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Abstract

In this paper, we develop some goodness of �t tests for Rayleigh distribution
based on Phi-divergence. Using Monte Carlo simulation, we compare the
power of the proposed tests with some traditional goodness of �t tests includ-
ing Kolmogorov-Smirnov, Anderson-Darling and Cramer von-Mises tests.
The results indicate that the proposed tests perform well as compared with
their competing tests in the literature. Finally, the new procedures are illus-
trated via two real data sets.
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Resumen

En este artículo desarrollamos pruebas de bondadn de ajuste para dis-
tribución Rayleigh basados en divergencia Phi. Usando simulaciones de
Monte Carlo, comparamos el poder de las pruebas propuestas con algunas
pruebas tradicionales incluyendo Kolmogorov-Smirnov, Anderson-Darling y
Cramer von-Mises. Los resultados indican que la prueba propuesta funciona
mejor que las otras pruebas reportadas en literatura. Finalmente, los pro-
cedimientos nuevos son ilustrados sobre dos conjuntos de datos reales.
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1. Introduction

A continuous random variable X is said to have Rayleigh distribution with
location parameter µ ∈ R, and scale parameter σ > 0, denoted by X ∼ Ra (µ, σ),
if its probability distribution function (pdf) is given by

f0(x, µ, σ) =
x− µ
σ2

e−
(x−µ)2

2σ2 , x ≥ µ, (1)

with the corresponding cumulative distribution function (cdf)

F0 (x, µ, σ) = 1− e−
(x−µ)2

2σ2 , (2)

for x ∈ [µ,∞).

Figure 1 presents the pdf and cdf of Rayleigh distribution for µ = 0 and
di�erent values of σ.
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Figure 1: Probability density function (left panel) and cumulative distribution function
(right panel) of Rayleigh distribution for µ = 0 and di�erent values of σ. This
�gure appears in color in the electronic version of this paper.

It is evident from this �gure that the Rayleigh distribution is right skewed, and
therefore it provides a useful tool for modelling right-skewed data. The Rayleigh
distribution was �rstly motivated with a problem in acoustics, and has been uti-
lized for modelling the distribution of the distance between two individuals in a
Poisson process. This distribution typically arises when overall size of a vector is
related to its directional components. In fact, it is well-known that if Z andW are
two independent and identical random variables from a standard normal distribu-
tion with mean zero and variance σ2, then X =

√
Z2 +W 2 follows a Rayleigh
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distribution with location parameter µ = 0 and scale parameter σ. For more in-
formation about the applications and properties of the Rayleigh distribution, we
refer the interested reader to Siddiqui (1962) and Johnson, Kotz & Balakrishnan
(1994).

This paper introduces some goodness of �t tests for Rayleigh distribution when
the location parameter µ is known and the scale parameter σ is unknown. Without
loss of generality, throughout this paper we assume that µ is known to be zero.
If µ 6= 0, then one can simply apply the proposed procedures in this paper after
subtracting the parameter µ from data. Dey, Dey & Kundu (2014) discussed the
problem of estimating the parameters of Rayleigh distribution, and they proposed a
numerical method for obtaining the maximum likelihood estimators of the Rayleigh
parameters.

In Section 2, we develop some goodness of �t tests for Rayleigh distribution
based on Phi-divergence. We compare the proposed tests with some well-known
goodness of �t tests for Rayleigh distribution via Monte Carlo simulation in Sec-
tion 3. We show that the proposed tests are generally more powerful than their
competitors in the literature. In Section 4, we illustrate the proposed procedures
by using two real data examples. Section 5 contains some concluding remarks.

2. Tests of Fit for Rayleigh Distribution Based on

Phi-Divergence

Let P1 and P2 be two probability measures over measurable space Ω. If P1

is absolutely continuous with respect to P2, then Phi-divergence of P1 from P2 is
denoted by Dφ (P1||P2) and is given by

Dφ (P1||P2) =

∫
Ω

φ

(
dP1

dP2

)
dP2, (3)

where φ (·) is a convex function such that φ (1) = 0 and φ′′ (1) > 0.

It is important to note that the Phi-divergence measure enjoys the non-negativity
and joint convexity properties. This means that Dφ (P1||P2) ≥ 0 and the equality
happens if and only if P1 = P2 almost surely, and also for a �xed γ ∈ [0, 1], we
have:

Dφ (γP1 + (1− γ)P1||γP2 + (1− γ)P2) ≤ γDφ (P1||P2) + (1− γ)Dφ (P1||P2) ,

We refer the interested reader to Csiszar (1967), and Liese & Vajda (2006) and
references therein for more details about the Phi-divergence.

Let f0 and f be the pdf under null and alternative hypotheses, respectively.
Some well-known divergence measures in statistics can be obtained by appropriate
choice of φ(·) function in (3) as follows:

• Kullback-Liebler (KL) distance is obtained by replacing φ(t) by − log(t) in
(3) as

KL =

∫
f(x) log

(
f(x)

f0(x)

)
dx = Ef

(
log

(
f(x)

f0(x)

))
.
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• Hellinger (H) distance is obtained by using 1
2

(
1−
√
t
)2

as the φ(t) in (3) as

H =
1

2

∫
f(x)

(
1−

√
f0(x)

f(x)

)2

dx =
1

2
Ef

(1−

√
f0(x)

f(x)

)2
 .

• Je�reys (J) distance is obtained by replacing φ(t) by (t− 1) log (t) in (3) as

J =

∫
f(x)

(
f0(x)

f(x)
− 1

)
log

(
f0(x)

f(x)

)
dx

= Ef

((
f0(x)

f(x)
− 1

)
log

(
f0(x)

f(x)

))
.

• Total variation (TV) distance is obtained by replacing φ(t) by |t− 1| in (3)
as

TV =

∫
f(x)

∣∣∣∣f0(x)

f(x)
− 1

∣∣∣∣ dx = Ef

(∣∣∣∣f0(x)

f(x)
− 1

∣∣∣∣) .
• Chi-square (χ2) distance is obtained by replacing φ(t) by 1

2 (1− t)2
in (3) as

χ2 =
1

2

∫
f(x)

(
1− f0(x)

f(x)

)2

dx =
1

2
Ef

((
1− f0(x)

f(x)

)2
)
.

Alizadeh Noughabi & Balakrishnan (2016) utilized above distances to introduce
goodness of �t tests for normal, exponential, uniform and Laplace distributions.

Let x1, . . . , xn be a simple random sample of size n from the population of in-
terest with pdf f (x). Suppose that we are interested in testing the null hypothesis
H0 : f (x) = f0(x, 0, σ) for some σ > 0, where f0(x, 0, σ) is de�ned in (1) against
the alternative hypothesis H1 : f (x) 6= f0(x, 0, σ) for all σ > 0. Let

Dn (f0(x, 0, σ)||f(x)) =
1

n

n∑
i=1

φ

(
f0(xi, 0, σ)

f(xi)

)
,

be the sample estimate of D (f0(x, 0, σ)||f(x)). Let f̂(x) be a nonparametric den-
sity estimator and σ̂ be an appropriate estimator of σ under H0. Then

Dn

(
f0(x, 0, σ̂)||f̂(x)

)
can be considered as a test statistic for testing H0 ver-

sus H1, and the null hypothesis H0 should be rejected for large enough values of

Dn

(
f0(x, 0, σ̂)||f̂(x)

)
.

We propose to estimate f(xi) by using kernel density estimator, i.e.

f̂(xi) =
1

nh

n∑
j=1

k

(
xi − xj
h

)
, (4)

where k (·) is pdf of a standard normal distribution, h =
(
4s2/(3n)

)1/5
is the

bandwidth suggested by Silverman (1986), and s2 =
∑n
i=1 (xi − x̄)

2
/(n − 1) is
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the sample variance. We also replace the parameter σ by its maximum likelihood
estimator, i.e.

σ̂ =

√√√√ 1

2n

n∑
i=1

x2
i . (5)

Therefore, the null hypothesis that the population distribution follows a Rayleigh
distribution is rejected if

D̂n

(
f̂0(x, 0, σ)||f̂(x)

)
=

1

n

n∑
i=1

φ

(
f̂0(xi, 0, σ)

f̂(xi)

)
≥ dφ(n, α), (6)

where dφ(n, α) is (1− α) quantile of D̂n under the null hypothesis.

In what follows, the test statistic obtained by using φ(·) function corresponding
to Kullback-Liebler, Hellinger, Je�reys, Total variation and Chi-square distances
are denoted by KLn, Hn, Jn, TVn and χ2

n, respectively.

We also report the critical values of the proposed test statistics based on Monte
Carlo simulation at signi�cance level α = 0.01, 0.05 and 0.1. For this purpose, we
have generated 50,000 random samples from Rayleigh distribution with location
parameter µ = 0 and scale parameter σ = 1 using VGAM package of R statistical
software. We then estimated the (1− α) quantiles of the proposed test statistics
by using their (1− α) sample quantiles. It is important to note that all proposed
test statistics are invariant under scale transformation, and therefore the critical
values of the tests do not depend on the unknown parameter σ. The critical values
are reported in Table 1.

Another way to estimate D (f0(x, 0, σ)||f(x)) is to use spacing technique for
estimation of f(x). Alizadeh Noughabi, Alizadeh Noughabi & Ebrahimi Moghad-
dam Behdadi (2014) and Jahanshahi, Habibi Rad & Fakoor (2016) used this tech-
nique to develop a goodness of �t test based for Rayleigh distribution based on
Kullback-Liebler and Hellinger distances, respectively. However, the drawback
of estimation of D (f0(x, 0, σ)||f(x)) based on spacing is that it is not applicable
whenever there are ties in data. We also refer the interested reader to Mahdizadeh
(2012) and Zamanzade & Mahdizadeh (2017) for more information on this topic.

3. Power Comparison

In this section, we compare the powers of the proposed tests with those of the
competitor tests in the literature. Let x(1), . . . , x(n) be an ordered random sample
corresponding to simple random sample of x1, . . . , xn. Let F0 (x, 0, σ) and σ̂ be as
de�ned in (2) and (5). The competing test statistics considered in this section are

• Kolmogorov-Smirnov (KS) test statistic which has the form

KS = max

{
max

i=1,...,n

{
i

n
− F0

(
x(i), 0, σ̂

)}
, max
i=1,...,n

{
F0

(
x(i), 0, σ̂

)
− i− 1

n

}}
.
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Table 1: Values of dφ(n, α) for di�erent tests when n = 10, 20, 50 and α = 0.01, 0.05, 0.1.

n α KLn Hn Jn TVn χ2
n

0.01 0.412 0.040 0.327 0.471 0.141

10 0.05 0.242 0.026 0.211 0.383 0.094

0.1 0.169 0.020 0.162 0.340 0.075

0.01 0.208 0.025 0.213 0.365 0.092

20 0.05 0.125 0.018 0.143 0.305 0.063

0.1 0.089 0.014 0.116 0.274 0.052

0.01 0.144 0.020 0.166 0.320 0.072

30 0.05 0.088 0.014 0.116 0.268 0.050

0.1 0.063 0.011 0.094 0.242 0.041

0.01 0.111 0.017 0.139 0.290 0.059

40 0.05 0.067 0.012 0.097 0.242 0.042

0.1 0.048 0.010 0.079 0.219 0.034

0.01 0.086 0.014 0.116 0.267 0.050

50 0.05 0.055 0.010 0.084 0.225 0.036

0.1 0.039 0.008 0.069 0.203 0.030

0.01 0.049 0.009 0.078 0.214 0.033

100 0.05 0.028 0.007 0.056 0.180 0.024

0.1 0.020 0.006 0.047 0.162 0.020

• Anderson-Darling (AD) test statistic which has the from

AD = −n− 1

n

n∑
i=1

(2i− 1)
{

log
(
F0

(
x(i), 0, σ̂

))
+ log

(
1− F0

(
x(i), 0, σ̂

))}
.

• Cramer-von Mises (CM) test statistic which has the form

1

12n
+

n∑
i=1

(
2i− 1

n
− F0

(
x(i), 0, σ̂

))2

.

All above tests reject the null hypothesis that the population distribution is Rayleigh
if their observed values are greater than the corresponding critical points at a given
signi�cance level.

In order to compare the power of di�erent goodness of �t tests, we generated
50,000 simple random samples of sizes n = 10, 20 and 50 under 14 alternative
distributions considered by Best et al. (2010). We then estimated the power of
the aforementioned tests by dividing the number of test statistics values are greater
than their critical points at signi�cance level α = 0.05 to number of the repetitions
in the simulation study, i.e. 50,000. The alternative distributions as follows:

• Weibull distribution with scale parameter 1 and shape parameter θ, denoted
by W (θ), for θ = 1, 2, 3.
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• Gamma distribution with scale parameter 1 and shape parameter θ, denoted
by G(θ), for θ = 1.5, 2.

• Lognormal distribution with pdf 1
θx
√

2π
exp{−(log x)2/(2θ2)}, denoted by

LN (θ), for θ = 0.8.

• Gompertz distribution with cdf 1− exp {(1− ex)/θ}, denoted by GO(θ), for
θ = 0.5, 1.5.

• Power distribution with pdf (x
1
θ−1)/θ for 0 ≤ x ≤ 1, denoted by PW (θ), for

θ = 1, 2.

• Exponential power distribution with cdf 1− exp
{

1− exp(xθ)
}
, denoted by

EP (θ), for θ = 1, 2.

• Poisson-exponential distribution de�ned as
∑N
i=1Xi, whereXi's are indepen-

dent random variables from standard exponential distribution and N follows
a poisson distribution with parameter θ, denoted by PE(θ), for θ = 3, 4.

The simulation results are presented in Tables 2-4. Table 2 presents the results
for sample size n = 10. It is clear from this table that none of the tests can
dominate the others in terms of power. However, the tests based on Je�reys and
Hellinger distances have generally higher powers, and the di�erence between their
performances is negligible in most considered cases. In fact, the Jn and Hn are
the most powerful tests for 8 out 14 alternative distributions considered in our
simulation study. The AD test also has good powers, and it is the best test when
the alternative distributions areW (3), G(1.5) and LN(0.8). It is worth noting that
all considered goodness of �t tests have the highest powers for W (1) distribution
and the lowest powers for W (2) distribution, which is a special case of Rayleigh
distribution.

Table 2: Estimated powers for di�erent tests of size 0.05 when n = 10.

Dist. KS AD CM KLn Hn Jn TVn χ2
n

W (1) 0.571 0.771 0.619 0.428 0.770 0.770 0.727 0.755

W (2) 0.050 0.051 0.051 0.051 0.051 0.051 0.050 0.050

W (3) 0.210 0.186 0.249 0.344 0.179 0.176 0.190 0.172

G(1.5) 0.322 0.474 0.361 0.128 0.454 0.455 0.403 0.435

G(2) 0.180 0.258 0.203 0.040 0.229 0.231 0.187 0.211

LN(0.8) 0.387 0.454 0.422 0.132 0.378 0.381 0.277 0.338

GO(0.5) 0.310 0.540 0.349 0.211 0.551 0.551 0.506 0.532

GO(1.5) 0.134 0.305 0.146 0.108 0.333 0.334 0.289 0.311

PW (1) 0.102 0.260 0.113 0.131 0.287 0.287 0.244 0.272

PW (2) 0.582 0.871 0.620 0.707 0.883 0.883 0.842 0.870

EP (1) 0.195 0.400 0.218 0.139 0.418 0.419 0.374 0.399

EP (2) 0.141 0.121 0.165 0.225 0.138 0.135 0.153 0.143

PE(3) 0.318 0.660 0.359 0.488 0.669 0.670 0.586 0.629

PE(4) 0.170 0.402 0.194 0.230 0.414 0.415 0.335 0.371
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Table 3: Estimated powers for di�erent tests of size 0.05 when n = 20.

Dist. KS AD CM KLn Hn Jn TVn χ2
n

W (1) 0.863 0.956 0.899 0.803 0.967 0.967 0.945 0.957

W (2) 0.051 0.051 0.049 0.050 0.052 0.052 0.052 0.053

W (3) 0.395 0.439 0.479 0.583 0.290 0.281 0.336 0.334

G(1.5) 0.576 0.733 0.638 0.358 0.760 0.760 0.677 0.714

G(2) 0.324 0.430 0.372 0.120 0.445 0.448 0.335 0.380

LN(0.8) 0.664 0.726 0.708 0.393 0.706 0.709 0.552 0.635

GO(0.5) 0.558 0.784 0.612 0.469 0.830 0.829 0.777 0.798

GO(1.5) 0.224 0.459 0.248 0.216 0.551 0.549 0.493 0.510

PW (1) 0.153 0.395 0.187 0.283 0.527 0.520 0.547 0.534

PW (2) 0.872 0.983 0.891 0.945 0.991 0.990 0.986 0.989

EP (1) 0.348 0.603 0.388 0.298 0.678 0.677 0.619 0.640

EP (2) 0.242 0.250 0.294 0.366 0.224 0.216 0.284 0.270

PE(3) 0.567 0.879 0.626 0.764 0.900 0.900 0.818 0.853

PE(4) 0.298 0.609 0.344 0.431 0.656 0.657 0.512 0.563

Table 4: Estimated powers for di�erent tests of size 0.05 when n = 50.

Dist. KS AD CM KLn Hn Jn TVn χ2
n

W (1) 0.998 1.000 0.999 0.997 1.000 1.000 1.000 1.000

W (2) 0.054 0.052 0.051 0.052 0.053 0.053 0.053 0.051

W (3) 0.818 0.901 0.898 0.926 0.652 0.637 0.721 0.743

G(1.5) 0.931 0.977 0.954 0.813 0.981 0.981 0.956 0.970

G(2) 0.663 0.771 0.732 0.382 0.794 0.796 0.651 0.717

LN(0.8) 0.958 0.973 0.972 0.843 0.972 0.973 0.925 0.952

GO(0.5) 0.925 0.985 0.950 0.885 0.991 0.991 0.981 0.986

GO(1.5) 0.508 0.775 0.543 0.511 0.862 0.859 0.807 0.829

PW (1) 0.358 0.748 0.471 0.743 0.908 0.902 0.924 0.910

PW (2) 0.998 1.000 0.999 1.000 1.000 1.000 1.000 1.000

EP (1) 0.721 0.907 0.762 0.677 0.946 0.945 0.908 0.927

EP (2) 0.557 0.632 0.663 0.729 0.513 0.496 0.629 0.598

PE(3) 0.927 0.996 0.949 0.982 0.997 0.997 0.986 0.994

PE(4) 0.631 0.899 0.696 0.783 0.929 0.929 0.806 0.870

Simulation results for sample size n = 20 are given in Table 3. The pattern of
the performance of goodness of �t tests is somewhat similar to that of Table 2. The
highest possible power occurs when W (1) is the alternative distribution and the
lowest powers occur when W (2) is the alternative distribution. However, as one
expects, the powers for sample size n = 20 are higher than those for sample size
n = 10. We also observe that the tests based on Je�reys and Hellinger distances
have the best performance, and they are the most powerful tests for 8 out of
12 considered alternative distributions. However, the tests based on KL and TV
distances and AD are the best tests in certain cases.

Table 4 gives the simulation results for sample size n = 50. It is clear that the
powers in this table are higher than those in Tables 2-3.

Finally, we would like to mention that W (2) distribution is a special case of
Rayleigh distribution. Therefore, it is clear from Tables 2-4 that all considered
tests control type I error well.
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4. Real Data Examples

In this section, we applied our proposed procedures to two real data sets for
illustration purpose.

Example 1. The data set used for this example is known as average wind speed
data (AWSD) and can be found in Best, Rayner & Thas (2010). The AWSD
includes 30 average daily wind speeds (in km/h) for the month of November 2007
recorded at Elanora Heights, a northeastern suburb of Sydney, Australia. The
data are as follows:

2.7, 3.2, 2.1, 4.8, 7.6, 4.7, 4.2, 4.0, 2.9, 2.9,

4.6, 4.8, 4.3, 4.6, 3.7, 2.4, 4.9, 4.0, 7.7, 10.0,

5.2, 2.6, 4.2, 3.6, 2.5, 3.3, 3.1, 3.7, 2.8, 4.0.

Suppose that we are interested in testing the null hypothesis that the average
wind speed follows a Rayleigh distribution and we also assume that the location
parameter is known and µ = 1.5. Then, the estimated value of σ based on the
transformed data (after subtracting the location parameter) is given by σ̂ = 2.231.
The Q-Q plot and the corresponding histogram along with �tted Rayleigh density
function is presented in Figure 2.
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Figure 2: The Rayleigh Q-Q plot of the transformed AWSD (left panel) and the cor-
responding histogram along with �tted Rayleigh density (right panel). This
�gure appears in color in the electronic version of this paper.

The values of the proposed test statistics for Rayleigh distribution are KLn =
0.068, Hn = 0.009, Jn = 0.083, TVn = 0.078, χ2

n = 0.016. Comparing above
test statistics values with their corresponding critical values at signi�cance level
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α = 0.05 for sample size n = 30, we observe that the null hypothesis is not rejected.
This is consistent with what is reported by Best et al. (2010).

Example 2. The second data set we use for illustrative purpose is survival times
for lung cancer patients (in days) which is collected by Lawless (1982). This data
set was also analyzed by Soliman & Al-Aboud (2008). The data are as follows:

6.96, 9.30, 6.96, 7.24, 9.30, 4.90, 8.42, 6.05,

10.18, 6.82, 8.58, 7.77, 11.94, 11.25, 12.94, 12.94.

Here, we assume that the location parameter is known and equals to µ = 3.5
and we apply our procedures on after subtracting location parameter from them.
The estimated value of the parameter of σ is given by σ̂ = 3.499. Figure 3 shows
Q-Q plot and the corresponding histogram along with �tted Rayleigh density for
this data set.
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Figure 3: The Rayleigh Q-Q plot of the transformed survival times for lung cancer pa-
tients (left panel) and the corresponding histogram along with �tted Rayleigh
density (right panel). This �gure appears in color in the electronic version of
this paper.

The values of the proposed test statistics for Rayleigh distribution are KLn =
0.009, Hn = 0.003, Jn = 0.028, TVn = 0.122, χ2

n = 0.013. On the other hand, the
simulated critical values for KLn, Hn, Jn, TVn and χ2

n for n = 16 and α = 0.05
are 0.152, 0.020, 0.164, 0.329 and 0.072, respectively. Thus, the null hypothesis is
not rejected.
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5. Conclusion

This paper deals with constructing goodness of �t tests for Rayleigh distri-
bution based on Phi-divergence. Several goodness of �t tests are proposed, and
their powers are compared with some well-known goodness of �t tests based on
empirical distribution function. It is found that the introduced tests have good
performance as compared with their competitors.
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