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Abstract

In this paper, we developed an empirical evaluation of four estimation
procedures for the dependence parameter of the Gumbel-Barnett copula ob-
tained from a Gumbel type I distribution. We used the maximum likelihood,
moments and Bayesian methods and studied the performance of the esti-
mates, assuming three dependence levels and 20 di�erent sample sizes. For
each method and scenario, a simulation study was conducted with 1000 runs
and the quality of the estimator was evaluated using four di�erent criteria.
A Bayesian estimator assuming a Beta(a, b) as prior distribution, showed the
best performance regardless the sample size and the dependence structure.

Key words: Bayesian; Copula; Correlation; Dependence; Estimation; GB
copula; Simulation.

Resumen

En este artículo, desarrollamos una evaluación empírica de cuatro pro-
cedimientos de estimación para el parámetro de dependencia, de la función
copula Gumbel-Barnett obtenida a partir de la distribución Gumbel tipo
I. Se usó el método de estimación por momentos, el método de la máx-
ima verosimilitud y dos aproximaciones Bayesianas. Se estudió el compor-
tamiento de las estimaciones asumiendo tres niveles de dependencia y 20
tamaños de muestra distintos. Para cada método y escenario formado entre
el nivel de dependencia y el tamaño de muestra, se desarrolló un estudio de
simulación con 1000 repeticiones y el comportamiento de las estimaciones
fue evaluado usando cuatro criterios. El estimador obtenido asumiendo
una distribución Beta(a, b) para modelar la información previa, presentó
el mejor desempeño sin importar el tamaño de muestra y la estructura de
dependencia.

Palabras clave: bayesiana; copula Gumbel Barnett; correlación; dependen-
cia copula; estimación; simulación.
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1. Introduction

The origin of the Gumbel-Barnett copula function dates to 1960, when Gumbel
developed a cumulative function of probability assuming two dependent exponen-
tial standard distributions as marginals, which was called the Gumbel Type I
distribution. The distribution was later studied by Barnett (1983), who discussed
the estimation of the parameter θ using the maximum likelihood method, as well
as a method based on the product-moment correlation. When the marginals were
transformed using the integral transformation of probability, the distribution was
indexed by the parameter θ, which ranges in the interval (0, 1) and models the de-
pendence structure existing between the two random variables. Many authors refer
to the copula function obtained after applying Sklar's theorem to the cumulative
distribution function of the Gumbel Type I distribution as another Gumbel family
copula, but Balakrishnan & Lai (2009) called it the Gumbel-Barnett (GB) cop-
ula because the characteristics of this copula function assuming di�erent marginal
distributions (including the uniform distribution) were �rst discussed by Barnett
(1980).

In this work, we assume the de�nition given by Balakrishnan & Lai (2009)
and refer to the function as the Gumbel-Barnett copula function obtained from
the Gumbel Type I distribution. For dependencies that can be modeled using
this copula function when θ = 0, Pearson's coe�cient (ρs) takes the value of zero
and the variables under study can be assumed independent. When θ increases,
ρs decreases, reaching a value of −0.404 when θ = 1. Genest & Mackay (1986)
remarked that although the survival copula of the Gumbel-Barnett (GB) copula
belongs to the Archimedean copulas, the Gumbel-Barnett copula should not be
included. In accordance with our literature review, there are several studies where
the authors used the survival form of the copula, all of which referred to it as the
Gumbel-Barnett copula rather than the cumulative form copula.

An interesting characteristic of the Gumbel-Barnett copula function is that it
models weak and not necessarily linear dependencies, i.e., when the usual plot used
to identify dependence between the random variables shows a structure similar to
that observed when the variables are independent and the hypothesis tests associ-
ated with commonly used indexes, such as Pearson's or Spearman's coe�cients, do
not reject the independence hypothesis. This characteristic was explored within a
clinical diagnosis framework by Tovar & Achcar (2011, 2012, 2013).

Many other authors have studied additional theoretical characteristics of the
GB copula function; for instance, Klein & Christa (2011) studied the weighted
geometric and harmonic means from di�erent copula families, including the sur-
vival Gumbel-Barnett. Omidi & Mohammadzadeh (2015) obtained the stationary
spatial covariance functions for �ve archimedean copula families, including the GB
family. Louie (2014) evaluated ten copula functions, including the GB, to identify
the copula families that were best suited to model dependence structures for wind
power. Martinez & Achcar (2014) used the GB as well as the Farlie Gumbel Morg-
erstern and Clayton copulas to model the dependence structure between survival
times, assuming a Lindley distribution for the marginal distributions.
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In this paper, we study the empirical performance of di�erent approaches to
obtain estimates of the dependence parameter of the Gumbel-Barnett copula func-
tion using the maximum likelihood, moments and Bayesian methods. A simulation
study was performed assuming three di�erent levels of dependence and di�erent
sample sizes (50 to 1000 in steps of 50).

2. Estimating the Gumbel-Barnett Copula

Dependence Parameter

2.1. Maximum Likelihood Approach

Let two random variables X1 and X2 have cumulative distribution function
FX1,X2(x1, x2), which can be �tted by a Gumbel Type I bivariate exponential
distribution. We can de�ne a parameter θ to model the dependence structure
between X1 and X2, and we can use the integral transformation theorem to obtain
u = F (x1) and v = F (x2), the normalized marginals such that u and v range in
the interval (0, 1). With the transformed variables, by applying Sklar's theorem,
it is possible to express the joint distribution of X1 and X2 as a copula function,
as follows:

C(u, v) = u+ v − 1 + (1− u)(1− v)e−θ ln(1−u) ln(1−v) 0 ≤ θ ≤ 1 (1)

whose density function is:

c(u, v) = e−θ ln(1−u) ln(1−v) [(θ ln(1− v)− 1)(θ ln(1− u)− 1)− θ] (2)

Consider a data set of observations (x1i, x2i); i = 1, 2, . . . , n with normalized
marginal distributions u = FX1(x1), v = FX2(x2) and a dependence structure that
can be modeled using a GB copula function through a parameter θ. The likelihood
and log likelihood functions are given by:

L(θ|u,v) =
n∏
i=1

eβi ((θ ln(1− ui)− 1)(θ ln(1− vi)− 1)− θ) (3)

where βi = −θ ln(1− ui) ln(1− vi) and,

`(θ|u,v) = −
n∑
i=1

θ ln(1− ui) ln(1− vi)+
n∑
i=1

ln ((θ ln(1− ui)− 1)(θ ln(1− vi)− 1)− θ)
(4)

It is possible to obtain the estimate of θ from the corresponding survival copula,
which has the following analytical form (see, Barnett 1980):

C ′(u, v) = uve−θ ln(u) ln(v) (5)

with density function
c′ (u, v) = λe−θ lnu ln v (6)
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where, λ =
(
1− θ lnu − θ ln v − θ + θ2 lnu ln v

)
.

Then, from (5) and (6), the likelihood and log likelihood functions are:

L(θ|u,v) =
n∏
i=1

e−θ lnui ln vi(λi) (7)

and

l(θ|u,v) =
n∑
i=1

−θ lnui ln vi +
n∑
i=1

ln (λi) (8)

Given that there is no closed way to obtain a maximum for the equations (4)
and (8), it is necessary to use numerical algorithms to approximate a solution. We
used the optim function implemented in R software, which uses the algorithms of
Brent, BFGS and Nelder-Mead to obtain the root that maximizes the log likelihood
function in (8).

2.2. Moments Approach

To obtain the moments estimator, we used the mathematical relationship be-
tween Spearman's rho (ρs) and the Kendall's tau (τ) with the GB dependence
parameter. The associated expressions for both indexes are (Nelsen 2006):

ρs = 12

1∫
0

1∫
0

CY(u1, u2) du1du2 − 3 (9)

τ = 4

1∫
0

1∫
0

CY(u1, u2)cY(u1, u2) du1du2 − 1 (10)

In both cases, the equation includes the exponential integral function Ei(·)

ρs = 12

[
− e

4
θ

θ Ei
(
− 4
θ

)]
− 3

τ =
[
7− 2

θ

]
e

2
θEi

(
− 2
θ

)
− 4e

1
θEi

(
− 1
θ

)
+ 4e

4
θEi

(
− 4
θ

)
− 1

which makes it very di�cult to compute the chosen index. As an alternative, we
employed the relationship between the Pearson's correlation coe�cient (ρp) and
the parameter of the Type I bivariate exponential function to obtain the Gumbel-
Barnett copula (θ). This relationship was studied by Gumbel (1960):

ρp = −1 +
∞∫
0

e−z

1 + θz
dz
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In this way, the estimation of the dependence parameter θ is the solution to
the following equation that approaches zero:

ρp + 1−
∞∫
0

e−z

1 + θz
dz ≈ 0

2.3. Bayesian Approach

For the Bayesian approach, three di�erent prior distributions were assumed.
Using the likelihood function obtained in (3) and prior distribution π(θ), it is
possible to obtain the posterior distribution as follows:

π(θ|u,v) ∝ π(θ)L(θ|u,v) (11)

As an informative prior distribution (π1(θ)), a Beta distribution with param-
eters α and β was assumed. To obtain the values of the hyperparameters, we
did not have prior information obtained from a specialist or alternative source,
so we used the procedure developed by Tovar (2012) considering �xed intervals
and the Chebychev inequality to obtain the parameters of the prior distribution.
Then, a Beta(3.4, 23.6), Beta(7.5, 7.5) and Beta(23.6, 3.4) were used as informative
prior distributions for weak, moderate and strong dependence levels, respectively.
A Beta(1, 1) and a Beta(0.5, 0.5) distributions were used as noninformative prior
distributions.

The Bayes estimates were obtained using MCMC methods implemented in the
interface between R and OpenBUGS software.

2.4. Con�dence Intervals and Credibility Regions

We obtained 0.95 con�dence intervals for the estimates obtained using the
maximum likelihood and moments methods and 0.95 credibility regions for the
Bayes estimates.

The con�dence intervals for the maximum likelihood (θML) and moments es-
timates (θMom) were obtained using bootstrap methods, as in Efron (1992), as
follows:

Let (u1, v1), . . . , (un, vn) be a random bivariate vector of data with dependence
structure that can be modelled with a GB copula function. It is possible to generate
B samples with replacement from the vector of dependent bivariate data assuming
that n is the population size. For each vector, the estimates θ̂bML and θ̂bMom,
b = 1, . . . , B are obtained. To obtain the con�dence intervals, we used the formula:

IC[θ]1−α = [θ̂α
2
, θ̂1−α2 ] (12)

The average length and the probability of coverage were used to compare the
performance of the con�dence intervals and credibility regions. The average length
is de�ned as:
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Laver =

∑M
i=1(Lsi − LIi)

M
(13)

where Lsi is the upper limit and LIi is the lower limit of the ith interval. The
probability of coverage is de�ned as:

CP =

∑M
i=1 Ii(θ ε ICik)

M
(14)

where Ii(θεICik) is the indicator function, which takes the value of one if the ith
interval contains the true value of the parameter and is otherwise zero.

3. Simulation Study

To simulate vectors of pairs of data with a GB structure of dependence, we
wrote a program in R language to implement an algorithm based on the inverse
transformation of the cumulative distribution function of the variable X, given a
value of the variable Y , as follows:

• Given a value of θ ∈ (0, 1)

• Simulate w1 ∼ uniform(0, 1) and simulate w2 ∼ uniform(0, 1)

• Then y = − ln(1− w1)

• Substitute y and w2 in

A = 1− w2 − (1 + θx)e−(1+θy)x

and obtain x doing A = 0

The x and y values are realizations of the random variables X and Y whose
natural behavior can be modeled using a Gumbel Type I distribution under the
assumption that X ∼ exponential(1) and Y ∼ exponential(1). Carrying out
u = 1− e−x and v = 1− e−y, we obtain normalized values of two variables whose
dependence structure can be modeled using a GB copula function.

The simulation procedure was based on scenarios de�ned by three dependence
levels and 20 di�erent sample sizes taking values between 50 and 1000 and increas-
ing each 50. We assumed that, the dependence level is weak when θ = 0.2, mod-
erate for θ = 0.5 and strong if θ = 0.9. Each scenario was simulated 1000 times,
and for each repetition of the procedure, we obtained the maximum likelihood,
moments and Bayes estimators (including credible regions). For each simulated
sample, we applied nonparametric boostrap to obtain the estimation intervals and
for each interval, we determined whether it contained the true value of the pa-
rameter and computed its length. Finally, we obtained the proportion of times
(among 1000 samples) that the interval contained the true value of the parameter,
and we computed the average of the lengths.
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4. Results

We computed the bias, mean square error (MSE), average length and the prob-
ability of coverage for each estimate, based on the sample size used. The perfor-
mance of the bias obtained is showed in Figures 1-3. As can be observed when the
dependence level is weak, the di�erent estimators showed little bias and tended
to overestimate the parameter when the sample sizes were lower than 200. The
Bayesian estimators that assumed Beta(a, b) distributions had the highest bias
levels when the sample size was the lowest of those studied; while the estimators
of maximum likelihood and moments had the lowest bias. For moderate depen-
dency levels, the estimator obtained using the moments method overestimated the
value of the parameter with the greatest bias observed, regardless of sample size;
whereas the Bayesian estimator obtained assuming an a priori Beta(a, b) distri-
bution had the lowest bias observed for the smallest sample size. The estimates
obtained with the other methods were all very similar in their behavior, but the
Bayesian estimates assuming Beta(1, 1) and Beta(0.5, 0.5) distributions overlap.
In the case of strong dependencies, the tendency is opposite to that observed for
weak dependencies (all estimators underestimate the parameter); nevertheless, it
is important to take into account that the Moments estimator shows this behavior
until the sample size reaches 300, after which it begins to overestimate the value
real (Figures 1-3).
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Figure 1: Bias of the estimates when the dependence is weak.
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Figure 2: Bias of the estimates when the dependence is moderate.

●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Sample size

B
ia

s

●

●

●
● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
●

●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

Máx
Mom
Unif(a,b)
Beta(a,b)
Beta(0.5,0.5)

−
0

.5
−

0
.4

−
0

.3
−

0
.2

−
0

.1
0

.0
0

.1

50 150 250 350 450 550 650 750 850 950

Figure 3: Bias of the estimates when the dependence is strong.
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The performance of the MSE obtained for the estimates is showed in Figures
4-6. If the structure of a Gumbel Barnett dependency can be considered weak or
moderate y regardless of the sample size, the MSE behaved similarly to the estima-
tor for maximum likelihood and the Bayesian estimators assuming Beta(1, 1) and
Beta(0.5, 0.5) distributions. The estimator obtained with the moments method
had the highest MSE observed; while the Bayesian estimator obtained assuming
an a priori Beta(a, b) distribution had the lowest value. With strong dependency
structures, the non-informative ML and Bayesian estimators �assuming a pri-
ori Beta(1, 1) and Beta(0.5, 0.5) distributions� had a higher MSE for all sample
sizes. The estimator of Moments had higher MSE values when the sample sizes
were below 200; for larger sample sizes, the MSE was lower than that observed
for the three previous estimators. The Bayesian estimator with a priori Beta(a, b)
distribution had the lowest MSE for all the sample sizes evaluated when the sam-
ple sizes were under 400. The MSE tended towards zero; but for the larger sample
sizes, the tendency was to increase, but not signi�cantly.
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Figure 4: MSE of the estimates when the dependence is weak.
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Figure 5: MSE of the estimates when the dependence is moderate.
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Figure 6: MSE of the estimates when the dependence is strong.
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In accordance with our evaluation criteria, we expected that the real value
of the parameter would be at least 95% of the con�dence intervals or credibility
regions. The probabilities of coverage observed are shown in Figures 7-9. When the
dependency structure was weak, the estimators obtained using classical methods
(ML and Moments) had the lowest probabilities of coverage; but with the three
estimators obtained using the Bayesian methods, their behavior was more in line
with what was expected (Figure 7) If the dependency is moderate and the sample
size is more than 250, the probabilities of coverage of the Moments estimator tend
to be lower (Figure 8). In the case of strong dependencies, the probabilities of
coverage for the di�erent estimators have variable behaviors: when the sample size
is under 100, the probability of coverage tends to be near zero for all the estimators.
The Moments estimator performed best with respect to this quality indicator. The
probabilities of coverage of the maximum likelihood and non-informative Bayesian
estimators performed similarly, tending to decrease as sample size increases. The
Bayesian estimator assuming an a priori Beta(a, b) distribution had probabilities of
coverage within what was expected when the sample sizes ranged from 100− 400;
from 450 upwards, the probabilities dropped towards zero (Figure 9),

The other criterion used to evaluate the quality of the estimators was the av-
erage length of the con�dence interval or region of credibility. Given that the
shortest length possible is observed when the dependence is weak or moderate
(Figures 10-11), the Bayesian estimator with a priori Beta(a, b) performs best for
this indicator in all the sample sizes. The indicator for the Moments estimator has
the worst behavior for all sample sizes. If the level of dependence is strong, all es-
timators had average lengths greater than 0.2, the moments estimator has a highly
erratic behavior; while the Bayesian estimator with a priori Beta(a, b) distribution
has the stablest behavior (Figure 12). The dependence is weak or moderate (Fig-
ures 10-11). The Bayesian estimator with a priori Beta(a, b) distribution behaved
best for the indicator in all sample sizes. The indicator for the Moments estimator
behaved the worst for all sample sizes. If the level of dependence was strong, all
the estimators had average lengths greater than 0.2. The Moments estimator was
characterized by a very erratic behavior; whereas the Bayesian estimator with an
a priori Beta(a, b) distribution had the stablest behavior (Figure 12).
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Figure 7: Probability of coverage for the con�dence intervals and credibility regions
when dependence is weak.
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Figure 8: Probability of coverage for the con�dence intervals and credibility regions
when dependence is moderate.
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Figure 9: Probability of coverage for the con�dence intervals and credibility regions
when dependence is strong.
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Figure 10: Average length of the con�dence and credibility regions: weak dependence.

Sample size

A
ve

ra
g

e
 le

n
g

th

Máx
Mom
Unif(a,b)
Beta(a,b)
Beta(0.5,0.5)

0
.2

0
.4

0
.6

0
.8

1
.0

50 150 250 350 450 550 650 750 850 950

Figure 11: Average length of the con�dence and credibility regions: moderate depen-
dence.
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Figure 12: Average length of the con�dence and credibility regions: strong dependence.

5. Discussion and conclusions

Many authors, including Genest, Ghoudi & Rivest (1995), Ho� (2007), Men-
ger sen, Pudlo & Robert (2013), Min & Czado (2010) and Oh & Patton (2013),
have focused their studies on developing procedures to estimate the dependence
parameters of copula families; however, none of them has studied the empirical
performance of their proposed estimators. Some authors have studied the esti-
mation problem for the Gumbel Hougaard form (e.g., Weiÿ 2011), but none used
the non-parametric method of moments as an estimation procedure. Estimating
the dependence parameter of a Gumbel-Barnett copula is a complicated task that
involves the use of elaborate computational methods of approximation, given that
the analytical structure of the copula function, the likelihood and log likelihood
functions have complex and non-closed forms. In this paper, we developed an
empirical study of the performance of the estimates obtained from �ve di�erent
procedures to estimate the dependence parameter of the Gumbel-Barnett cop-
ula function, considering three dependence levels and 20 sample sizes. We used
the analytical copula form obtained from the Gumbel Type 1 distribution with
exponential marginals. In our review of the literature, we did not �nd classic
or Bayesian studies on the empirical performance of di�erent estimators for the
Gumbel-Barnett copula dependence parameter.

Based on our results, we can conclude that the performance of the di�erent es-
timators depends on the sample size and the dependence level. In situations where
the sample size is relatively small (approx. 50), conventional estimation methods,
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such as moments and maximum likelihood, does not perform well when estimating
weak or moderate GB dependencies. As the sample size increases, all the estima-
tors show good performance. When the dependence is strong and the sample size
is larger than 300 the moments estimator is the best option. In general, a esti-
mator obtained assuming a Beta(a, b) as prior informative distribution, presents
a nice performance to estimate the GB dependence parameter independent of the
sample size and the dependence level.

Given that the dependence parameter of the Gumbel Barnett copula function
ranges in the interval (0; 1), it would be natural to think that the distribution
Beta(a, b) is a good option for a prior distribution. Considering the analytical
form of the likelihood function, the posterior distribution has a structure of an ad-
ditive mixture, whose components are products of Beta distributions with an ex-
ponential function and an additional normalization constant to be computed. The
approximation of that posterior distribution is very complex given the di�culty
of establishing a candidate distribution to use the Metropolis-Hastings algorithm.
Wherever, our results allow us conclude that it is possible to obtain estimates
of very good performance for the dependence parameter of the Gumbel-Barnett
copula, using the Beta(a, b) as prior distribution.

In this paper, we used the classic con�dence intervals (CI) and Bayesian cred-
ibility regions (CR) in a similar way to evaluate the quality of our estimates, al-
though the CI and the CR are concepts with entirely di�erent interpretations. The
CI establishes two values for the estimator within which it is expected to �nd the
unknown quantity (i.e., the parameter): a speci�ed percentage of times; whereas
the CR should provide a proportion of values of the unknown quantity equal to
an established probability. Although conceptually the con�dence intervals and the
credibility regions are di�erent, for practical purposes, their average lengths and
percentages of coverage obtained after many repetitions of the estimation proce-
dure can be used as indicators of the performance of the estimates obtained. It
is important to consider that our proposed estimation procedures use normalized
uniform data. If unknown marginal distributions are assumed, the marginal distri-
bution parameters should be estimated in addition to the dependence parameter,
which involves a little more work.

It is important to consider that our proposed estimation procedures use normal-
ized uniform data. If unknown marginal distributions are assumed, the marginal
distribution parameters should be estimated in addition to the dependence param-
eter, which involves a little more work.
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Appendix

#GUMBEL MODEL ON OPENBUGS WITH A PRIORI Uniform(0,1)

sink("modelo1.txt")

cat(" model{

for(i in 1 : n) {

zeros[i] <- 0

phi[i] <- -log(L[i])

zeros[i] ~ dpois(phi[i])

L[i]<- exp(-t1[i]- t2[i]- rho*t1[i]*t2[i] +

log(1-rho+rho*t1[i] +rho*t2[i]+pow(rho,2)*t1[i]*t2[i]))}

rho ~ dunif(0, 1)}}",fill=TRUE)

sink()
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#GUMBEL MODEL ON OPENBUGS WITH A PRIORI Beta$(a,b)$

sink("modelo2.txt")

cat(" model{

for(i in 1 : n) {

zeros[i] <- 0

phi[i] <- -log(L[i])

zeros[i] ~ dpois(phi[i])

L[i]<- exp(-t1[i]- t2[i]- rho*t1[i]*t2[i] +

log(1-rho+rho*t1[i] +rho*t2[i]+pow(rho,2)*t1[i]*t2[i]))

}

rho ~ dBeta$(a,b)$} }",fill=TRUE)

sink()

#GUMBEL MODEL ON OPENBUGS WITH A PRIORI Beta(0.5,0.5)

sink("modelo3.txt")

cat(" model {

for(i in 1 : n) {

zeros[i] <- 0

phi[i] <- -log(L[i])

zeros[i] ~ dpois(phi[i])

L[i]<- exp(-t1[i]- t2[i]- rho*t1[i]*t2[i] +

log(1-rho+rho*t1[i] +rho*t2[i]+pow(rho,2)*t1[i]*t2[i]))

}

rho ~ dBeta(0.5,0.5)}}",fill=TRUE)

sink()

#ALGORITHM TO SIMULATE GB DATA

GB=function(theta,n)

{x=0; u=0

for(i in 1:n){

u1=runif(1)

w=runif(1)

fun=function(x,u1,w,theta){

y=-log(1-u1)

1-(1+theta*x)*exp(-(1+theta*y)*x)-w

}

x[i]=uniroot(fun,c(0, 20),u=u1,theta=theta,w=w)$root[1]

u[i]=u1 }

return(cbind(u,v=1-exp(-x)))}

fi=0.2; n=850; B=1000;N=1000

Estimador=matrix(0,N,5); Intervalos=matrix(0,N,12)

c1=c2=c3=c4=c5=c6=0

for(j in 1:N){

Muestra=GB(fi,n)

likeGumbel1<-function(theta){

LikeG<- log(prod(exp(-theta*log(1-Muestra[,1])*log(1-Muestra[,2]))*

((((theta*log(1-Muestra[,1]))-1)*

((theta*log(1-Muestra[,2]))-1 ))-theta)))}

Vero<-(optim(runif(1), likeGumbel1, method = "Brent",lower=0,upper=1,

hessian = TRUE, control = list(fnscale = -1)))

Est.M=Vero$par

Var.M=-solve(Vero$hessian)[1]
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Est.Mom=Sim(Muestra)

Boot=0; BootM=0

for(i in 1:B){

elegir=sample(1:length(Muestra[,1]),replace=TRUE,size=length(Muestra[,1]))

BMuestra=Muestra[elegir,]

likeGumbel2<-function(theta){

LikeG<- log(prod(exp(-theta*log(1-BMuestra[,1])*log(1-BMuestra[,2]))*

((((theta*log(1-BMuestra[,1]))-1)*((theta*log(1-BMuestra[,2]))-1 ))-theta)))}

Boot[i]<-(optim(runif(1), likeGumbel2, method = "Brent",lower=0,upper=1,

control = list(fnscale = -1)))$par

BootM[i]<-Sim(BMuestra)

}

t1=-log(1-Muestra[,1]);t2=-log(1-Muestra[,2])

Rho=c("rho")

Datos=list(t1=t1,t2=t2,n=n)

Mod1=bugs(data=Datos,inits=NULL,parameters.to.save=Rho, model.file ="modelo1.txt",

n.iter=10000,n.burnin=5000,n.chains=1)

Mod2=bugs(data=Datos,inits=NULL,parameters.to.save=Rho, model.file = "modelo2.txt",

n.iter=10000,n.burnin=5000,n.chains=1)

Mod3=bugs(data=Datos,inits=NULL,parameters.to.save=Rho, model.file = "modelo3.txt",

n.iter=10000,n.burnin=5000,n.chains=1)

Est.B1=Mod1$summary[1]

Est.B2=Mod2$summary[1]

Est.B3=Mod3$summary[1]

Estimador[j,1]=Est.M

Estimador[j,2]=Est.B1

Estimador[j,3]=Est.B2

Estimador[j,4]=Est.Mom

Estimador[j,5]=Est.B3

Intervalos[j,(1:2)]=c(Est.M-1.96*sqrt(Var.M),Est.M+1.96*sqrt(Var.M))

Intervalos[j,(3:4)]=c(quantile(Boot,0.025)[[1]],quantile(Boot,0.975)[[1]])

Intervalos[j,(5:6)]=c(Mod1$summary[5],Mod1$summary[13])

Intervalos[j,(7:8)]=c(Mod2$summary[5],Mod2$summary[13])

Intervalos[j,(9:10)]=c(quantile(BootM,0.025)[[1]],quantile(BootM,0.975)[[1]])

Intervalos[j,(11:12)]=c(Mod3$summary[5],Mod3$summary[13])

if(Intervalos[j,1]<fi && Intervalos[j,2]>fi){c1=1+c1}

if(Intervalos[j,3]<fi && Intervalos[j,4]>fi){c2=1+c2}

if(Intervalos[j,5]<fi && Intervalos[j,6]>fi){c3=1+c3}

if(Intervalos[j,7]<fi && Intervalos[j,8]>fi){c4=1+c4}

if(Intervalos[j,9]<fi && Intervalos[j,10]>fi){c5=1+c5}

if(Intervalos[j,11]<fi && Intervalos[j,12]>fi){c6=1+c6}

write(t(Estimador),ncolum=5,file=paste("Estimadores-",n,"-",fi,".txt"))

write(t(Intervalos),ncolum=12,file=paste("Intervalos-",n,"-",fi,".txt"))

}
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