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Abstract

A two stage randomized design is developed for two treatment clinical
trials in which response variables are exponential and the observations are
censored by using failure censoring and time censoring in the first and second
stages respectively. The censoring time for the second stage is determined
from the outcomes of the first stage. An application to testing for the equality
of treatment effects is given along with a comparative study with relevant
properties.
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Resumen

Se desarrolla un diseño aleatorizado en dos etapas para dos ensayos clíni-
cos de tratamiento en los que las variables de respuesta son exponenciales y
las observaciones se censuran utilizando la censura por fallo y la censura tem-
poral en la primera y segunda etapas, respectivamente. El tiempo de censura
para la segunda etapa se determina a partir de los resultados de la primera
etapa. Una aplicación para probar la igualdad de efectos del tratamiento se
da junto con un estudio comparativo con propiedades relevantes.

Palabras clave: Diseño de dos etapas; Censura; Inferencia.

1. Introduction

Clinical trials involve a number of treatments and hence a comparison among
the treatments is natural to identify the best treatment. The responses in a clinical
trial are often time-to-event (e.g. remission) data. Since such trials recruit a
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number of human volunteers, a complete experiment results in loss of life. Thus it is
not ethically appealing to allow the trial to continue until all the patients respond.
Moreover, some of the patients do not visit the clinic to register the response.
Therefore, it is neither feasible nor ethical to continue the trial indefinitely, and a
curtailment becomes necessary.

Again ethics is one of the important concerns in any clinical trial, and hence we
need to provide subjects the best possible care during the trial. This amounts to
assign the subjects to the treatment doing better. But before the trial is actually
conducted, the better treatment can not be determined, and hence we suggest to
conduct the trial in two stages, where the subjects of the latter stage are assigned
to the treatment doing better in the first stage. Specifically, we adopt a specified
type of two stage (see, for example, Coad 1992) to compare two treatments based
on a fixed number of patients, in which the first stage consists of assigning equal
number of subjects to each treatment. Depending on the responses obtained in the
first stage, the better performing treatment is decided and the remaining subjects
are given this treatment exclusively.

The early work of Bandyopadhyay & Bhattacharya (2001) incorporated failure
censoring in both the stages with an aim to explore the estimation aspects for the
mean difference on reliability context. In a later work, Bandyopadhyay, Biswas
& Bhattacharya (2009) adopted the same design with random censoring for every
subject but determined the randomization probability for the second stage patients
within a Bayesian framework. Use of censoring for response adaptive trials is
further observed in Zhang & Rosenberger (2007), Sverdlov, Tymofyeyev & Wong
(2011, 2014) and Biswas, Bhattacharya & Park (2016), among others. However,
in all these instances though the allocation adopted is not two stage, censoring
mechanism is fixed for all the subjects.

In the current work, we develop a two stage procedure with failure censoring
in the first stage and determine the randomization probability of each second
stage subject based on the first stage outcome. Unlike the available procedures,
we suggest an adaptive time censoring in the second stage, which uses the first
stage data in a convenient way to set the censoring time. Assuming exponential
treatment responses, the procedure together with the likelihood ratio(LR) test for
the hypothesis of equality of mean treatment responses is described in Section 2.
A reasonable two stage competitor is suggested and compared with the proposed
one through an extensive simulation based study in Section 3. Finally, Section 4
concludes, followed by some technical details in Appendix.

2. Two Stage Adaptive Time Censoring and Re-
lated Test Procedure

In this section we provide the proposed two stage adaptive sampling scheme
with failure censoring in the first stage and time censoring in the second stage and
a follow up test procedure. These are discussed in the following subsections.
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2.1. Censoring Procedure and the Associated Estimation

We consider the situation, where two treatments, A and B, are on a clinical
trial and the responses to the treatments are exponentially distributed with mean
life times λA and λB , respectively. Let N be a prefixed number of subjects to be
examined sequentially. We assume that the treatment with the higher capability of
increasing the survival time is better. The allocation is carried out in two stages by
assigning m subjects to each treatment arm in the first stage, where m = ⌊Nθ⌋ and
θ ∈ (0, 1

2 ). But, due to ethical and administrative convenience, we record only a
preassigned number, r, of responses from each treatment group, where the censor-
ing number r is so chosen that r = ⌊mρ⌋ for some ρ ∈ (0, 1). Although curtailment
of the study after a fixed number of events are observed (i.e. Type II censoring)
is common in animal studies due to budget and time constraints (Xiong, Yan &
Ming 2003), it is not unlikely in clinical trials with human beings. For example,
consider a clinical trial, where the tumor-free survival times of the patients with
squamous carcinoma of the oropharynx are the responses. Then with the passage
of time progression in tumors is natural and therefore, it is not ethical to continue
the trial up to a prefixed time or until all the responses are observed. Hence the
experimenter needs to terminate the study after a fixed proportion of responses
are observed. One such instance can be found in Bhattacharya (2007), where a
real clinical trial involving patients with squamous carcinoma of the oropharynx
(Kalbfleisch & Prentice 1980) is analysed adopting a Type II progressive censoring.

Now, to identify the better performing treatment(or the “winner”) after the
first stage, we find that the likelihood of the first stage data under failure censoring
is proportional to

L1 =
∏

k=A,B

{
λk

−re−T1k/λk

}
,

where T1k is the total observed lifetime in the first stage for the kth treatment,
k = A,B. Thus T1k is sufficient for λk and hence treatment k is decided as the
winner after the first stage if T1k is the largest. Naturally, an ethical strategy would
be to assign the remaining (N−2m) subjects exclusively to A or B as T1A > T1B or
T1A < T1B . However, such a strategy though appealing is not randomized. That is,
it lacks the requirement of concealment of allocation (Rosenberger & Lachin 2015).
Therefore, we incorporate randomization in the second stage through the allocation
probabilities πmi, i ≥ 2m + 1 for the patients of the second stage, where πmi

depends on the first stage data and is set to favour the winner from the first stage
for further allocation. Although a number of choices (Rosenberger & Lachin 2015)
of πmi is possible, we suggest to consider πmi = P ∗(T1A > T1B), where P ∗(T1A >
T1B) is a consistent estimator of P (T1A > T1B) based on the first stage data.
Specifically, based on the first stage data, 2T1k

λk
∼ χ2

2r independently for each
k = A,B and hence λB

λA

T1A

T1B
∼ F2r,2r. Then we can express P (T1A > T1B) as

P (F2r,2r > λB

λA
), which depends on unknown (λA, λB) and we suggest to replace

λk by its consistent estimator λ̂km = T1k

r based on the first stage to get P ∗(T1A >

T1B) = P (F2r,2r > λ̂Bm

λ̂Am
).
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Furthermore, in the second stage, we adopt adaptive time censoring for each
treatment arm with an aim to make the duration of the two stages identical. If
X(r) and Y(r) denote, respectively, the r th order statistics obtained from the
responses of treatment A and treatment B in the first stage, the duration of the
first stage is max(X(r), Y(r)), and hence to make the observations of the second
stage comparable with those of the first stage, we continue assignment of subjects
of the second stage up to time X(r) for treatment A and Y(r) for treatment B.

Let δmi(= 1 − δ̄mi) be the treatment indicator in the second stage, where
δmi = 1 or 0 as treatment A or B is assigned. Then, given the first stage data,
δmi are iid Bernoulli random variables with success probability πmi. Thus the
likelihood of the data from the entire trial is

L(λA, λB) = L1

N∏
i=2m+1

πδmi
mi (1− πmi)

δ̄mi

{
λA

−nAe−T∗
2A/λA

}{
λB

−nBe−T∗
2B/λB

}
, (1)

where

T ∗
2A =

N∑
i=2m+1

δmi min(Xi, X(r)), nA =

N∑
i=2m+1

δmiI[Xi<X(r)],

T ∗
2B =

N∑
i=2m+1

δ̄mi min(Yi, Y(r)), nB =

N∑
i=2m+1

δ̄miI[Yi<Y(r)]

with I[.] as the indicator function, {X2m+1, X2m+2, . . .} and {Y2m+1, Y2m+2, . . .}
as the observations in the second stage corresponding to A and B, respectively.
Hence, maximizing (1) with respect to (λA, λB), we get the maximum likelihood
estimators of mean lifetimes as

λ̂kN =
T1k + T ∗

2k

r + nk
, k = A,B.

2.2. Test for the Mean Difference

In order to carry out inference following the proposed allocation design, we
assume treatment A as experimental and treatment B as existing. Then a natural
objective is to justify whether the experimental treatment is more promising than
the existing one, that is, whether the experimental treatment enhances lifetime, on
an average. Consequently, we consider testing H0 : λA = λB against H : λA > λB

and develop a test based on the likelihood ratio(LR) criterion

ΛN =
supH0

L(λA, λB)

supH0∪H1
L(λA, λB)

.

A little manipulation yields

ΛN = (
λ̂AN

λ̂0N

)r+nA(
λ̂BN

λ̂0N

)r+nB if λ̂AN > λ̂BN

= 1 if λ̂AN ≤ λ̂BN ,
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where λ̂0N , the maximum likelihood estimator obtained by maximizing (1) under
the restriction λA = λB = λ0, is of the form

λ̂0N =
T1A + T ∗

2A + T1B + T ∗
2B

2r + nA + nB
.

As no further simplification of the criterion is possible, we reject the null hypothesis
at a preassigned level α(0 < α < 1) if

−2 lnΛN > c

for some c satisfying

PH0(−2 lnΛN > c) = α.

It is shown (see Appendix) that, as N → ∞,

−2 lnΛN → W

in distribution under the null hypothesis, where for any real w,

P (W ≤ w) =
1

2
+

1

2

∫ w

0

fχ2
1
(x)dx

with fχ2
1
(x) = exp(−x/2)√

2πx
, x > 0.

3. A Comparative Study

For a comparative assessment of the proposed allocation design, we consider a
reasonable competitor and relevant performance measures.

3.1. Competitor

Here, we consider an allocation design (referred to as equal allocation), which
is the same as the proposed one except that the subjects in the second stage are
assigned to either treatment with equal probability. That is, for the competitor,
we ignore the outcome of the first stage and suggest πmi =

1
2 for every incoming

subject of the second stage. Thus, such a randomization procedure keeps the form
of the likelihood function unchanged apart from a known multiplier. Consequently
the corresponding LR criterion(say, Λ̃N ) for testing H0 : λA = λB against H1 :
λA > λB takes the same form as that derived in Section 2 except that δmi, in this
case, are iid Bernoulli( 1

2 ), independently of the first stage. Then it follows from
Result A.2 in the appendix that, as N → ∞,

−2 ln Λ̃N → W

in distribution under the null hypothesis with W defined earlier.
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3.2. Assessing Performance

For a meaningful assessment of the allocation design, we consider measures of
both ethical and inferential aspects. We compute power of the LR test to investi-
gate the discriminating ability of the proposed allocation design. Since ethics is one
of our motivation in the development stage, expected allocation proportion(EAP)
to the better treatment is used to measure the ethical aspect. Usually, out of N
assignments in a two stage design, the intended number of allocation to treatment
A is m +

∑N
i=2m+1 δmi, but due to censoring in both the stages for the proposed

design, the observed number of assignments reduces to r+
∑N

i=2m+1 δmiI[Xi<X(r)].
Further, the actual number of total assignments, that is, the number of events
under the proposed design is 2r+

∑N
i=2m+1 δmiI[Xi<X(r)] +

∑N
i=2m+1 δ̄miI[Yi<Y(r)]

and hence the observed proportion of allocation to treatment A is simply

r +
∑N

i=2m+1 δmiI[Xi<X(r)]

2r +
∑N

i=2m+1 δmiI[Xi<X(r)] +
∑N

i=2m+1 δ̄miI[Yi<Y(r)]

.

The corresponding expectation, denoted by ϕAN , is the EAP to treatment
A. Further, E

{
r +

∑N
i=2m+1 δmiI[Xi<X(r)]

}
gives the expected number of actual

events for treatment A (denoted by ENA) and we also include it in addition to
EAP.

Next to explore the small sample behaviour of the performance measures, we
conduct a simulation study with 25,000 repetitions. For the simulation, we take
different combinations of trial size N , the design parameters (r,m) and response
parameters (λA, λB). However, for better understanding of the simulation output,
we always consider treatment A to be better and fixing λB at unity, vary λA over
1.0 to 2.4 at an interval of 0.2. Although we get a lot from the simulation study,
report only the EAP and ENA to treatment A (i.e. the better treatment) for
N = 60, 90 and 120 in Tables 1,2 and 3. Moreover, we provide few comparative
plots (see, Figures 1,2,3 and 4) of the empirical power for our test with adaptive
time censoring and that under the equal allocation in the second stage for different
combinations of (N,m, r).
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Table 1: EAP and ENA to treatment A for the proposed allocation with N = 60.

m = 10 m = 20

∆ = λA − λB r = 4 r = 6 r = 8 r = 16

0.0 .50 (.23) .50 (.22) .50 (.20) .50 (.18)
16 24 21 29

0.2 .55 (.22) .56 (.21) .56 (.20) .58 (.17)
18 27 23 31

0.4 .58 (.20) .61 (.20) .60 (.19) .64 (.16)
19 29 24 32

0.6 .62(.18) .64 (.19) .63 (.18) .69 (.14)
20 31 26 34

0.8 .64 (.18) .67 (.18) .66 (.17) .72 (.12)
21 32 27 35

1.0 .66 (.18) .70 (.18) .68 (.15) .74 (.09)
22 33 28 36

1.2 .68 (.18) .72 (.17) .70 (.15) .76 (.08)
23 34 28 37

1.4 .70 (.17) .74(.17) .71 (.13) .77 (.06)
23 35 29 39

Figures within braces indicate the corresponding standard deviations. Second figures
in each cell gives ENA (in nearest integers).

Table 2: EAP and ENA to treatment A for the proposed allocation with N = 90.

m = 15 m = 30

∆ = λA − λB r = 6 r = 9 r = 12 r = 18

0.0 .50 (.24) .50 (.23) .50(.19) .50 (.19)
25 37 31 38

0.2 .56 (.23) .57(.23) .57 (.19) .58 (.18)
28 42 35 44

0.4 .60 (.24) .63 (.22) .62 (.18) .64 (.16)
30 46 38 48

0.6 .64 (.23) .68 (.20) .66 (.16) .68 (.15)
32 49 41 52

0.8 .67 (.22) .71 (.19) .69 (.14) .71 (.13)
33 51 42 54

1.0 .70 (.21) .74 (.17) .72 (.12) .73(.11)
34 53 43 55

1.2 .72 (.19) .76 (.16) .74 (.11) .75 (.09)
35 55 44 56

1.4 .73 (.18) .78 (.14) .76 (.10) .76 (.08)
36 56 45 57

Figures within braces indicate the corresponding standard deviations. Second figures
in each cell gives ENA (in nearest integers).
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Table 3: EAP and ENA to treatment A for the proposed allocation with N = 120.

m = 20 m = 40

∆ = λA − λB r = 8 r = 12 r = 16 r = 24

0.0 .50 (.23) .50 (.23) .50 (.19) .50 (.18)
33 49 41 61

0.2 .56 (.24) .59 (.22) .58 (.18) .59 (.17)
37 57 48 73

0.4 .62 (.23) .65 (.21) .64 (.16) .67 (.15)
41 63 52 81

0.6 .66 (.22) .70(.19) .69 (.15) .72 (.12)
44 68 56 86

0.8 .70 (.20) .74(.17) .72 (.12) .75 (.09)
46 71 58 89

1.0 .73 (.19) .77 (.15) .74(.10) .77 (.07)
47 74 60 91

1.2 .75 (.17) .79 (.13) .75 (.08) .79 (.06)
49 76 61 92

1.4 .77 (.16) .81 (.11) .76 (.08) .80 (.05)
50 77 62 93

Figures within braces indicate the corresponding standard deviations. Second figures in
each cell gives ENA (in nearest integers).

Figure 1: Empirical Power comparison between the proposed (solid line) and
equal(dotted line) allocation designs for N = 100 and m = 30
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Figure 2: Empirical Power comparison between the proposed (solid line) and
equal(dotted line) allocation designs for N = 100 and m = 40.

Figure 3: Empirical Power comparison between the proposed (solid line) and
equal(dotted line) allocation designs for N = 150 and m = 40.
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Figure 4: Empirical Power comparison between the proposed (solid line) and
equal(dotted line) allocation designs for N = 150 and m = 60.

Discussion: The figures of Tables 1,2,3 and 4 reveal that irrespective of the
choices of (r,m) and (λA, λB), the adaptive allocation, on an average, assigns more
subjects to the “winner” of the first stage and makes the allocation unbalanced.
This results a loss in statistical power, which is observed in Figures 1-4. However,
power is seen to increase with an increase in r for fixed m. This can be best viewed
if we consider any of Figures 1-4 and observe the variation in power for increasing
r (i.e. figures indicated by (a),(b) and (c))with fixed m. The behaviour is quite
natural because the second stage allocation probability depends only on r and
hence increase in r amounts to increased first stage allocation, that is, decrease
in the adaptive allocation of the second stage. The decrease in the second stage
allocation causes most of the subjects to assign equally to either treatment and
hence results in an increased power.

Although loss in power weakens the discriminating ability between the treat-
ments but the usefulness of the proposed design lies in assigning the better per-
forming treatment more frequently. Now, if we examine the ϕAN values, we find
that ϕAN = 1

2 exactly for the equal allocation whereas for the adaptive alloca-
tion, ϕAN approaches 1 − θ or θ as ∆ = λA − λB > 0 or < 0 for large N ,
where m = ⌊Nθ⌋. Thus the proposed adaptive procedure assigns according to
the treatment effectiveness ∆ in the limit. The small sample figures are also in
agreement with the limiting behaviour, where the higher proportion of allocation
always correspond to treatment A, that is, the better treatment. Moreover, such
a proportion consistently increase from 50% with the increase in ∆. Thus the
proposed adaptive two stage censored procedure has the ability to assign patients
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to the better treatment frequently but with a compromise in statistical precision.
Censoring number r plays the crucial role in the proposed allocation. The effect
of r in the allocation is two fold, namely, limiting the number of events in the
first stage as well as controlling the duration of the second stage. Thus, a sensible
choice of r could help the experimenter to achieve the goals of the concerned study.
We have already observed that increase in r increases both EAP (and ENA) and
power. However, a larger choice of r implies higher number of events in the trial,
on an average and hence seems reasonable. But such a choice of r increases the
duration of the trial and hence conflicts with the objective of censoring. There-
fore, a larger choice is not reasonable despite the ability to produce promising
performance measures. Consequently, motivated by the figures of Tables 1-3, as a
compromise, we suggest to choose r or equivalently ρ in the range (.60, .70).

4. Concluding Remarks

The current work uses a randomization probability based only on ethics. Natu-
rally, other aspects like optimality(in some sense) is not taken into account for the
development. Moreover, exponential responses are extensively used for our purpose
though some other distributions such as Weibull or Gamma can be used. How-
ever, the development with such responses is not just a straightforward extension
of the present formulation and requires a fresh look. The subsequent development
incorporating optimality in addition to ethics considering a wide class of responses
is, therefore, a topic for further investigation.
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Appendix

Result A1

As N → ∞,
πmi → u(λA − λB),

almost surely, where u(x) = 1, 0 or 1
2 as x > 0, < 0 or = 0.

Proof . Note that, 2T1k

λk
∼ χ2

2r, k = A,B independently, and hence writing λ = λA

λB

we get

P (T1A > T1B) = P (
2T1B

λB
≤ λ

2T1A

λA
)

=

∫ ∞

0

P (χ2
2r < λy)fχ2

2r
(y)dy
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with fχ2
2r
(y) = 1

Γr2r e
(−y/2)yr−1, y > 0. Since we can express P (χ2

2r < λy) =∑∞
i=r exp(−λy/2) (λy)

i

2i(i)! , we have the right hand number of the above as
∞∑
i=r

∫ ∞

0

e(−λy/2)(λy)i

2i(i)!

e(−y/2)yr−1

2r(r − 1)!
dy =

∞∑
i=r

(r + i− 1)!

(r − 1)!i!

(
1− 1

1 + λ

)i (
1

1 + λ

)r

= P (Z ≥ r),

where Z has a negative binomial, NB(r, p), distribution with p = 1
1+λ =

λB

λA+λB
. Then, for fixed p ∈ (0, 1), as r → ∞,

Z

r
→ 1− p

p

almost surely, where 1−p
p > 1 or < 1 as p < 1

2 or > 1
2 or equivalently as λA >

or < λB . Moreover, as r → ∞,

Z − r√
2r

→ N(0, 1)

in distribution for p = 1
2 . Thus, combining all these, we get limr→∞ P (Z ≥ r) =

1 or 1
2 or 0 as λA > or = or < λB .

Now, by definition, πmi = P (Z ≥ r|Z ∼ NB(r, p̂)), where p̂ is the same as
p with λk replaced by its maximum likelihood estimator λ̂k = T1k

r based on the
first stage. Since p̂ is a strongly consistent estimator of p, the required result
follows.

Next we prove the following lemmas, which will be useful in deriving
Result A2.
Lemma A1. If X has an exponential distribution with mean µ, then for any k ≥ 1
and positive constant a,

E(XkI[X≤a]) = Γ(k + 1)µk

p− (1− p)

k∑
j=1

( aµ )
j

j!

 ,

where
p = P (X ≤ a).

Proof . By definition,

E(XkI[X≤a]) =

∫ a

0

e−
x
µ
xk

µ
dx

= Γ(k + 1)µk

∫ a
µ

0

e−y yk

Γ(k + 1)
dy

= Γ(k + 1)µk

1−
k∑

j=0

e−
a
µ

( aµ )
j

j!

 ,

which gives the required result.
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Lemma A2. Let X1, X2, . . . , Xn be iid as exponential with mean µ. Define

δi = I[Xi≤a], T
∗ =

n∑
i=1

min(Xi, a), and n∗ =

n∑
i=1

δi.

Then
V ar(T ∗ − µn∗) = npµ2.

Proof . Since, for each i,

min(Xi, a) = δiXi + (1− δi)a,

writing

T ∗ − n∗µ =

n∑
i=1

δi(Xi − µ) + a

n∑
i=1

(1− δi),

we obtain that

V ar(T ∗ − n∗µ) =

nV ar {δ1(X1 − µ)} − 2anE(1− δ1)E(δ1X1 − µδ1) + na2V ar(1− δ1). (∗)

Now the representation

V ar {δ1(X1 − µ)} = E(δ1X
2
1 )− 2µE(δ1) + µ2E(δ21)

together with Lemma 1 gives

V ar {δ1(X1 − µ)} = pµ2 − (1− p)(2− p)a2.

Combining all these together with V ar(1−δ1) = p(1−p) in (*), we get the required
result.

Result A2

For any real x,

lim
N→∞

PH0(−2 lnΛN ≤ x) =
1

2
+

1

2

∫ x

0

fχ2
1
(u)du.

Proof . Denoting ∆̂N = λ̂AN − λ̂BN , consider the representation

PH0
(−2 lnΛN ≤ x) =

PH0

(
−2 lnΛN ≤ x, ∆̂N ≤ 0

)
+ PH0

(
−2 lnΛN ≤ x, ∆̂N > 0

)
.

Then it follows that

lim
N→∞

PH0
(−2 lnΛN ≤ x) = lim

N→∞
PH0

{√
N∆̂N ≤ 0

}
if x ≤ 0
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and

lim
N→∞

PH0
(−2 lnΛN ≤ x) = lim

N→∞
PH0

(√
N∆̂N ≤ 0

)
+ lim

N→∞
PH0

(
−2 lnΛN ≤ x,

√
N∆̂N > 0

)
if x > 0.

Define the random variables UkN =
√
N

(
T1k−rλ0

r

)
and VkN =

√
N

(
T∗
2k−nkλ0

N−2m

)
, k =

A,B, where λ0 is the common unspecified value under the null hypothesis. Then
a Taylor series expansion up to second order terms expresses −2 lnΛN in terms of
these variables as

−2 lnΛN =
r + nA

Nλ2
0

(
r

r + nA
UAN +

N − 2m

r + nA
VAN

)2

+
r + nB

Nλ2
0

(
r

r + nB
UBN +

N − 2m

r + nB
VBN

)2

− 2r + nA + nB

Nλ2
0

{
r

2r + nA + nB
(UAN + UBN ) +

N − 2m

2r + nA + nB
(VAN + VBN )

}2

+RN ,

where RN → 0 in probability. Now, it is easy to observe that, for given the
first stage data, nA is conditionally Binomial(

∑N
i=2m+1 δmi, P [X2m+1 < X(r)]).

Moreover, under H0, δmi are iid Bernoulli( 12 ), so that∑N
i=2m+1 δmi

N − 2m
→ 1

2

almost surely, and hence, as a consequence of the almost sure convergence of
X(r) = X(⌊mρ⌋) to −λAlog(1− ρ), we get

nA

N − 2m
→ ρ

2

almost surely. Then it follows that for any k = A,B,
nk

m
→ ρ

1− 2θ

2θ
(A1)

almost surely, k = A,B. Hence, under the null hypothesis, −2 lnΛN and W 2
N ,

with
WN =

√
ρ

λ0

{
θ(UAN − UBN ) +

1− 2θ

ρ
(VAN − VBN )

}
,

have the same asymptotic distribution. But, given the first stage observations,
WN is the sum of independent random variables with conditional expectation

E(WN ) =
θ
√
ρ

λ0
(UAN − UBN )

and conditional variance (see, Lemma 2, for details)

V ar(WN ) =

(1− 2θ)2

ρ

{
N

∑N
i=2m+1 δmi

(N − 2m)2
(1− e−

X(r)
λ0 ) +

N
∑N

i=2m+1 δ̄mi

(N − 2m)2
(1− e−

Y(r)
λ0 )

}
.
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Since δmi are iid Bernoulli( 12 ) under the null hypothesis, we have∑N
i=2m+1 δmi

N − 2m
→ 1

2

almost surely, and hence as N → ∞

V ar(WN ) → (1− 2θ)

in probability. Again, UAN and UBN are independent and asymptotically N
(
0,

λ2
0

ρθ

)
and consequently, as N → ∞

θ
√
ρ

λ0
(UAN − UBN ) → N(0, 2θ)

in distribution. Hence, following Hajek et al.(1999, pp. 241-242), we get, uncon-
ditionally,

WN → N(0, 1)

in distribution as N → ∞. Further, we can express
√
N∆̂N as

√
N∆̂N =

r

r + nA
UAN − r

r + nB
UBN +

√
N − 2m

r + nA
VAN −

√
N − 2m

r + nB
VBN . (A2)

Then, under (A1), the right hand side of (A2) and 2θ(UAN−UBN )+ 2(1−2θ)
ρ (VAN−

VBN ) have the same asymptotic distribution. Since the latter quantity is nothing
but 2λ0WN√

ρ and WN is asymptotically standard normal under the null hypothesis,
we get

lim
N→∞

PH0

(√
N∆̂N ≤ 0

)
=

1

2

and
lim

N→∞
PH0

(
−2 lnΛN ≤ x,

√
N∆̂N > 0

)
=

1

2
P (χ2

1 ≤ x),

and hence the result follows.
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