to the BOVESPA in the period of 2000-2014. The blue
line represents the cut-off point to 0.05.

Table 6: Parameter estimates for r largest order statistics, and credible interval of 95%,
with r = 1, . . . , r = 8, in bold is the estimates for the r-optimal (r = 8) for
each parameter the lower limit (2.5%), the posterior mean and the upper limit
(97.5%)

.

r µ̈ σ̈ ξ̈

1 4.353 5.108 6.069 0.728 1.187 2.577 0.005 0.362 1.125
2 4.905 5.541 7.450 1.061 1.505 3.656 0.053 0.347 0.830
3 5.352 5.953 6.818 1.255 1.666 2.973 0.094 0.266 0.752
4 5.718 6.218 7.092 1.266 1.721 2.636 0.062 0.269 0.568
5 5.752 6.377 7.467 1.340 1.754 2.708 0.032 0.240 0.484
6 6.006 6.512 7.677 1.411 1.778 2.768 0.086 0.247 0.482
7 6.192 6.637 8.286 1.454 1.857 3.765 0.099 0.255 0.623
8 6.131 6.775 7.416 1.361 1.770 2.315 0.023 0.176 0.338
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Figure 8: Return levels for the r largest order statistics, with r = 2, . . . , 8, dashed lines
are the 95% limits of the credibility intervals and the continuous line is the
posterior mean.
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5. Final Remarks

For the two applications developed during this research, we obtained more
precise results in terms of parameter estimation and return levels by comparing
GEV estimations with r largest order statistics. However, it is important to note
that the estimate parameters are unstable from a certain r value. Regarding the
Teresina temperature data, the use of r largest order statistics proved a suitable
alternative for analyzing a larger amount of data when the number of observations
was reduced to the range of 2012 to 2015. This was also true of the BOVESPA
return data.

Regarding selection of the optimum values in these applications, sequential
tests were used for the ED and PB scoring methods (Figures 5 and 7). In both
cases, the lowest r held the p-value of < 0.05, which preserved the principle of
parsimony.

In addition, it is important to note that using the Bayesian approach for pa-
rameter estimation produced results similar to (and in some cases superior to)
those of the maximum likelihood method according to the results obtained in our
simulations.

One final item of note is the algorithm developed in this study, which was
an alternative to the ismev package (Coles 2006) and EVA (Bader & Yan 2016).
Moreover, we verified that the estimate return level presented behavior similar to
the above methods. Thus, the incorporation of r largest order statistics varying
over time (Huerta & Sansó 2007) to improve adjustments for series with high
seasonality is a recommendation for future work.
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Appendix: MCMC algorithm

Sampling was performed in blocks with Metropolis-Hastings proposals for each
block owing to unrecognizable form of the respective full conditionals. Each r-
largest order statistics parameter was sampled separately, and three (µ, σ, ξ) for
each component were sampled per block.

Details of the MCMC sampling scheme are given below. For iteration s, pa-
rameters were updated as follows:

Sampling µ, σ, ξ: it can be seen from the posterior distribution in (2.3). How-
ever, its complete conditional has no known form, meaning it is necessary to sample
µ, σ and ξ using the Metropolis-Hastings algorithm. Next, sample µ∗, σ∗ and ξ∗,
respectively for
N(µ(s),Kµ), Gama(σ(s)2/Kσ, σ

(s)/Kσ) and N(ξ(s),Kξ). We then accept, µ(s+1) =
µ∗, σ(s+1) = σ∗ and ξ(s+1) = ξ∗ with probability α(θ(s), θ∗), in which θ(s) =
(µ(s), σ(s), ξ(s)) and θ∗ = (µ∗, σ∗, ξ∗).

α(θ(s), θ∗) = min

{
1,

π(µ∗, σ∗, ξ∗)fG(σ
(s) | σ∗2

/Kσ, σ
∗/Kσ)

π(µ(s), σ(s), ξ(s))fG(σ∗ | σ(s)2/Kσ, σ(s)/Kσ)

}
.

fG follows the Gamma distribution.
• MCMC verification through simulations.
In order to check the credible interval (Bayesian) of 95% and the confidence

interval (maximum likelihood) of 95%, the r largest order statistics points were
generated according to the last configuration in Table 1. Thus, µ = 0, σ = 1, ξ =
−0.25, r = 10 e n = 100. The MCMC chain was generated based on specifications
from (Do Nascimento & Moura e Silva 2016).

As shown in Figure A1, the confidence and credible intervals of 95% were
equivalent; i.e., the Bayesian approach proved an efficient alternative for interval
estimation.

Figure A1: Histogram of 10000 points of the MCMC chain for the parameters (µ, σ, ξ)
of the r largest order statistics, with the real expected value being (line red)
µ = 0, σ = 1, ξ = −0.25, r = 10, and the credible interval (dashed line)
and the confidence interval (black line), both 95%.
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Observe that the MCMC in Figure A2 presents satisfactory results for the r
largest order statistics parameter estimations (µ, σ, ξ).

Figure A2: MCMC for µ, σ, ξ, with the true values being (line red) µ = 0, σ = 1,
ξ = −0.25 and r = 10.
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