
Revista Colombiana de Estadística
January 2016, Volume 39, Issue 1, pp. 97 to 108

DOI: http://dx.doi.org/10.15446/rce.v39n1.55142

A Graphical Diagnostic Test for Two-Way
Contingency Tables

Un prueba gráfica de diagnóstico para tablas de contingencia de doble
entrada

Jorge Iván Vélez1,2,3,a, Fernando Marmolejo-Ramos4,b,
Juan Carlos Correa3,5,c

1The Arcos-Burgos Group, John Curtin School of Medical Research, Australian
National University, Canberra, ACT, Australia

2Neuroscience Research Group, University of Antioquia, Medellín, Colombia
3Research Group in Statistics, Department of Statistics, National University of

Colombia, Medellín, Colombia
4Gösta Ekman Laboratory, Department of Psychology, Stockholm University,

Frescati Hagväg, Stockholm, Sweden
5Department of Statistics, National University of Colombia, Medellín, Colombia

Abstract
We propose and illustrate a new graphical method to perform diagnostic

analyses in two-way contingency tables. In this method, one observation
is added or removed from each cell at a time, whilst the other cells are
held constant, and the change in a test statistic of interest is graphically
represented. The method provides a very simple way of determining how
robust our model is (and hence our conclusions) to small changes introduced
to the data. We illustrate via four examples, three of them from real-world
applications, how this method works.

Key words: Contingency Tables, Diagnostics, Statistical Graphics.

Resumen
Proponemos e ilustramos un nuevo método gráfico para realizar análisis

de diagníistico en tablas de contingencia de doble entrada. En este método,
se adiciona o remueve una observación de cada celda a la vez mientras las
demas se mantienen constantes, y el cambio en un estadíistico de interés
se representa gráficamente. El método proporciona una manera simple de
determinar cuán robusto es nuestro modelo (y por lo tanto nuestras con-
clusiones) cuando se introducen pequeños cambios en los datos. Ilustramos
cómo funciona el método con cuatro ejemplos, tres de ellos con datos reales.
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1. Introduction

In applied statistics, the analysis of contingency tables (CTs) is one of the
most common tasks performed by statisticians on a daily basis. CTs display the
frequency distribution of two or more categorical variables and, depending on how
many variables are considered for analysis, they are called two-way CTs or multi-
way CTs. Information presented as CTs is far from uncommon in the literature,
and includes applications in a wide variety of areas such as psychology (Iossifova
& Marmolejo-Ramos 2013), genetics (Kamish 1988, Clarke, Anderson, Pettersson,
Cardon, Morris & Zondervan 2011, Dickhaus, Straßburger, Schunk, Morcillo-
Suarez, Illig & Navarro 2012), demography (Carlier & Ewing 1992, Cung 2013)
and the social sciences (Wickens 1969). In the context of two-way CTs, categorical
data is traditionally displayed as shown in Table 1. In order to analyse this type of
data, it is necessary to use a statistical modelM that describes how the categorical
variablesX and Y are stochastically related. Once modelM is fitted, the statistical
inference begins, and we will therefore, be able to draw conclusions about the data
at hand (Harrell 2001, Chapter 5).

As an example, let us assume that gender and the presence/absence of a par-
ticular disease are our two variables of interest. In this case, we have a two-way
contingency table which would display how many males and females developed
the disease, as well as how many of them did not (i.e., a 2 × 2 CT). Using Table
1 as our testbed, we can note that the number of categories per variable is I and
J , respectively: I × J is the number of possible combinations (also called cells)
that will result after crossing X and Y , nij is the number of individuals in the
ith category of X and the jth category of Y (i = 1, 2, . . . , I, j = 1, 2, . . . , J), and
n = n11 + n12 + · · · + nIJ is the total number of observations (or individuals) in
the sample.

Table 1: A two-way contingency table in which a total of I × J cells are present.

Variable X
Variable Y

1 2 · · · J

1 n11 n12 · · · n1J

2 n21 n22 · · · n2J

...
...

...
. . .

...
I nI1 nI2 · · · nIJ

Models for CTs often include log-linear (Agresti 2002, Chapters 8-9), logistic
regression (Hosmer & Lemeshow 1989), and GSK (Grizzle, Starmer & Koch 1969)
models. After fitting model M to an observed CT, it is crucial to validate the
model and determine how robust the results are (Agresti 2002, MacCullagh 2002).
Although several approaches have been proposed in the literature (Snee 1977,
Marcus & Elias 1998, Kleijnen 1999, Geweke 2007), in this paper we will focus on
validation via diagnostics.

Diagnostics is an area in statistics that started with the seminal work in
regression analysis by Belsey, Kuh & Welsch (1980), which has received a lot
of attention over the past three decades, and has rapidly extended to many
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other areas. For CTs in particular, several diagnostic methods emulating those
in log-linear models have been proposed (Lustbader & Moolgavkar 1985, Tsu-
jitani & Koch 1991, Andersen 1992), as well as graphical methods (Genest &
Green 1987, Friendly 1994, Friendly 1995, Friendly 1999) and methods for detect-
ing outlier cells (Fuchs & Kennet 1980, Simonoff 1988). Unfortunately, graphical
methods are not very popular since they have not been fully integrated into any
statistical software, are not easy to understand, and/or because the observed CT
contains so few observations that the user feels it is unnecessary to go further into
an exploratory (graphical) analysis.

In the CT literature, one of the most frequently used diagnostics tests is the
addition (or elimination) of one observation to each of the I × J cells at a time,
followed by the calculation of a test statistic under model M (Andersen 1992). By
doing so, changes between the test statistic calculated with the full data and then
after adding (or eliminating) observations can be determined and those changes
tell us how important this observation is to the fitted model. If removing some
observations from one cell makes us reject the model, it suggests that the model
is not robust enough. Although the process of the addition (or elimination) of
observations to specific cells can be extended to more than one cell at the time,
some challenges still emerge.

Here, we propose a graphical diagnostic test (GDT) that allows us to determine
the quality and robustness of the fitted model M without the aforementioned
complexities, and that emulates those tests used for linear models. Furthermore,
we also provide an easy-to-use implementation in R (R Core Team 2015) to perform
the test in order to visualise the effect that adding/eliminating k observations
to/from the (ij)-th cell of the original CT has on the model (see Appendix A).
Three real and three simulated examples are presented for illustration purposes.

2. Proposed Method

We propose the following procedure to study the contribution of a single obser-
vation to the model by removing (or adding) one observation each time to every
cell the CT, whilst other cells are held constant. This process is then repeated for
each cell. If the model is rejected or accepted, and this contradicts the conclusion
reached when no modification was introduced, it suggests that our model is not
robust enough. However, if we eliminate many observations of a single cell and
our conclusion does not change, we can conclude that our model is robust to (not
necessarily small) changes in that cell.

2.1. Notation

From now on, we will consider the notation in Table 2. Observe that even
though the test statistic is represented by T and no particular distribution has been
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assumed, it is straightforward to generalise it with any test statistic applicable to
two-way CTs when a hypothetical model M is considered1.

Table 2: Notation used in our alternative test for contingency tables.

Notation Description

M Hypothetical model
N Observed two-way contingency table
Nij Number of observations in the (ij)th cell
N(ij)−k N after removing k observations from the (ij)–th cell
N(ij)+k N after adding k observations to the (ij)–th cell
TM Test statistic calculated after fitting M to N

TM(ij)−k Test statistic calculated after fitting M to N(ij)−k

TM(ij)+k Test statistic calculated after fitting M to N(ij)+k

To illustrate the proposed notation, let us suppose we are interested in testing
independence between two categorical variables using N. Thus, it is possible to
define T as the Pearson χ2 statistic given by

χ2
M =

I∑
i=1

J∑
j=1

(Nij −EM
ij )

2

EM
ij

, (1)

with EM
ij being the expected value of the (ij)-th cell of N under model M (in-

dependence). The calculation of the χ2
M(ij)−k and χ2

M(ij)+k statistics are similar,
and this has been left as an exercise for the reader2. Under the null hypoth-
esis, χ2

M follows a χ2 distribution with (I − 1)(J − 1) degrees of freedom, i.e.,
χ2
M ∼ χ2

(I−1)(J−1).
Another possibility when working with CTs is to use a likelihood ratio test

(LRT), denoted as G2, to determine whether two categorical variables are inde-
pendent. Under model M , this test uses the likelihood of the data under the null
hypothesis relative to the maximum likelihood, i.e.,

G2
M = 2

I∑
i=1

J∑
j=1

(
Nij log

Nij

EM
ij

)
, (2)

withNij and EM
ij as previously defined. Under the null hypothesis of independence

the two categorical variables, G2 ∼ χ2
(I−1)(J−1). The test statistics G2

M(ij)−k and
G2

M(ij)+k are similarly defined.
An important observation when testing independence is that the degrees of

freedom of the test statistic under the null hypothesis are not affected by the test
1Although model selection is not in the scope of this paper, one approach to determine whether

modelM is appropriate or not for the contingency table is to use statistics such as the Likelihood
Ratio test (LRT) to compare two models M1 and M2, or to use the log-likelihood function and
select the model with the highest value.

2Although there is no specific criterion for selecting the value of k, it can only be, at the most,
equal to the value of a particular cell when observations are being removed from every cell at the
time. This is to guarantee that no negative entries are going to be present in the transformed
contingency table.

Revista Colombiana de Estadística 39 (2016) 97–108



A Diagnostic Test for Two-Way Contingency Tables 101

statistic that is being used, the number of k observations added to the (ij)-the
cell of Nij , or by removing the same number of observations from that cell. This
is true and holds for any CT since the degrees of freedom only depend on the
dimension of the table.

2.2. Procedure

Beginning with the information in the (ij)th cell, we propose the following
procedure to perform graphical diagnostics on the CT:

1. Under model M , calculate TM(ij)−Nij
, TM(ij),−Nij+1, . . . , TM(ij)−1, TM (see

Table 2 for more details).

2. Determine the p-value of the test as

pM =


1− F (TM(ij)−k) if k observations are removed
1− F (TM ) for the original data
1− F (TM(ij)+k) if k observations are added

(3)

with F as the cumulative distribution function of the test statistic under the
null hypothesis.

3. Plot pM against the number of added/removed observations k.

Steps 1-3 are repeated as many times as the number of cells in the CT. For
instance, when the CT is a 2× 2 table, and it is of interest to evaluate how robust
the model M is by initially adding or removing k observations from each cell of
the original data, the resulting plot for each condition (adding or removing up to k
observations) will be four-lined. Although it is somewhat expected that a gradual
change in both the p-value and the test statistic will occur as observations are
added and removed one at a time, it might be the case that adding (or removing)
just one observation completely changes the result obtained with the original data
set.

3. Examples

In this section we will illustrate the proposed GDT with six examples, three of
them from the literature.

3.1. Real Data

Example 1. Hand ability and gender. Table 3(a) shows the number of left-
and right-handed children, by gender, in a sample of 476 elementary school children
whose teachers were asked about which hand their students used more skilfully
(Correa 2002). The question of interest is whether hand ability and gender are
independent.
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Table 3: Contingency tables to exemplify the graphical diagnostic test.
(a) Hand ability and gender (Correa 2002).

Hand ability
Gender Left-handed Right-handed
Boys 79 202
Girls 57 138

(b) Polygraph evaluation (Simonoff 2003).
Classified group

True group Guilty Innocent
Guilty 6 2
Innocent 4 8

(c) Hand preference and brain injury (Vlachos et al. 2013).
Hand preference

Brain injury Left-handed Mixed-handed Right-handed
No brain injury 42 34 472
With brain injury 4 9 67

For this data, the χ2-based test of independence gives χ2
M = 0.0263 and

pM = 0.8712, from which we conclude that these variables can be considered
independent. As shown in Figure 1(a) adding slightly more than 20 observations
to cell (2,1) (i.e., left-handed girls), whilst leaving the other cells intact, would have
shown that gender and handedness are not independent. A similar result would
have been obtained if slightly more than 20 observations would have been removed
from that very same cell or from the cell representing the left-handed boys exclu-
sively (see Figure 1(b)). Hence, the independence model is robust enough and our
conclusion reliable.

Example 2. Polygraph evaluation. Simonoff (2003, pp. 221) presented the
results of a polygraph evaluation applied to twenty individuals as shown in Table
3(b). The LRT for testing independence produces G2

M = 3.4539 and pM = 0.0631.
Using a type I error probability of 5%, the hypothesis of independence is not
rejected. But how robust is this result? Figures 1(c)-(d) show how fragile the
independence model is. In fact, adding just one observation to cells (1,1) or (2,2),
or removing one observation from cells (1,2) or (2,1) would have changed our
conclusion.

Example 3. Hand preference and brain injury. The brain pathology hy-
pothesis argues that brain injury leads to hand preference. Vlachos et al. (2013)
found no evidence to support such an association (see Table 3(c)). This finding s
corroborated using the G2 statistic, which gives G2

M = 3.031 and pM = 0.21969.
However, if three more cases of mixed-handed participants with brain injury had
been added (i.e., cell (2,2)) whilst leaving the other cells intact, an association
between brain injury and handedness would have been found. Similarly, if three
or four participants had been removed from cell (2,1), other things being equal,
a significant result would have been found. Notice that only adding more than
10 observations to cell (2,1) would have also led to a significant result (see Figure
1(e)-(f)).
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Figure 1: Graphical diagnostic test for Examples 1, 2, and 3. In Example 1, more than
20 observations need to be (a) added or (b) removed from two cells in order
to reach statistical significance. In Example 2, (c) adding or (d) removing a
couple of observations in a couple of cells is enough to obtain a significant
result. In the last example, three observations would need to be (e) added to
a cell or (f) removed from another cell to reach a significant result. The grey
horizontal line corresponds to a type I error probability of 5%.

All these three cases exemplify how our GDT is highly valuable in testing hy-
potheses in the light of specific theories and concepts under investigation. Despite
this, the method will output the results of the p-value associated with the test
statistic under use (e.g., G2 and χ2), but it is up to the researcher to seek in-
terpretations based on the data at hand and the underlying theories (i.e., those
specific to the phenomena being studied).

3.2. Simulated Data

Simulating potential two-way CT situations that can occur in actual research
is a rather cumbersome task since various variables would need to be considered.
For instance, one can take into consideration the levels in each of the categories,
the total number of observations, the percentage of observations assigned to each
cell, the test statistic used to analyse the CT3 and the effect of missing data on
the test statistic (Correa & Vélez 2014).

3To study the independence of categorical data, the G2 and χ2 tests, the Fisher’s exact test,
or Barnard’s test could be used. If the data is assumed to be dependent, then the McNemar’s
test or the Stuart-Maxwell might be suitable alternatives.
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Figure 2: Graphical diagnostic test for three simulated 2 × 2 CTs varying the sample
size n. The percentage of observations assigned to each cell is 25% in all
cases. The grey horizontal line corresponds to a type I error probability of
5%.

Thus, in order to give the researcher a feel for what our method can offer, we
only present the case of 2× 2 CTs in which the percentage of observations per cell
was kept equal (i.e., each cell had the same proportion of observations) and only
the total amount of observations varied (n = 20, 40 and 100). Also, we assumed
the data to be independent and used the G2 statistic.

In a 2× 2 CT with just five observations per cell, much more than five obser-
vations need to be added to any cell or one cell, needs to be emptied in order to
reject the independence model (first column, Figure 2). When a 2× 2 CT has 10
observations per cell, leaving one cell with just one observation would suffice to
reject independence between the categories. Alternatively, adding more than 10
observations to any of the cells would show an association (second column, Figure
2). When n = 100, there seems to be more freedom in the number of observations
that need to be added or removed in each cell in order to find an association be-
tween the categories. That is, just above 25 observations would need to be added
to any cell or just 15 or 16 observations would need to be removed from any cell
in order to reject independence (third column, Figure 2).

These results simply confirm that it is more advantageous to have CTs with a
large number of observations in order to remove or add a number of observations
that is proportionally small in relation to the cell size. Hence, this approach shows
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how much a model of perfect independence needs to change in order to show an
association between the two categories and that the CT’s sample size plays a key
role in this process.

4. Discussion

One of the main tasks of any researcher consists in validating the models built
to account for data, and models fitted to two-way contingency tables are not the
exception. In this paper, we have presented a graphical method to verify the
robustness of a fitted model to a two-way contingency table. We strongly believe
that this method is useful in model assessment and data analysis, easy to interpret
and fully adaptable to any data represented in the form of two-way CTs. The GDT
proposed here is useful in checking the robustness of a CT model that is suitable
for categorical data analyses methods. As shown in the simulated CTs, going from
an independence to an association model requires adding or removing a number
of observations that is very disproportional as the sample size of the CT shrinks.

As mentioned in the simulation section, many two-way CT cases could be
considered for a simulation study; however, given the multiplicity of factors and
levels, that is a rather complex task. Having said this, we believe the options
presented in that section need to be tackled to better understand how the proposed
method behaves under different circumstances. However, we reiterate that those
simulations are valid merely for statistical purposes. In other words, researchers
almost never have CTs that resemble a fully independent model; on the contrary,
most, if not all, real CTs seek to demonstrate an association between the categories
of interest. Precisely because of this reason, we believe the proposed graphical test
is helpful in assessing potential explanatory models underlying the categorical data
under study.

Despite the virtues of our graphical test, some of its weaknesses need to be
acknowledged. First, in its current form, our implementation of the method can
only deal with two-way CTs, so further work is needed to extend it to multi-way
CTs. In the hypothetical case of two-way CTs stratified by a third variable with
S categories (e.g., socioeconomic status), performing our GDT for each of the re-
sulting S two-way CTs and plotting them side-by-side is straightforward. Another
possibility would be to split the CT and perform the GDT on each resulting two-
way CT using different aesthetics to distinguish each cell (i.e., each cell in the CT
would be represented by S lines).

Second, the current implementation of the GDT removes or adds one obser-
vation at a time from each cell in the CT. Thus, the total number of lines being
displayed will be c = I×J , and for large values of I and J the resulting plot might
be specially crowded. Even though the user is free to make the necessary changes
to have an aesthetically appealing statistical graphic, we suggest using the test
when no more than ten cells are present in the two-way CT. However, if the data
is presented in a multi-way CT, then the two possibilities previously described
could be a starting point. A further improvement would require that sets of pairs,
triplets or p-tuplets of cells are simultaneously evaluated whilst observations are
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added to and/or removed from them. Although this is not computationally chal-
lenging, its graphical representation is. The main difficulty is how to represent the
c !/{(c−p)! p!} total number of possible p-tuples. When p = 2, a 3D graphical rep-
resentation is suitable, but for p > 2 the alternatives are more scarce. We plan to
tackle these issues in the near future, and provide an easy-to-use implementation
in R.
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Appendix A. Graphical diagnostic test in R

The R code to perform the GDT based on the model of independence for
contingency tables can be downloaded from here here. Installing the devtools
package by Wickham & Chang (2015) is required. Two functions are presented to
perform the GDT as previously described: gdt_G2() and gdt_chi2(), which use
the G2 and χ2 statistics, respectively (see §2.1 for more details). The following
arguments are taken by both functions:

thetable 2× 2 contingency table.
ylim Limits of the y-axis. By default it is the interval c(0,1).
type Defines whether to "add" or "remove" observations, respectively.
k Number of observations to be added/removed. When type = "remove",

the maximum value for k is that for the corresponding cell.
alpha Type I error probability of the test. By default 5%.
lin.col Color of the horizontal line. By default lin.col = 2 (red).
. . . Additional arguments passed to plot. See ?plot in R for more details.
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