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Abstract

This paper develops simultaneous con�dence bands using computer in-
tensive methods based on resampling, for the expected discounted warranty
costs in coherent systems under physical minimal repair, that is, when the
system is observed at its components level and only the component that
causes the fault is minimally repaired. For this purpose, it is shown that,
under the framework of the Martingale processes and the central limit re-
sampling theorem (CLRT) over stochastic processes, the discounted war-
ranty cost processes satisfy the conditions set by the central limit resam-
pling theorem (CLRT). Additionally, a simulation study is performed on the
most relevant variables, such that the �nite sample features of the proposed
bands may be assessed, based on their actual coverage probabilities. The
results in the considered scenarios show that resampling-based simultaneous
con�dence bands have coverage probabilities that are close to the nominal
coverage. In particular, the agreement is good when there are 100 systems
or more where a large number of resamples are used for the approximation.

Key words: Central Limit Theorem; Coverage Probability; Point Process;
Resampling; Semimartingales; Weak Convergence.

Resumen

Este trabajo desarrolla bandas de con�anza simultáneas usando métodos
computacionales intensivos basados en remuestreo, para el costo medio de
garantía descontado en sistemas coherentes bajo reparo mínimo físico, esto
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es, cuando el sistema es observado al nivel de sus componentes y sólo la com-
ponente que causa la falla es reparada mínimamente. Para ello se prueba
que, bajo el marco teórico de los procesos martingala, los procesos de cos-
tos de garantía descontados cumplen las condiciones del teorema de límite
central de remuestreo (CLRT). Un estudio de simulación Monte Carlo se re-
aliza para evaluar, a través de las probabilidades de cobertura alcanzadas, el
desempeño de las bandas propuestas en muestras �nitas. Los resultados en
los escenarios considerados muestran que las bandas de con�anza basadas
en remuestreo tienen probabilidades de cobertura con valores cercanos a
los esperados, en particular para aquellas basadas en muestras con más de
100 sistemas donde el número de remuestras usado para la aproximación es
grande.

Palabras clave: convergencia débil; probabilidad de cobertura; proceso
puntual; remuestreo; semimartingalas; teorema de límite central.

1. Introduction

When a manufacturer puts a new product on the market, it is expected that
a warranty program will come along with the product, which could become a
great cost if it is a low-quality product (Thomas 2005). Bai & Pham (2006)
highlight that warranty analysis is very important for cost modeling, especially
for discounted costs (Blischke & Murthy 1994, Chien 2005, Ja, Kulkarni, Mitra &
Patankar 2002, Murthy & Djamaludina 2002, Nguyen &Murthy 1984). Discounted
warranty cost models consider the product age and provide a proper measurement
of the costs involved in the warranty program, given that they can be treated as
random cash �ows. Therefore, it is possible to model their evolution throughout
the lifetime of the product under warranty, as well as to estimate the necessary
fund reserve levels to meet future warranty claims. Several aspects regarding
discounted warranty costs and their corresponding reserves have been studied by
Bai & Pham (2004), Duchesne & Marri (2009), Ja et al. (2002), Jain & Maheshwari
(2006), Patankar & Mitra (1995), and Thomas (1989).

In practice, many products consist of several components, that is, the product
can be seen as a system. If every component has its own warranty, they can be
combined to produce one warranty for the system, in which it is necessary to keep
in mind both the system structure and warranty service costs at its component level
(Thomas 1989). Several previous papers have considered warranty cost analysis
for component systems (Ritchken & Fuh 1986, Chukova & Dimitrov 1996, Hussain
& Murthy 1998, Bai & Pham 2006, Balachandran, Maschmeyer & Livingstone
1981, Jung, Park & Park 2010). There are many ways to model the impact of
repair actions over system failure times. In literature, it is frequently assumed
that repairing a system leaves it as good as new (Block, Borges & Savits 1985).
Nevertheless, this hypothesis and its implications have been criticized by many
authors on the argument that repairing can only, in many practical cases, restoring
the system back to the performance conditions right before the failure (Block et al.
1985, Ascher 1968, Ouali, Tadj, Yacout & Ait-Kadi 2011), which is called minimal
repair. In complex systems, repairing is frequently assumed as minimal (Blischke &
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Murthy 1994). The de�nition of the state of the system immediately before failure
depends on the information level one has about the system (Aven & Jensen 1999),
so that minimal repairs are classi�ed into two types: statistical minimal repair,
which implies replacing the full system for another one just as old as the other one
would be if it had not failed (Nguyen & Murthy 1984, Aven 1983, Sheu, Gri�th
& Nakagawa 1995, Ja, Kulkarni, Mitra & Patankar 2001), and physical minimal
repair, in which the system is supposed to be observed at its component level and,
therefore, only the critical component that caused the system to fail, gets minimal
repair (Aven & Castro 2008, González & Bueno 2011).

González & Bueno (2011) propose a Martingale estimator for the expected
discounted warranty costs for a coherent system under physical minimal repair
and include the calculation of speci�c con�dence limits which do not make up a
simultaneous con�dence band, given that the aforementioned set of limits gener-
ally has no correct coverage probability (Fleming & Harrington 1991). The main
purpose of constructing simultaneous con�dence bands is to assess an estimator's
precision, which can be described by the distribution (or a function of it) of that
estimator's deviations from its real value (Belyaev 2007). The problem is that the
aforementioned distribution is unknown, even if asymptotic convergence results of
distribution can be obtained (González & Bueno 2011). In the practice, sample
sizes are not always large enough for those approximations to work properly. In
general, computer intensive (CI) methods provide a way to �nd asymptotically
precise approximations of the estimator deviation distributions from the real un-
known parameters (Belyaev 2000). The bootstrap, introduced by Efron (1979) is
a rather universal method, nevertheless, the need to �nd a proper estimator of the
real parameter which can describe data distribution, may be a di�cult problem,
which is why resampling can be used alternatively (Belyaev 2000).

Resampling is used in this paper to develop simultaneous con�dence bands
for the mean function of the discounted warranty costs of a system under physical
minimal repair. For this, based on the theoretical framework of Martingale process
and the Central Limit of Resampling Theorem (CLRT) over stochastic processes
proposed by Belyaev (2000) and Belyaev & Seleznjev (2000), proof is presented
that the discounted warranty costs processes under the general lifetime model
comply with CLRT conditions. In addition, a simulation study was conducted
on the most relevant variables to test the �nite sample features of the proposed
simultaneous con�dence bands by means of the actual coverage probability.

Section 2 presents the theoretical framework that is necessary in the develop-
ment of this paper. The proposal of constructing simultaneous con�dence bands
is developed in Section 3. In Section 4, the performance of the proposed simul-
taneous con�dence bands is assessed by means of a simulation study. Section 5
presents the paper's most important conclusions and recommendations.

2. Theoretical Framework

In this paper it is assumed that there is a coherent system under physical
minimal repair, that is, under the physical approach of the general failure model

Revista Colombiana de Estadística 41 (2018) 1�30



4 Carlos M. Lopera-Gómez & Nel� G. González-Álvarez

(Aven & Jensen 1999). Next section summarizes some theoretical results which
are necessary for the development of the remaining sections in the paper.

2.1. Physical Minimal Repair Model for a Coherent System

and Discounted Warranty Costs

Let us suppose a system with m components, where T is the system lifetime,
Si is the lifetime of component i, i = 1, . . . ,m and Ñt is the number of minimal
repairs of the system in the interval [0, t], de�ned on a complete probability space
(Ω,F , P ) with the �ltration F = (Ft)t≥0,

Ft = σ
(
Ñs, I (Si > s) , 0 ≤ s ≤ t, i = 1, . . . ,m

)
, (1)

where I(A) is the indicator of the event A. Therefore, the system repair/failure
process is observed at the level of its m components. Suppose the following con-
ditions are hold:

a) 0 < Si < ∞ P -a.s., i = 1, . . . ,m, where P -a.s. denotes that an event E
happens almost surely with respect to the probability P .

b) For every i 6= j, P (Si = Sj) = 0, that is, there are not two components failing
simultaneously.

c) All lifetimes Si are totally inaccessible Ft-stopping times, and consequently
all the compensators Ai of the respective simple counting processes N i

t =
I (Si ≤ t), are continuous P -a.s., with the Doob-Meyer decomposition N i

t =
Ait +M i

t , M i
t ∈M2

0, i = 1, . . . ,m.

Under these assumptions and according to Aven & Jensen (1999) can be shown
that

T = min
i:Yi<∞

Si, (2)

where Yi is the critical level of component i, that is, the �rst instant after which
failure of component i causes the system failure. González & Bueno (2011) show
that the system failure indicator process Nt = I (T ≤ t), given by

Nt = At +Mt, Mt ∈M2
0, (3)

has the compensator At as follows

At =

∫ t

0

I (T > s)

m∑
i=1

I (Yi < s)λi (s) ds, (4)

where λi(t) is the failure rate function for component i.

From (4), it is clear that the Ft-intensity of the system on {T > t} is given by

λt =

m∑
i=1

I (Yi < t)λi (t) . (5)
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Let Ñ i
t be the number of minimal repairs on the component i in the interval

[0, t] and let Hi (t) be the minimal repair discounted cost of component i at time
t, a deterministic, continuous, decreasing, bounded, and integrable function on
the interval [0, t], such that

∫ t
0
Hi (s)λi (s) ds < ∞,∀ 0 ≤ t < ∞, and let B̂it =∫ t

0
Hi (s) dÑ i

s =
∑Ñi

t
j=1Hi (Sij) be the accumulated cost process by minimal repairs

on component i on the interval [0, t], where Sij is the time of the j-th minimal

repair of component i and Si1 = Si. González & Bueno (2011) show that B̂it has
Ft-compensator Bit given by

Bit =

∫ t

0

Hi (s)λi (s) ds <∞,∀ 0 ≤ t <∞, (6)

and that when only the critical component causing the system failure is min-
imally repaired, that is, considering the set Ci = {ω ∈ Ω : Si (ω) > Yi (ω)} the

Ft-compensator of B̂it is the process

B i∗
t =

∫ t

0

I (Yi < s)Hi (s)λi (s) ds

=

∫ t

Yi

Hi (s)λi (s) ds <∞, ∀ 0 ≤ t <∞, P -a.s. (7)

De�nition 1. (González & Bueno 2011) For each ω ∈ Ω, the set of components
which survive its critical level is de�ned as

CΦ (ω) = {i ∈ {1, . . . ,m} : Si (ω) > Yi (ω)} . (8)

For each i = 1, . . . ,m de�ne Ci (ω) =

{
1 if i ∈ CΦ (ω)

0 otherwise.

Then, the minimal repair counting process of the coherent system in [0, t] is

Ñt (ω) =
m∑
i=1

Ci (ω) Ñ i
t (ω) and the warranty cost process is given by B̂t (ω) =

m∑
i=1

Ci (ω) B̂it (ω), whose compensator process is Bt (ω) =
m∑
i=1

Ci (ω)Bit (ω).

Then, from De�nition 1 the expected cost of minimal repairs carried out over
the system in interval [0, t] is

B∗ (t) = E
[
B̂t

]
=

m∑
i=1

Bi∗ (t) , (9)

with

Bi∗ (t) = P (Si > Yi)E

[∫ t

Yi

Hi (s)λi (s) ds

∣∣∣∣Si > Yi

]
. (10)

Based on the results above, next section gives an estimation method for B∗ (t)
based on a random sample of n identical systems (or n independent copies of the
process).
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2.2. Estimation Based on a Sample of n Identical Systems

Consider n independent copies of the process
(
B̂it, C

i, i = 1, . . . ,m
)
t≥0

which

are denoted by
(
B̂
i(j)
t , C i(j), i = 1, . . . ,m, j = 1, . . . , n

)
. For each j, let CΦ(j) be

the set of critical components for the j-th system, which is de�ned as in (8), then
the minimal repair costs for the j-th system is

B̂
(j)
t =

m∑
i=1

C i(j)

∫ t

0

Hi (s) dÑ i(j)
s , (11)

whose compensator process is

B
(j)
t =

m∑
i=1

C i(j)

∫ t

Y
(j)

i

Hi (s)λi (s) ds. (12)

From the n independent copies, the following mean processes are obtained,

B̂
(n)
t =

1

n

n∑
j=1

B̂
(j)
t y B

(n)
t =

1

n

n∑
j=1

B
(j)
t .

The following are results for the mean processes de�ned above.

Theorem 1. (González & Bueno 2011)

i. B̂
(n)
t is a consistent and unbiased estimator for B∗ (t).

ii. A consistent and unbiased estimator for Var
[
B̂

(n)
t

]
is

V̂ar
[
B̂

(n)
t

]
=

m∑
i=1

%
2i(n)
t /n.

iii. An approximate 100 (1− γ) % con�dence interval for B∗ (t), is

B̂
(n)
t ± Zγ/2

√√√√ m∑
i=1

%
2i(n)
t

n
, (13)

where Zγ/2 is the (1− γ/2) quantile of the standard normal distribution and

%
2 i(n)
t =

(
n

n− 1

)
1

n

n∑
j=1

Ci(j)
[(
B̂
i(j)
t −Bi∗ (t)

)2

−
(
B̂
i(n)
t −Bi∗ (t)

)2
]
,

with B̂
i(j)
t =

∫ t
0
Hi (s) dÑ

i(j)
s .

Despite having a set of approximately 100 (1− γ) % level pointwise con�dence
limits in [0, t], given by (13), they do not form 100 (1− γ) % level simultaneous
con�dence bands. The following section introduces a general de�nition of simul-
taneous con�dence bands for random functions.
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2.3. Simultaneous Con�dence Bands for Random Functions

Suppose the goal is to estimate and bound a function f (s) in the interval
[0, t]. That is, given a coverage probability of (1− γ), we want to �nd two random
functions b1 (s) and b2 (s) with the property

P
[
b1 (s) ≤ f (s) ≤ b2 (s) , ∀ s ∈ [0, t]A

B
]
≈ 1− γ, (14)

Except for functions having a very simple structure, there are no simultaneous
con�dence bands with an exact (1− γ) coverage probability (Knowles 1988).

Let
(
f̂

(n)
t

)
t≥0

be an estimator of the function f (t), based on a random sample

of size n, then the weak convergence of processes with the form
√
n
(
f̂

(n)
t − f (t)

)
provides a general method for calculating simultaneous con�dence bands for the

function f (t) (Fleming & Harrington 1991). When
√
n
(
f̂

(n)
t − f (t)

)
converges in

distribution (
w−→) on interval [0, t] to a limit process Q, the Continuous Mapping

Theorem implies that

sup
0≤s≤t

√
n
∣∣∣f̂ (n)
s − f (s)

∣∣∣ w−→ sup
0≤s≤t

|Q (s)| . (15)

If qγ (t) satis�es

P

(
sup

0≤s≤t
|Q (s)| ≤ qγ (t)

)
≈ 1− γ, (16)

where qγ (t) is the (1− γ) quantile in the distribution of sup
0≤s≤t

|Q (s)|, then, asymp-

totically,

P

(
sup

0≤s≤t

√
n
∣∣∣f̂ (n)
s − f (s)

∣∣∣ ≤ qγ (t)

)
≈ 1− γ. (17)

Then, the construction of simultaneous con�dence bands is based on �nding qγ (t)
which satis�es the desirable coverage probability on the interval [0, t].

Simultaneous con�dence bands based on sup0≤s≤t
√
n
∣∣∣f̂ (n)
s − f (s)

∣∣∣, will be
useful only when su�cient conditions for the convergence of

√
n
(
f̂

(n)
t − f (t)

)
on

reasonable intervals [0, t] are not too restrictive, when qγ (t) is easy to calculate,
and when the resulting bands have appealing properties (Fleming & Harrington
1991). Even when the general conditions for weak convergence could be ful�lled,
calculating qγ (t) requires determining the limit process sup0≤s≤t |Q (s)| to which

the process sup0≤s≤t
√
n
∣∣∣f̂s − f (s)

∣∣∣ converges, and this is not easy when only a

sample of n systems is available.

The following section presents the weak approach of processes introduced by
Belyaev (2000) and Belyaev & Seleznjev (2000) as an extension of weak conver-
gence of processes, which justi�es the use of resampling in the approximation of
asymptotic distributions.
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2.4. Weakly Approaching Distributions

Let {L (Un)}n≥1 and {L (Vn)}n≥1 be two sequences of distributions of random
variables Un and Vn which have values on Hn, a metric space with metric dn, and
let Cb (Hn, dn) be the set of all bounded real-valued continuous functions on Hn.

De�nition 2. (Belyaev 2000) The distributions {L (Un)}n≥1 weakly approach

{L (Vn)}n≥1, denoted by L (Un)
wa←→ L (Vn), n → ∞, if for all h = h (·) ∈

Cb (Hn, dn) it holds that

E [h (Un)]− E [h (Vn)]→ 0, n→∞. (18)

Let Wn be a random variable (in a metric space Wn) de�ned on the same
probability space of Un previously de�ned. Suppose that the regular conditional
distribution L (Un|Wn) exists.

De�nition 3. (Belyaev 2000) The Random distributions {L (Un|Wn)}n≥1 weakly

approach {L (Vn)}n≥1 in probability, denoted by L (Un|Wn)
wa(P )←→ L (Vn), n→∞,

if for all h ∈ Cb (Hn, dn) the condition E [h (Un)|Wn] − E [h (Vn)]
P−→ 0, n → ∞

is satis�ed. Here
P−→ denotes convergence in probability.

Lemma 1. (Belyaev 2000) Let Un,Wn and Vn be as de�ned before. Suppose that

L (Un|Wn)
wa(P )←→ L (Vn) and let Zn be an Hn-valued random variable de�ned on

the same probability space of Un, such that Zn
P−→
w

0, n→∞. Then,

L (Un + Zn|Wn)
wa(P )←→ L (Vn) , n→∞. (19)

The notion of weakly approaching establishes a variant of Lyapunov's Central
Limit Theorem (CLT) for Rk, as follows. Let Un = {U1n, . . . ,Unn}, n = 1, 2, . . .,
be a triangular scheme of independent vector-valued random variables, where for
each n, Uin = (U1in, . . . , Ukin)

T
. Let C in, i = 1, . . . , n be the covariance matrix

between the k variables of Uin and de�ne U·n =
∑n
i=1 Uin, µ·n =

∑n
i=1E (Uin)

and C·n = (1/n)
∑n
i=1 C in.

Theorem 2. (Belyaev 2000, CLT in Rk) Suppose that for some constants δ > 0

and c = c (2 + δ) <∞, E |
√
nUhin|

2+δ ≤ c for all (i, n) ∈ T . Then it holds that

L
(√
n (U·n − µ·n)

) wa↔ Nk
(
0k,C·n

)
, n→∞, (20)

where Nk
(
0k,C·n

)
is the k-dimensional normal distribution with mean 0k and the

covariance matrix C·n.

Now consider a triangular scheme Un = {U1n, . . . ,Unn} of independent vector-
valued random variables withUin ∈ Rk, (i, n) ∈ T , where T = {(i′, n′) i′ = 1, . . . , n,
n′ = 1, 2, . . .}. Let J?1n, . . . , J?nn be the indexes of a resample from Un, indicating
which of the observations Uin is chosen as the i-th element in the resample. Let
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N?
hn =

∑n
i=1 I (J?in = h) be the number of times that the observation h is drawn

in the resample and de�ne the vector-valued random variable

U?0
·n :=

n∑
i=1

(N?
in − 1)Uin,

which can be interpreted as a centered sum of values, n times randomly sampled
with replacement from the components in the statistical data Un.

Theorem 3. (Belyaev 2000, CLRT in Rk) Suppose the assumptions of Theorem
2 are ful�lled and that E [Uhin] = µhn, that is, the expectation does not dependent
of i. Then, it holds that

L
(
U?0
·n
∣∣Un) wa(P )←→ L (U·n − µ·n) , n→∞. (21)

In general, the resampling process consists of simulatingG copies {J?r1n, . . . , J
?r
nn},

r = 1, . . . , G, (which are used to approximate L
(
U?0
·n
∣∣Un)). Then, U?0r

·n =∑n
i=1 (N?r

in − 1)uin is obtained for r = 1, . . . , G, where uin is the observed value
of Uin. So, for any Borel set A ⊂ Rk it has that

1

G

G∑
r=1

I
(
U?0r
·n ∈ A

) P−→ P
(
U?0
·n ∈ A

∣∣Un) , G→∞. (22)

Belyaev (2000) shows that to assess the accuracy of some nonparametric estima-
tors, it is necessary to consider more general spaces than Rk. For instance, for
many non-parametric statistical models it is necessary to consider the Skorokhod
space D [0, t] , t > 0, of the so-called cadlag functions. That is, the set of all real
functions v (·) de�ned in [0, t] such that for all s ∈ (0, t) there are limit values
v (s± 0) = limh↓0 v (s± h) and v (s) = v (s+ 0).

Theorem 4. (Belyaev 2000, CLRT in Skorokhod space). For the Un = {U1n (t) , . . . ,
Unn (t)} triangular scheme of D[0, t]-valued random variables which are indepen-
dent for each n = 1, 2, . . .. Let U·n (t) =

∑n
i=1 Uin (t). Suppose that E [Uin (s)] =

µn (s) , i = 1, . . . , n, s ∈ [0, t] and that there are positive constants c1, c2, c3 and
δ > 0 such that for every 0 ≤ t1 ≤ s ≤ t2 ≤ t.

C-1. nE[(Ujn (t2)− Ujn (t1))
2
] ≤ c1 |t2 − t1|(1+δ)/2

,

C-2. n2E[(Ujn (s)− Ujn (t1))
2

(Ujn (t2)− Ujn (s))
2
] ≤ c2 |t2 − t1|1+δ

, and

C-3. E
[
|
√
nUjn (s)|2+δ

]
≤ c3.

Then, it holds that

L

 n∑
j=1

(
N?
jn − 1

)
Ujn (·)

∣∣∣∣∣∣Un
 wa(P )←→ L (U·n (·)− µn (·)) , n→∞. (23)
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3. Simultaneous Con�dence Bands for the Expected

Discounted Warranty Cost

In constructing simultaneous con�dence bands for B∗ (t) it is important to as-

sess the distribution of the unobservable processes
√
n
(
B̂

(n)
t −B∗ (t)

)
. Theorem

4 and the use of resampling allow approximating relevant distribution when in-
formation about an initial sample of n systems is available. For this purpose, de�ne

U·n (t) =
√
n
(
B̂

(n)
t −B∗ (t)

)
=

n∑
j=1

1√
n

(
B̂

(j)
t −B∗ (t)

)
=

n∑
j=1

Ujn (t) (24)

where,

Ujn (t) =
1√
n

(
B̂

(j)
t −B∗ (t)

)
, (25)

are stochastic processes in D[0, t], which can be arranged in a triangular scheme
Un.

To use the CLRT in D[0, t], it must be veri�ed that the processes Ujn (t) satisfy
the conditions C-1, C-2 and C-3 established in Theorem 4, which is summarized
in the following theorem (see proof in the Appendix B)

Theorem 5. Let Ujn (t) be as de�ned in (25). Then for every 0 ≤ t1 ≤ s ≤ t2 ≤
t <∞, there exist positive constants c1, c2, c3 and δ > 0, such that

C-1. nE[(Ujn (t2)− Ujn (t1))
2
] ≤ c1 |t2 − t1|(1+δ)/2

,

C-2. n2E[(Ujn (s)− Ujn (t1))
2

(Ujn (t2)− Ujn (s))
2
] ≤ c2 |t2 − t1|1+δ

, and

C-3. E
[
|
√
nUjn (s)|2+δ

]
≤ c3.

The following corollary formalizes the application of the CLRT to warranty
cost processes.

Corollary 1. Consider a sample of n independent copies of(
B̂it, C

i, i = 1, . . . ,m
)
t≥0

,

which are denoted by
(
B̂
i(j)
t , C i(j), i = 1, . . . ,m, j = 1, . . . , n

)
t≥0

and the triangu-

lar scheme Un (t) = {Un1 (t) , . . . , Unn (t)} with Ujn (t) given in (25). Then, for
the process

U?0·n (t) =

n∑
j=1

(
N?
jn − 1

)
Ujn (t) , (26)

one can show that

L
(
U?0·n (t)

∣∣Un) wa(P )←→ L (U·n (t)) , n→∞. (27)
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Proof . By applying Theorem 5 over the process Ujn (t), the necessary conditions
for Theorem 4 are obtained, from whose application the result is obtained.

In practice the processes Ujn (t) are unknown and they need to be estimated.
The following section uses estimations of the processes Ujn (t) to construct simul-
taneous con�dence bands based on resampling.

3.1. A Proposal for Simultaneous Con�dence Bands for the

Expected Warranty Cost

The unobservable process Ujn (t) can be rewritten as follows:

Ujn (t) = Ûjn (t) + Ũjn (t) , (28)

where

Ûjn (t) =
1√
n

(
B̂

(j)
t − B̂(n)

t

)
y Ũjn (t) =

1√
n

(
B̂

(n)
t −B∗ (t)

)
.

The following result establishes that the weakly approaching of the process U?0·n (t),
given in (26), is kept in an estimated version of itself.

Corollary 2. The process Û?0·n (t) =
∑n
j=1

(
N?
jn − 1

)
Ûjn (t) has the property that

L
(
Û?0·n (t)

∣∣∣Un) wa(P )←→ L (U·n (t)) , n→∞. (29)

Proof . By using (28) in (26), the identity

U?0·n (t) = Û?0·n (t) + Ũ?0·n (t) , (30)

is obtained, where Û?0·n (t) =
∑n
j=1

(
N?
jn − 1

)
Ûjn (t) and Ũ?0·n (t) =

∑n
j=1

(
N?
jn − 1

)
Ũjn (t).

Notice that Ũ?0·n (t) ≡ 0 (since Ũ?0·n (t) does not dependent of j by de�nition

and
∑n
j=1N

?
jn = n). Then, Ũ?0·n (t)

P−→ 0, therefore by using Lemma 1 the result
is obtained.

The latter allows proposing simultaneous con�dence bands for the expected
discounted warranty cost in coherent systems under physical minimal repair.

Theorem 6. An approximate 100 (1− γ) % simultaneous con�dence band for B∗ (t),
the expected discounted warranty cost process for a coherent system under physical
minimal repair on the interval [0, t], is

B̂
(n)
t ±

q?γ (t)
√
n
, 0 ≤ s ≤ t, (31)

where, q?γ (t) is the (1− γ) quantile of the empirical distribution of sup
0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣.
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Proof . González & Bueno (2011) showed that the process U·n (t) weakly con-
verges in the space D [0, t] to a Gaussian stochastic process denoted by Q (t) which
implies

sup
0≤s≤t

|U·n (s)| w−→ sup
0≤s≤t

|Q (s)| . (32)

By following the de�nition of simultaneous con�dence bands introduced in Section
2.3 and from (32) the idea is �nding qγ (t) such that:

P

(
sup

0≤s≤t
|Q (s)| ≤ qγ (t)

)
≈ 1− γ, (33)

where the process sup
0≤s≤t

|Q (s)|, to which the process sup
0≤s≤t

|U·n (s)| weakly con-

verges is unknown. Using Corollary 1

L
(
U?0·n (t)

∣∣Un) wa(P )←→ L (U·n (t)) , n→∞.

Thus, instead of �nding qγ (t) satisfying (33), the purpose is obtaining q?γ (t)
such that:

P

(
sup

0≤s≤t

∣∣U?0·n (s)
∣∣ ≤ q?γ (t)

)
≈ 1− γ. (34)

This is equivalent, using Corollary 2, to �nd the value of q?γ (t) such that

P

(
sup

0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣ ≤ q?γ (t)

)
≈ 1− γ. (35)

Thus, q?γ (t) can be chosen as the (1− γ) quantile of the empirical distribution

based on resampling from sup
0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣. Thus, considering that

sup
0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣ = lim

M→∞
max
tj∈A

∣∣∣Û?0·n (tj)
∣∣∣ , (36)

where A = {t0 = 0 ≤ t1 ≤ · · · ≤ tM−1 ≤ tM = t} is a partition of interval [0, t],
then, with a value of M large enough, it holds that

P

(
B̂

(n)
t −

q?γ (t)
√
n
≤ B∗ (s) ≤ B̂(n)

t +
q?γ (t)
√
n

: 0 ≤ s ≤ t
)
≈ 1− γ, (37)

such that B̂
(n)
t ±q?γ (t) /

√
n, 0 ≤ s ≤ t, is an approximate (1− γ) level simultaneous

con�dence band for B∗ (t) within interval [0, t].

4. Simulation Study

This section uses simulation to assesses the properties of the proposed simulta-
neous con�dence bands. The simulation study considers di�erent scenarios which
depend on factors that may a�ect the performance of the bands established in
Theorem 6.

Revista Colombiana de Estadística 41 (2018) 1�30



Con�dence Bands for the Expected Discounted Warranty Cost of a Coherent System 13

4.1. Simulation Factors and Parameters

The following are the factors considered in the simulation study:

• System type. A three-component parallel system and a 2-out-of-4 compo-
nents system are considered. To avoid confusion, both systems are treated as
k-out-of-m systems, which are denoted by: a) Φ1:3

t for the three-components
parallel system or 1-out-of-3 components system, and b) Φ2:4

t for the 2-out-
of-4 components system.

• Number of systems under warranty. This is denoted by n and corre-
sponds to the number of independent and identical copies of the repair/cost
process used for constructing simultaneous con�dence bands. The levels
considered are n = 10, 30, 50, 100, 500 and 1000.

• Discount function. Denoted by Hi(t) describes the consumer share of
physical minimal repair costs for the system during the W warranty term.
Hi(t) = cie

−t, ci
(
1− tW−1

)
e−t, i = 1, . . . ,m were used.

• Number of resamples. This is denoted by G. The levels of G are 500,
1000, 5000 and 10000.

• Partition size. This is denoted by M and it determines how thin is the
partition of the warranty period, for the approximation of the supreme of
the limit process given in (32). The levels of M are 100, 500 and 1000.

Table 1 summarizes the levels considered in the simulation factors.

Table 1: Simulation Factors and Their Levels.

Factor Levels

Φk:m
t Φ1:3

t , Φ2:4
t

n 10, 30, 50, 100, 500, 1000

Hi (t) cie
−t, ci

(
1 − tW−1

)
e−t

G 500, 1000, 5000, 10000

M 100, 500, 1000

The following are �xed values or simulation parameters:

• Component failure distributions. For the systems considered (Φ1:3
t and

Φ2:4
t ) in each component i, whose associated lifetime is denoted Si, the re-

spective cumulative distribution function Fi is considered, thus: Fi (t) =
Weibull(η = 1.0, β = 1.5), i = 1, 2; Fi (t) = Weibull(η = 2.0, β = 2.0),
i = 3, 4.

• Warranty term. W denotes the time period within which the system is
under warranty. The simulation uses W = 5. This can be interpreted as
representing �ve years or �ve thousand use cycles.

• Minimal repair cost by component. It corresponds to the minimal repair
value in the i-th component and is denoted ci. For this study, c1 = c2 = 3
and c3 = c4 = 5 were considered.
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14 Carlos M. Lopera-Gómez & Nel� G. González-Álvarez

• Nominal coverage probability. Denoted by (1− γ). It speci�es the ex-
pected probability that the true mean cost function is bounded. A value of
(1− γ) = 0.95 was considered.

• Number of simulations. This is denoted by N . A total of N = 10000
simulations were used.

The Weibull distribution for component lifetime was chosen for its frequent use
in industrial reliability. Besides, the values of Weibull distribution parameters set
for each component ensure the distributions have increasing failure rates, and a
record of failures with at least one event during the established warranty term. The
constrains F1 ≡ F2 and F3 ≡ F4 were used to simplify the simulation scenarios.

Table 2 summarizes the �xed values for the parameters considered in the sim-
ulation study.

Table 2: Fixed Values of Simulation Parameters.

Parameter Fixed value

Fi (t) , i = 1, 2 Weibull (η = 1.0, β = 1.5)

Fi (t) , i = 3, 4 Weibull (η = 2.0, β = 2.0)

W 5

ci c1 = c2 = 3, c3 = c4 = 5

(1 − γ) 0.95

N 10000

The purpose, at this point, is to assess the performance of the simultaneous
con�dence band proposed in each scenario, by estimating the coverage probabili-
ties.

4.2. Coverage Probabilities

Let SCB
(n)
t be a simultaneous con�dence band for the function B∗ (t) in [0, t],

based on a sample of n systems, then the coverage probability (CP) for SCB
(n)
t is

de�ned as:
CP = P

(
B∗ (t) ∈ SCB

(n)
t

)
. (38)

If simultaneous con�dence band SCB
(n)
t has a (1− γ) level, then CP ≈ 1− γ.

The following is the procedure followed during the simulations:

i. For each scenario, generate N simulations of n systems under warranty.

ii. For each simulation:

a) Observe the component failure processes in [0,W ], record C i(j), B̂
i(j)
t ,

B̂
(j)
t , i = 1, . . . ,m, j = 1, . . . , n and calculate B̂

(n)
t .

b) Obtain G resamples of size n say {J?r1n, . . . , J
?r
nn}, r = 1, . . . , G. Calculate

max
tj∈A

∣∣∣Û?0·n (tj)
∣∣∣ for each r, where A is a partition of size M of [0,W ].
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c) Obtain q?γ (t), the (1− γ) quantile of the estimated approximate distri-

bution for sup0≤s≤t

∣∣∣Û?0·n (s)
∣∣∣.

d) Using (31) and the information on n systems, obtain a (1− γ) level si-

multaneous con�dence band for B∗ (t) (SCB
l(n)
t , l = 1, . . . , N).

iii. For each scenario, calculate the actual coverage probability for the simultane-
ous con�dence band,

ĈP =
1

N

N∑
l=1

I
(
B∗ (t) ∈ SCB

l(n)
t

)
, (39)

where the indicator variables determine if the function B∗ (t) is totally con-
tained within the resulting bands in each simulation.

Since the function of the expected cost B∗ (t) is unknown, it is approximated

with B̂
(n)
t for a sample of 100000 systems. Figure 1 shows the functions B∗ (t) for

coherent systems and discount functions under study.

a) 1-out-of-3 components system b) 2-out-of-4 components system

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

t
0 1 2 3 4 5

0

1

2

3

4

t

Figure 1: Approximate B∗ (t) for systems under study. The solid curve is calcu-
lated for Hi(t) = ci exp (−t) and the dashed cure is calculated for Hi(t) =
ci
(
1− tW−1

)
exp (−t).

Then, the actual coverage probability for the proposed simultaneous con�dence
bands is obtained from (39).

The following are the results of the simulation study for each of the coherent
systems considered.
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4.3. Actual Coverage Probabilities for the 1-out-of-3

Components System

For each value considered of the partition sizeM of the warranty period, Figure
2 shows the results for analyzing the e�ects of the size of resamples G and the size
of sample n, over the actual coverage probabilities for both discount functions.

Hi (t) = ci exp (−t) Hi (t) = ci

(
1 − tW−1

)
exp (−t)
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Figure 2: ĈP for SCB (n)
t , for the 1-out-of-3 components system, varying G for both

discount functions.

Note that for the values of M = 100 and 500 considered for the partition size,

there are just small di�erences between the ĈP curves for the resample sizes G
studied in each discounted cost model considered. This suggests that for this study
the resample size G does not a�ect the behavior of the actual coverage probabilities
of the proposed bands. Nevertheless when dealing with �ne partitions M = 1000,
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the actual coverage probabilities increase because the larger number of resamples.
Figure 2 shows that the di�erences in actual coverage probabilities achieved by the
two discount functions decrease when the number of systems increases, reaching
values close to the nominal level of (1− γ) used in the simulation.

4.4. Actual Coverage Probabilities for the 2-out-of-4

Components System

Figure 3 shows the e�ect of the resample size G over the actual coverage prob-
abilities under di�erent sample sizes, for both discount functions.

Hi (t) = ci exp (−t) Hi (t) = ci

(
1 − tW−1

)
exp (−t)
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Figure 3: ĈP for SCB (n)
t , for the 1-out-of-3 components system, varying G for both

discount functions.
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Figure 3 shows that, similar to, the 1-out-of-3 system, when the number of
systems under warranty increases, the actual coverage probabilities of the simulta-
neous con�dence bands increase toward the con�dence level (1− γ). At each level
of the partition sizeM , the smaller coverage probabilities suggest an improvement
when the resample size G increases. It is worth noting that there are large dif-
ferences between the coverage probabilities for both discount functions when the
number of systems is smaller or equal than 100. But similar values to the nominal
(1− γ) level are achieved in both discount functions when the number of systems
is greater than 100.

4.5. Examples of Simultaneous Con�dence Bands

Simultaneous con�dence bands are illustrated with simulated data for both
the 1-out-of-3 components system and the 4-out-of-2 components system for �xed
values: W = 5; α = 0.05; c1 = c2 = 3; c3 = c4 = 5; Fi (t) = Weibull(η =
1.0, β = 1.5), i = 1, 2; Fi (t) = Weibull(η = 2.0, β = 2.0), i = 3, 4; M = 1000 and
R = 10000.

Figures 4 and 5 show the precision changes within the simultaneous con�dence
bands when the number of systems n under warranty varies, for the 1-out-of-3 and
2-out-of-4 components systems, respectively.

Notice that for both systems in the study, the number of systems under war-
ranty is a key factor in the precision of the proposed simultaneous con�dence
bands. Observe that the bands are narrow when n ≥ 500. Few systems under
warranty (n ≤ 100) generate high variability of the estimation of the expected
discounted warranty cost as re�ected in wider simultaneous con�dence bands.

5. Conclusions and Future Research

For some statistical models, assessment of the precision of the statistical infer-
ences may be carried out by means of intensive computer methods (Efron 1979,
Davison & Hinkley 1997, Belyaev 2007). Resampling was e�ciently used in this
work to obtain simultaneous con�dence bands, for the expected discounted war-
ranty cost under physical minimal repair. This is a useful tool to assess the pre-
cision of the estimator, avoiding the complications of the asymptotic analysis of
the related stochastic processes. For instance, it avoids �nding the speci�c distri-
butions for those processes. Besides, it is worth noting that the technique used to
estimate the warranty costs, and the subsequent computation of the simultaneous
con�dence bands is non-parametric, and therefore no distributional assumption
about the failure/repair processes is required by the proposed method.
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Hi (t) = ci exp (−t) Hi (t) = ci

(
1 − tW−1

)
exp (−t)
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Figure 4: Simultaneous con�dence bands of (1− γ) = 0.95 level for the 1-out-of-3 com-
ponents system.

The proposed computation of the simultaneous con�dence bands is valid in a
wide range of models that satisfy with the general conditions identi�ed in Section
2.

The proposed computation of the simultaneous con�dence bands for the ex-
pected discounted warranty cost of coherent systems under minimal repair is easy
to implement in current statistical package, since it only involves random sam-
pling with replacement. Also, in the simulation scenarios studied in Section 4,
reasonable actual coverage probabilities were obtained, particularly when it there
was a number of systems under warranty greater than 100, a �ne partition of the
warranty term and a large number of resamples.
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Hi (t) = ci exp (−t) Hi (t) = ci
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Figure 5: Simultaneous con�dence bands of (1− γ) = 0.95 level for the 2-out-of-4 com-
ponents system.

This paper has focused on the minimal repair model and on the warranty pol-
icy in which repair cost is shared by both the customer and the manufacturer
(PRW policy). In the literature there are references to other types of repair be-
sides minimal repair, such as: perfect repair, in which the product is as good as
new after repair, and imperfect repair, in which the product is better than used,
but not as good as new. Both types of repair make use of well-known renewal
processes (Park & Pham 2010, Su & Shen 2012). In addition, it is possible to con-
sider Free Replacement Policies (FRW) or combination of FRW and PRW policies
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(Chien 2008, Chien 2010). Generalizing the results described here into previously
described situations is considered relevant.[
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Appendix A. Properties of Discounted Warranty

Cost Processes

Consider the mean cost function for minimal repair associated to a realization

(j) of the process B̂
(j)
t given in (11) and to the mean cost function for minimal
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repair B∗ (t) given in (9). De�ne the process of deviations between the mean cost
and the estimated cost for minimal repairs of the system as

B̂
(j)
t −B∗ (t) . (A1)

Note that B∗ (t) does not correspond to the compensator of the Martingale es-

timator B̂
(j)
t , observed on the j-th copy of the process, since that role is played

by the process B
(j)
t given in (12). Then the deviation process in (A1) can be

decomposed as

B̂
(j)
t −B∗ (t) = R

(j)
t +D

(j)
t , (A2)

where,

R
(j)
t = B̂

(j)
t −B (j)

t (A3)

is a martingale process observed on the j-th copy of the cost process with pre-
dictable variation process

〈R〉t = 〈B̂ −B〉t =

m∑
i=1

Ci (ω)

∫ t

0

H2
i (s) I (Yi < s)λi (s) ds.

and
D

(j)
t = B

(j)
t −B∗ (t) (A4)

is a continuous P -a.s. process obtained as the di�erence between (12) and (9).

The following are some features of the processes in (A3)-(A4) (see Lopera, 2014
for details).

Proposition A.1. Let H (t) be a non-negative, bounded and continuous func-
tion, in [a, b] with 0 ≤ a ≤ b ≤ t < ∞. Let λ (t) be a non-negative function
representing a failure rate that is likely to be associated to an increasing failure
rate (IFR) distribution, or to a decreasing failure rate (DFR) distribution, or with
one mixing both patterns, for instance a bathtub-shape failure rate. Assume that∫ b
a
H (u)λ (u) du < ∞, that is f (t) = H (t)λ (t) is Riemann integrable in [a, b].

Then, there is κ ≥ 0 such that∫ b

a

H (u)λ (u) du ≤ κ |b− a| . (A5)

Proposition A.2. Let R
(j)
t be de�ned as in (A3) and let t1, t2 be such that 0 ≤

t1 ≤ t2 ≤ t <∞. Then,

a) It holds that

E

[(
R

(j)
t2 −R

(j)
t1

)2
∣∣∣∣Ft1] = E

[
〈R (j)〉t2 − 〈R (j)〉t1

∣∣∣Ft1] , (A6)

and therefore,

E

[(
R

(j)
t2 −R

(j)
t1

)2
]

= E
[
〈R (j)〉t2 − 〈R (j)〉t1

]
(A7)
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b) There is L1 > 0, such that

E

[(
R

(j)
t2 −R

(j)
t1

)2
]
≤ L1 |t2 − t1| . (A8)

Proposition A.3. Let D
(j)
t be de�ned as in (A4), the j-th realization of process

Dt within interval [0, t]. Let t1, t2 be two times such that 0 ≤ t1 ≤ t2 ≤ t < ∞.
Then, there is L2 > 0, such that(

D
(j)
t2 −D

(j)
t1

)2

≤ L2 |t2 − t1|2 P -a.s. (A9)

Consequently

E
(
D

(j)
t2 −D

(j)
t1

)2

≤ L2 |t2 − t1|2 . (A10)

Proposition A.4. Let R
(j)
t be de�ned as in (A3). Let s, t1, t2 be times such that

0 ≤ t1 ≤ s ≤ t2 ≤ t <∞. Then, there is L3 > 0, such that

E

[(
R

(j)
t2 −R

(j)
s

)2 (
R (j)
s −R (j)

t1

)2
]
≤ L3 |t2 − t1|2 . (A11)

Appendix B. Proof of Theorem 5

Using (33), Ujn (t) can be written as

Ujn (t) =
1√
n

(
R

(j)
t +D

(j)
t

)
, (B1)

where R
(j)
t and D

(j)
t are de�ned in (A3) and (A4), respectively.

Proof of condition C-1

Consider δ = 1. We want to show that

nE [Ujn (t2)− Ujn (t1)]
2 ≤ c1 |t2 − t1| . (B2)

Using (B1)

n [Ujn (t2)− Ujn (t1)]
2 =

[(
R

(j)
t2
−R (j)

t1

)
+
(
D

(j)
t2
−D (j)

t1

)]2
≤ 2

(
R

(j)
t2
−R (j)

t1

)2
+ 2

(
D

(j)
t2
−D (j)

t1

)2
P -a.s., (B3)

Then, using expectations on both sides of (B3)

nE [Ujn (t2)− Ujn (t1)]
2 ≤ 2E

[(
R

(j)
t2 −R

(j)
t1

)2
]

+ 2E

[(
D

(j)
t2 −D

(j)
t1

)2
]
. (B4)
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Applying Propositions A.2 and A.3 is found that

nE
[
(Ujn (t2)− Ujn (t1))

2
]
≤ 2L1 |t2 − t1|+ 2L2 |t2 − t1|2

= 2 (L1 + L2 |t2 − t1|) |t2 − t1|
≤ 2 (L1 + L2κ3) |t2 − t1|
= c1 |t2 − t1| with c1 = 2 (L1 + L2κ3) ,

for some κ3 > 0 such that |t2 − t1| ≤ κ3.

Proof of condition C-2

Consider δ = 1. We want to show that

n2E
[
(Ujn (t2)− Ujn (s))

2
(Ujn (s)− Ujn (t1))

2
]
≤ c2 |t2 − t1|2 . (B5)

Using (B3)

n [Ujn (t2)− Ujn (s)]2 ≤ 2
(
R

(j)
t2
−R (j)

s

)2
+ 2

(
D

(j)
t2
−D (j)

s

)2
P -a.s.

and

n [Ujn (s)− Ujn (t1)]
2 ≤ 2

(
R (j)

s −R (j)
t1

)2
+ 2

(
D (j)

s −D (j)
t1

)2
P -a.s.

Consequently,

n2 [Ujn (t2)− Ujn (s)]2 [Ujn (s)− Ujn (t1)]
2

≤ 4

[(
R

(j)
t2
−R (j)

s

)2
+
(
D

(j)
t2
−D (j)

s

)2] [(
R (j)

s −R (j)
t1

)2
+
(
D (j)

s −D (j)
t1

)2]
= 4

[(
R

(j)
t2
−R (j)

s

)2 (
R (j)

s −R (j)
t1

)2
+
(
R

(j)
t2
−R (j)

s

)2 (
D (j)

s −D (j)
t1

)2
+
(
D

(j)
t2
−D (j)

s

)2 (
R (j)

s −R (j)
t1

)2
+
(
D

(j)
t2
−D (j)

s

)2 (
D (j)

s −D (j)
t1

)2]
P -a.s.

(B6)

Using result (A9) in (B6)

n2 [Ujn (t2)− Ujn (s)]2 [Ujn (s)− Ujn (t1)]
2

≤ 4

[(
R

(j)
t2
−R (j)

s

)2 (
R (j)

s −R (j)
t1

)2
+
(
R

(j)
t2
−R (j)

s

)2
4m2κ′21 |s− t1|2

+ 4m2κ′′21 |t2 − s|2
(
R (j)

s −R (j)
t1

)2
+ 16m4κ′21 κ

′′2
1 |t2 − s|2 |s− t1|2

]
P -a.s.

Thus

n2E [Ujn (t2)− Ujn (s)]2 [Ujn (s)− Ujn (t1)]
2

≤ 4

E
[(
R

(j)
t2
−R (j)

s

)2 (
R (j)

s −R (j)
t1

)2]
+ 4m2κ′21 |s− t1|2E

[(
R

(j)
t2
−R (j)

s

)2] m∑
i=1

m∑
i=1

∑m1

i=1

+ 4m2κ′′21 |t2 − s|2E
[(
R (j)

s −R (j)
t1

)2]
+ 16m4κ′21 κ

′′2
1 |t2 − s|2 |s− t1|2

 . (B7)
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Applying Proposition A.4 to the �rst expectation on the right hand side of in-
equality (B7) and Proposition A.2 to the other two expectations, it follows that

n2E
[
(Ujn (t2)− Ujn (s))2 (Ujn (s)− Ujn (t1))

2]
≤ 4

[
L3 |t2 − t1|2 + 4m2κ′21 |s− t1|2 L′′1 |t2 − s|

+ 4m2κ′′21 |t2 − s|2 L′1 |s− t1|+ 16m4κ′21 κ
′′2
1 |s− t1|2 |t2 − s|2

]
≤ 4

[
L3 |t2 − t1|2 + 4m2κ′21 L

′′
1 |t2 − t1|3 + 4m2κ′′21 L′1 |t2 − t1|3 + 16m4κ′21 κ

′′2
1 |t2 − t1|4

]
= 4

[
L3 + 4m2κ′21 L

′′
1 |t2 − t1|+ 4m2κ′′21 L′1 |t2 − t1|+ 16m4κ′21 κ

′′2
1 |t2 − t1|2

]
|t2 − t1|2

≤ 4
[
L3 + 4m2κ′21 L

′′
1κ3 + 4m2κ′′21 L′1κ3 + 16m4κ′21 κ

′′2
1 κ2

3

]
|t2 − t1|2

= c2 |t2 − t1|2 , with c2 = 4
[
L3 + 4m2κ′21 L

′′
1κ3 + 4m2κ′′21 L′1κ3 + 16m4κ′21 κ

′′2
1 κ2

3

]
,

where the second inequality holds because for every 0 ≤ t1 ≤ s ≤ t2 ≤ t < ∞,
|t2 − s| ≤ |t2 − t1|, |s− t1| ≤ |t2 − t1|, and the fourth inequality is given because
there is a κ3 > 0 such that |t2 − t1| ≤ κ3.

Proof of condition C-3

Consider δ = 1. We want to show that

E
[∣∣√nUjn (s)

∣∣3] ≤ c3. (B8)

Using (25), the triangular inequality, and that g (x) = x3 is increasing when x ≥ 0,
it can shown that ∣∣√nUjn (s)

∣∣3 ≤ (B̂ (j)
s +B∗ (s)

)3

P -a.s. (B9)

Using inequality Cr (Loève 1977), it follows that |
√
nUjn (s)|3 ≤ 4

(
B̂

(j)
s

)3

+

4 (B∗ (s))
3
P -a.s. Thus

E
[∣∣√nUjn (s)

∣∣3] ≤ 4E

[(
B̂ (j)
s

)3
]

+ 4E
[
(B∗ (s))

3
]
. (B10)

Now, from (9) and (10) it follows that

B∗ (s) =

m∑
i=1

Bi∗ (s) =

m∑
i=1

P (Si > Yi)E

[∫ s

0

I (Yi < u)Hi (u)λi (u) du

∣∣∣∣Si > Yi

]
,

Note that for every i = 1, . . . ,m,[∫ s

0

I (Yi < u)Hi (u)λi (u) du

∣∣∣∣Si > Yi

]
≤
∫ s

0

Hi (u)λi (u) du P -a.s.
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Thus E
[∫ s

0
I (Yi < u)Hi (u)λi (u) du

∣∣Si > Yi
]
≤
∫ s

0
Hi (u)λi (u) du, which im-

plies

Bi∗ (s) = P (Si > Yi) E

[∫ s

0

I (Yi < u)Hi (u)λi (u) du

∣∣∣∣Si > Yi

]
≤
∫ s

0

Hi (u)λi (u) du.

Consequently, B∗ (s) =
∑m
i=1B

i∗ (s) ≤
∑m
i=1

∫ s
0
Hi (u)λi (u) du.

Using Proposition A.1 on each integral on the right hand side of the previous
inequality, it is observed that there is κ1 > 0 such that for every i = 1, . . . ,m it
holds that

∫ s
0
Hi (s)λi (s) ds ≤ κ1s ≤ κ1ζ1 P -a.s., for some ζ1 > 0 such that for

all 0 ≤ s ≤ t <∞, and s ≤ ζ1. Consequently

B∗ (s) =

m∑
i=1

κ1ζ1 = mκ1ζ1. (B11)

On the other hand,

B̂ (j)
s =

m∑
i=1

C i(j)B̂ i(j)
s =

m∑
i=1

C i(j)

Ñ i(j)
s∑
l=1

Hi

(
S

(j)
il

)
. (B12)

Because Hi (s) with s ∈ [0, t] are non-negative, bounded and continuous functions
in [0, t], there is 0 < υ <∞ such that Hi (s) ≤ υ for every i = 1, . . . ,m and since
g (x) = x3 with x ≥ 0, is an increasing function, from (B12), it follows that

(
B̂ (j)
s

)3

≤ υ3

(
m∑
i=1

C i(j)Ñ i(j)
s

)3

P -a.s. (B13)

In addition using inequality (
∑m
k=1 dk)

3 ≤ m2
(∑m

k=1 d
3
k

)
(Herman, Kučera &

Šimša 2000), (
B̂ (j)
s

)3

≤ υ3m2
m∑
i=1

C i(j)
(
Ñ i(j)
s

)3

P -a.s.

Applying the expected value it gives

E

[(
B̂ (j)
s

)3
]
≤= υ3m2

m∑
i=1

P
(
S

(j)
i > Y

(j)
i

)
E

[(
Ñ i(j)
s

)3
∣∣∣∣S (j)

i > Y
(j)
i

]
. (B14)

Now, recall that for every i ∈ CΦ, Ñ
i(j)
s ≥ 0, while for i /∈ CΦ, Ñ

i(j)
s = 0 P -a.s..

On the other hand, Ñ i
s (ω) restricted to Ci = {ω ∈ Ω : Si (ω) > Yi (ω)} is a Non-

Homogeneous Poisson Process (NHPP). Therefore, for each realization (j), it can

be shown that
[
Ñ
i(j)
s

∣∣∣S (j)
i > Y

(j)
i

]
satis�es

E

[(
Ñ i(j)
s

)3
∣∣∣∣S (j)

i > Y
(j)
i

]
=

3∑
x=0

Sx,3
(∫ s

0

λi (u) du

)x
, (B15)
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where Sx,3 are the Stirling numbers (Riordan 1937) and
∫ s

0
λi (u) du <∞ for each

i = 1, . . . ,m. Then, by applying Proposition A.1 it follows that there is κ4 > 0
such that

∫ s
0
λi (u) du ≤ κ4s ≤ κ4ζ2 for some ζ2 > 0 with s ≤ ζ2. Then (B15)

gives

E

[(
Ñ i(j)
s

)3
∣∣∣∣S (j)

i > Y
(j)
i

]
≤

3∑
x=0

Sx,3 (κ4ζ2)
x
. (B16)

Note that, in (B16) the sum on the right side of the inequality is a non-negative
�nite number and therefore there is κ5 > 0 such that for each i = 1, . . . ,m, it
holds that

E

[(
Ñ i(j)
s

)3
∣∣∣∣S (j)

i > Y
(j)
i

]
≤ κ5,

consequently, for each i = 1, . . . ,m

P
(
S

(j)
i > Y

,(j)
i

)
E

[(
Ñ i(j)
s

)3
∣∣∣∣S (j)

i > Y
(j)
i

]
≤ κ5. (B17)

From (B17) in (B14), it follows that

E

[(
B̂ (j)
s

)3
]
≤ υ3m2

m∑
i=1

κ5 = υ3m3κ5. (B18)

Finally, applying (B11) and (B18) in (B10), it gives E
[
|
√
nUjn (s)|3

]
≤ c3, with

c3 = 4υ3m3κ5 + 4mκ1ζ1.

Appendix C. Results of Simulation Study

Some results from the simulation study described in Section 4 are showed now.

Table C1: Actual Coverage Probabilities for the 1-out-of-3 Components System with
Hi (t) = ci exp (−t).

M G n = 10 n = 30 n = 50 n = 100 n = 500 n = 1000

100 500 0.8754 0.9216 0.9368 0.9428 0.9464 0.9458

1000 0.8785 0.9280 0.9353 0.9425 0.9553 0.9514

5000 0.8759 0.9279 0.9326 0.9430 0.9512 0.9470

10000 0.8728 0.9241 0.9369 0.9424 0.9467 0.9489

500 500 0.8712 0.9257 0.9323 0.9442 0.9488 0.9516

1000 0.8704 0.9233 0.9388 0.9399 0.9504 0.9508

5000 0.8703 0.9229 0.9338 0.9440 0.9447 0.9484

10000 0.8658 0.9179 0.9356 0.9458 0.9502 0.9443

1000 500 0.8719 0.9240 0.9378 0.9445 0.9489 0.9508

1000 0.8749 0.9196 0.9336 0.9424 0.9517 0.9492

5000 0.8742 0.9180 0.9348 0.9422 0.9486 0.9504

10000 0.8719 0.9188 0.9302 0.9436 0.9494 0.9496
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Table C2: Actual Coverage Probabilities for the 1-out-of-3 Components System with
Hi (t) = ci

(
1− tW−1

)
exp (−t).

M G n = 10 n = 30 n = 50 n = 100 n = 500 n = 1000

100 500 0.8604 0.9096 0.9313 0.9408 0.9487 0.9502

1000 0.8567 0.9121 0.9299 0.9414 0.9526 0.9455

5000 0.8483 0.9132 0.9295 0.9402 0.9495 0.9436

10000 0.8582 0.9147 0.9302 0.9399 0.9476 0.9498

500 500 0.8540 0.9084 0.9240 0.9423 0.9471 0.9491

1000 0.8467 0.9117 0.9239 0.9357 0.9451 0.9457

5000 0.8456 0.9100 0.9230 0.9319 0.9466 0.9455

10000 0.8443 0.9085 0.9246 0.9374 0.9451 0.9452

1000 500 0.8466 0.9087 0.9242 0.9372 0.9438 0.9488

1000 0.8462 0.9073 0.9372 0.9445 0.9502 0.9507

5000 0.8435 0.9200 0.9352 0.9398 0.9451 0.9487

10000 0.8684 0.9181 0.9342 0.9409 0.9489 0.9439

Table C3: Actual Coverage Probabilities for the 2-out-of-4 Components System with
Hi (t) = ci exp (−t).

M G n = 10 n = 30 n = 50 n = 100 n = 500 n = 1000

100 500 0.8909 0.9341 0.9438 0.9448 0.9488 0.9427

1000 0.8889 0.9292 0.9404 0.9472 0.9486 0.9420

5000 0.8934 0.9353 0.9447 0.9493 0.9495 0.9429

10000 0.8897 0.9371 0.9423 0.9462 0.9504 0.9437

500 500 0.8866 0.9278 0.9425 0.9490 0.9493 0.9481

1000 0.8918 0.9365 0.9355 0.9445 0.9488 0.9470

5000 0.8877 0.9310 0.9364 0.9454 0.9482 0.9466

10000 0.8878 0.9320 0.9328 0.9419 0.9500 0.9454

1000 500 0.8871 0.9290 0.9381 0.9466 0.9529 0.9564

1000 0.8899 0.9302 0.9347 0.9480 0.9513 0.9515

5000 0.8880 0.9313 0.9368 0.9398 0.9492 0.9507

10000 0.8807 0.9323 0.9441 0.9448 0.9511 0.9483

Table C4: Actual Coverage Probabilities for the 2-out-of-4 Components System with
Hi (t) = ci

(
1− tW−1

)
exp (−t).

M G n = 10 n = 30 n = 50 n = 100 n = 500 n = 1000

100 500 0.8720 0.9265 0.9355 0.9453 0.9471 0.9440

1000 0.8754 0.9233 0.9351 0.9452 0.9496 0.9475

5000 0.8751 0.9245 0.9346 0.9379 0.9439 0.9419

10000 0.8785 0.9268 0.9335 0.9397 0.9464 0.9393

500 500 0.8777 0.9251 0.9371 0.9409 0.9475 0.9465

1000 0.8706 0.9201 0.9317 0.9446 0.9474 0.9460

5000 0.8697 0.9258 0.9328 0.9377 0.9458 0.9440

10000 0.8753 0.9190 0.9291 0.9433 0.9479 0.9446

1000 500 0.8781 0.9208 0.9304 0.9442 0.9483 0.9481

1000 0.8690 0.9221 0.9307 0.9434 0.9455 0.9513

5000 0.8694 0.9218 0.9252 0.9358 0.9485 0.9474

10000 0.8726 0.9167 0.9306 0.9463 0.9474 0.9456
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