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Abstract

The problem of estimation reliability in a multicomponent stress-strength
model, when the system consists of k components have strength each compo-
nent experiencing a random stress, is considered in this paper. The reliability
of such a system is obtained when strength and stress variables are given by
Lindley distribution. The system is regarded as alive only if at least r out
of k (r < k) strength exceeds the stress. The multicomponent reliability of
the system is given by Rr,k. The maximum likelihood estimator (MLE),
uniformly minimum variance unbiased estimator (UMVUE) and Bayes esti-
mator of Rr,k are obtained. A simulation study is performed to compare the
different estimators of Rr,k. Real data is used as a practical application of
the proposed model.

Key words: Bayes Estimator, Lindley Distribution, Maximum Likelihood
Estimator, Order Statistics, Stress-Strength Model, Uniformly Minimum
Variance Unbiased Estimator.

Resumen

El problema de la fiabilidad de estimación en el modelo de estrés-fuerza
multicomponente, cuando el sistema consta de componentes k tiene fuerza,
cada componente experimentando un estrés al azar se considera en este doc-
umento. Se obtiene la fiabilidad de estos sistemas cuando las variables de
fuerza y tensión están dadas por la distribución Lindley. El sistema es con-
siderado como vivo solo si al menos r de k(r < k) fuerzas superan el estrés.
La fiabilidad de varios componentes del sistema viene dado por Rr,k. El esti-
mador de máxima verosimilitud (MLE), se obtienen estimadores insesgados
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de varianza uniformemente mínima (UMVUE) y el estimador de Bayes Rr,k.
Se realizó un estudio de simulación para comparar los diferentes estimadores
de Rr,k. Se utilizaron datos reales como aplicación práctica para el modelo
propuesto.

Palabras clave: distribución de Lindley, estadísticas de orden, estimador
de Bayes, estimador insesgado de varianza uniformemente mínima, estimador
insesgado de varianza mínima, modelo de estrés-fuerza.

1. Introduction

The Lindley distribution originally developed by Lindley (1958, 1965) in the
context of Bayesian statistics, is a counter example of fiducial statistics. The
Lindley distribution has the following probability density function (p.d.f)

f(x; θ) =
θ2

(θ + 1)
(1 + x)e−θx x > 0, θ > 0, (1)

The corresponding cumulative distribution function (c.d.f) is

F (x; θ) = 1− (1 +
θ

1 + θ
x)e−θx x > 0, θ > 0, (2)

and the corresponding survival function is

S(x; θ) = (1 +
θ

1 + θ
x)e−θx x > 0, θ > 0. (3)

Ghitany & Atieh (2008) studied the mathematical and statistical properties
of the Lindley distribution. They have shown that this distribution is better a
model than the well-known exponential distribution in some particular cases. Al-
Mutairi, Ghitany & Kundu (2013) investigated the stress- strength model using
the Lindley distribution and in this paper we will investigate the multicomponent
stress-strength model of the Lindley distribution. Also Figure 1 shows that the
Lindley distribution for different values of θ is positively skewed. Many authors
have discussed the Lindley distribution as a model of lifetime data such as Kr-
ishna & Kumar (2011), Singh, Singh & Singh (2008) and Singh, Gupta & Sharma
(2014), and Al-Mutairi et al. (2013) studied stress-strength model. Also the in-
verse Lindley distribution discussed as stress-strength model has been studied by
Sharma, Singh, Singh & Agiwal (2014, 2015).

The reliability parameter R = P (Y < X) is referred to as a stress-strength
model, which is used in quality control, engineering statistics, and other fields.
In a reliability context, the stress-strength model describes the life of a compo-
nent that has a random strength variable X and is subjected to random variable
stress Y . The system fails if and only if the stress is greater than strength at any
time. The estimation of a stress-strength model when X and Y are random vari-
ables having a specified distribution has been discussed by many authors including
Birnbaum (1956), Basu (1964), Downtown (1973), Tong (1974, 1977), Beg (1980),
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Figure 1: Lindley distribution.

Iwase (1987), McCool (1991). Recently, Ali, Pal & Woo (2012), Wong (2012),
Shahsanaei & Daneshkhah (2013), Hussian (2013), Al-Mutairi et al. (2013), Ghi-
tany, Al-Mutairi & Aboukhamseen (2015) and Najarzadegan, Babaii, Rezaei &
Nadarajah (2016). Also, the estimation of reliability in a multicomponent stress-
strength model Rr,k = P (at least r of X1, . . . , Xk exceed Y ) has been discussed
by many authors including from Bhattacharyya & Johnson (1974), and Pandey,
Uddin & Ferdous (1992). Some of the recent work on the multicomponent stress
strength has been undertaken by Eryilmaz (2008), Pakdaman & Ahmadi (2013),
Rao & Kantan (2010), Kizilaslan & Nadar (2015), Dey, Mazucheli & Anis (2017),
Rao (2012), and Rao, Muhammad & Osama (2016).

In this paper, the system of reliability Rr,k = P (Yr:n1 < Xk:n2) in the Lindley
distribution case is derived. Special cases of Rr,k can be found in Section 2. The
maximum likelihood estimator (MLE) of Rr,k, the uniform minimum variance un-
biased estimator (UMVUE) of Rr,k, and the Bayes estimator of Rr,k are obtained
in Section 3. In Section 4, a simulation study is performed to compare the es-
timators of the reliability system. In Section 5, real data is used as a practical
application of the proposed procedure. Finally, we conclude in Section 6.

2. System of Reliability

Let X and Y be two random variables as part of the Lindley distribution with
parameters q and p, respectively. Suppose X1, . . . , Xn2 and Y1, . . . , Yn1 are two
independent samples from X and Y , respectively. The strength and the stress are
assumed to be independent. Based on these assumptions, we find the system of
reliability to be

Rr,k = P (Yr:n1
< Xk:n2

) =

∫ ∞
0

FYr:n1
(x)fXk:n2

(x) dx, (4)

where, FYr:n1
(x) and fX:n2(x) are the rth cumulative density function and kth

probability density function of Yr:n1 and Xk:n2 respectively. And,

fXk:n2
(x) = k

(
n2

k

)
F k−1(x)(1− F (x)]n2−kf(x), (5)
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FYr:n1
(x) =

n1∑
j=r

(
n1

j

)
F j(x)[1− F (x)]n1−j . (6)

From (5) and (6) in (4), we obtain

Rr,k = k
q2

1 + q

(
n2

k

) n1∑
j=r

(
n1

j

)∫ ∞
0

(1 + x)e−qx
[
1−

(
1 +

p

1 + p
x

)
e−px

]j

×
[(

1 +
p

1 + p
x

)
e−px

]n1−j [
1−

(
1 +

q

1 + q
x

)
e−qx

]k−1

×
[(

1 +
q

1 + q
x

)
e−qx

]n2−k

dx

Based on some calculations and binomial theory, we obtain

Rr,k =
kq2

1 + q

(
n2

k

) n1∑
j=r

n1−j∑
l1=0

n2−k∑
l2=0

k−1∑
l3=0

k−l3−1∑
l4=0

j∑
l5=0

j−l5∑
l6=0

(−1)k+j−l3−l5−1

(
n1

j

)

×
(
n1 − j
l1

)(
n2 − k
l2

)(
k − 1

l3

)(
k − l3 − 1

l4

)(
j

l5

)
×
(
j − l5
l6

)(
q

1 + q

)n2−l2−l3−l4−1(
p

1 + p

)n1−l1−l5−l6

×
(∫ ∞

0

(1 + x)xn1+n2−l1−l2−l3−l4−l5−l6−1e−x(q(n2−l3)+p(n1−l5)) dx

)

Rr,k =
kq2

1 + q

(
n2

k

)
n1∑
j=r

n1−j∑
l1=0

n2−k∑
l2=0

k−1∑
l3=0

k−l3−1∑
l4=0

j∑
l5=0

j−l5∑
l6=0

(−1)k+j−l3−l5−1

(
n1

j

)

×
(

n1 − j

l1

)(
n2 − k

l2

)(
k − 1

l3

)(
k − l3 − 1

l4

)(
j

l5

)(
j − l5

l6

)

×
(

q

1 + q

)n2−l2−l3−l4−1

(
p

1 + p
)n1−l1−l5−l6

×
(

Γ(n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6)

(q(n2 − l3) + p(n1 − l5))(n1+n2−l1−l2−l3−l4−l5−l6)

)
×
(
n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6

(q(n2 − l3) + p(n1 − l5))
+ 1

)
,

(7)

where Γ(.) is a gamma function.
We now present some special cases of Rr,k with a different arrangement of the

components.

1. For r = n1 and k = 1, the minimum strength component is subjected to
the maximum stress component. In this case, the probability Rn1,1 is the
reliability of a series system with an n2 component
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Rn1,1 =
n2q2

(1 + q)

n2−1∑
l2=0

n1∑
l5=0

n1−l5∑
l6=0

(−)n1−l5

(
n2 − 1

l2

)(
n1

l5

)(
n1 − l5

l6

)

×
(

q

1 + q

)n2−l2−1 ( p

1 + p

)n1−l5−l6

×
(

Γ(n1 + n2 − l2 − l5 − l6)

(qn2 + p(n1 − l5))(n1+n2−l2−l5−l6)

)(
n1 + n2 − l2 − l5 − l6

(qn2 + p(n1 − l5))
+ 1

)
.

(8)

2. For r = n1 and k = n2, the maximum strength component is subjected to
the maximum stress component. Then, Rn1,n2

is the reliability of a parallel
system with an n2 component

Rn1,n2
=
n2q

2

1 + q

n2−1∑
l3=0

n2−l3−1∑
l4=0

n1∑
l5=0

n1−l5∑
l6=0

(−1)n2+n1−l3−l5−1

(
n2 − 1

l3

)

×
(
n2 − l3 − 1

l4

)(
n1

l5

)(
n1 − l5
l6

)
×
(

q

1 + q

)n2−l3−l4−1(
p

1 + p

)n1−l5−l6

×
(

Γ(n1 + n2 − l3 − l4 − l5 − l6)

(q(n2 − l3) + p(n1 − l5))(n1+n2−l3−l4−l5−l6)

)
×
(
n1 + n2 − l3 − l4 − l5 − l6
(q(n2 − l3) + p(n1 − l5))

+ 1

)
.

(9)

3. For r = 1 and k = 1, the minimum strength component is subjected to the
minimum stress component. Then,

R1,1 =
n2n1q

2

1 + q

n1∑
j=1

n1−1∑
l1=0

n2−1∑
l2=0

j∑
l5=0

j−l5∑
l6=0

(−1)j−l5
(
n1

j

)(
n1 − j
l1

)

×
(
n2 − 1

l2

)(
j

l5

)(
j − l5
l6

)(
q

1 + q

)n2−l1−l2−1

×
(

p

1 + p

)n1−l1−l5−l6 ( Γ(n1 + n2 − l1 − l2 − l5 − l6)

(qn2 + p(n1 − l5))(n1+n2−l1−l2−l5−l6)

)
×
(
n1 + n2 − l1 − l2 − l5 − l6

(qn2 + p(n1 − l5))
+ 1

)
.

(10)
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4. For r = n1 and k = k, the kth strength order component is subjected to the
maximum stress component.

Rn1,k =
kq2

1 + q

(
n2

k

) n2−k∑
l2=0

k−1∑
l3=0

k−l3−1∑
l4=0

n1∑
l5=0

n1−l5∑
l6=0

(
n2 − k
l2

)

×
(
k − 1

l3

)(
k − l3 − l4 − 1

l4

)(
n1

l5

)(
n1 − l5
l6

)
×
(

q

1 + q

)n2−l2−l3−l4−1(
p

1 + p

)n1−l1−l5−l6

×
(

Γ(n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6)

(q(n2 − l3) + p(n1 − l5))(n1+n2−l1−l2−l3−l4−l5−l6)

)
×
(
n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6

(q(n2 − l3) + p(n1 − l5))
+ 1

)
.

(11)

3. Different Estimators of Rr,k

In this section the three estimation methods for Rr,k that were applied were
the maximum likelihood estimator (MLE), the uniformly minimum variance un-
biased estimator (UMVUE), and the Bayes estimator of Rr,k using the Lindley
approximation.

3.1. Maximum Likelihood Estimator

Let X1, . . . , Xn2
be a random sample of the strengths of the n2 systems that

are distributed as Lindley random variables with parameter q and Y1, . . . , Yn1
. Let

these be a random samples of stresses of n1 systems that are distributed as Lindley
random variables with the parameter p. Then the log likelihood function of the
observed samples is

logL(p, q) = n1[log p2 − log(1 + p)] +

n1∑
i=1

log(1 + yi)− p
n1∑
i=1

yi

+ n2[log q2 − log(1 + q)] +

n2∑
j=1

log(1 + xj)− q
n2∑
j=1

xj

Ghitany & Atieh (2008) showed that the maximum estimator of p and q, de-
noted by p̂ and q̂, are

q̂MLE =
(1− X̄) +

√
(X̄ − 1)2 + 8X̄

2X̄
(12)

p̂MLE =
(1− Ȳ ) +

√
(Ȳ − 1)2 + 8Ȳ

2Ȳ
. (13)
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By using the invariance property of the maximum likelihood estimator the maxi-
mum estimator of Rr,k can be obtain. This is denoted by R̂MLE

r,k , replacing p and
q in equation (7) by their maximum estimators. Hence R̂MLE

r,k is given by

R̂
MLE
R,K =

kq̂2MLE
1 + q̂MLE

 n2

k

 n1∑
j=r

n1−j∑
l1=0

n2−k∑
l2=0

k−1∑
l3=0

k−l3−1∑
l4=0

j∑
l5=0

j−l5∑
l6=0

(−1)
k+j−l3−l5−1

 n1

j


×

 n1 − j

l1

 n2 − k

l2

 k − 1

l3

 k − l3 − 1

l4

 j

l5


×

 j − l5

l6

( q̂MLE

1 + q̂MLE

)n2−l2−l3−l4−1 ( p̂MLE

1 + p̂MLE

)n1−l1−l5−l6

×
(

Γ(n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6)

(q̂MLE(n2 − l3) + p̂MLE(n1 − l5))(n1+n2−l1−l2−l3−l4−l5−l6)

)
×
(
n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6
(q̂MLE(n2 − l3) + p̂MLE(n1 − l5))

+ 1

)

(14)

Where p̂MLE and q̂MLE are defined in equation (12) and (13) respectively.
Now, we find the asymptotic distribution of R̂MLE

r,k because it is difficult to find
the explicit distribution. To find the asymptotic distribution and the confidence
interval of Rr,k, we use the algorithm below.
Algorithm:

1. Find the asymptotic variance of p̂MLE and q̂MLE as follows

var(p̂MLE) = E[−∂
2LogL(p, q)

∂p2
] =

2n1

p2
− n1

(1 + p)2
,

var(q̂MLE) = E[−∂
2LogL(p, q)

∂q2
] =

2n2

q2
− n2

(1 + q)2

2. Find the asymptotic variance of R̂MLE
r,k as is presented by Rao (1973)

var(R̂MLE
r,k ) = var(p̂MLE)(

∂Rr,k
∂p

)2 + var(q̂MLE)(
∂Rr,k
∂q

)2

3. As n1 → ∞ and n2 → ∞ then R̂MLEr,k −Rr,k√
var(R̂MLEr,l

D−→ N(0, 1). Hence, an asymp-

totic 100(1− α)% confidence interval for Rr,k could be written as R̂MLE
r,k ∓

Zα
2

√
V ar(R̂MLE

r,k ) where Zα
2
is the upper α

2 -quantile of standard normal dis-
tribution.

3.2. Uniformly minimum variance unbiased estimator
(UMVUE) of Rr,k

To find the UMVUE of Rr,k which is denoted by R̂Ur,k, we need to prove the
following theorem.
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Theorem 1. If X1, . . . , Xn is a random sample from the Lindley distribution with
parameter θ, then the probability density function of z = X1 + · · ·+Xn is

g(z;n, θ) =

n∑
k=0

(
n

k

)
θ2n

(1 + θ)nΓ(2n− k)
z2n−k−1e−θz, z > 0, θ > 0

Proof . See Al- Mutairi et al (2013).

Now, let X1, . . . , Xn2 be a random sample of the strengths of n2 systems that
are distributed as Lindley random variables with parameter q, let Y1, . . . , Yn1

be
a random sample of stresses of n1 systems that are distributed as Lindley random
variables with parameter p. Also, let U =

∑n2

i=1Xi and V =
∑n1

j=1 Yj be complete
and sufficient statistics for p and q, respectively. Hence R̂Ur,k can obtained as

R̂Ur,k = E[φ(X1:n2
, Y2:n1

) |U = u, V = v]

where, φ(X1:n2 , Y1:n2) =

{
1

0

Y1:n1 < X1:n2

Y1:n1 > X1:n2

Therefore,

R̂Ur,k =

∫ min(u,v)

0

∫ u

y

f1:n2
(X1:n2

= x |Xi::n2
= u)f1:n1

(Y1:n1
= y |Yj:n1

= v]dxdy

=
1

ij

∫ min(u,v)

0

∫ u

y

(1− F (x)

F (u)
)i−1(1− F (y)

F (v)
)j−1 f(x)

F (u)

f(y)

F (v)
dxdy

where, 1 < i < n2 and 1 < j < n1. Using binomial theorem we get

R̂Ur,k =
1

ij

i−1∑
m1=0

j−1∑
m2=0

(
i− 1

m1

)(
j − 1

m2

)

×
∫ min(u,v)

0

∫ u

y

(
F (x)

F (u)
)i−m1−1(

F (y)

F [v)
)j−m2−1 f(x)

F (u)

f(y)

F (v)
dxdy

(15)

where,

f(y) =
p2

1 + p
(1 + y)e−py y > 0, p > 0

f(x) =
q2

1 + q
(1 + x)e−qx x > 0, q > 0,

F (x) = 1− (1 +
py

1 + p
)e−py y > 0, p > 0,

F (x) = 1− (1 +
qx

1 + q
)e−qx x > 0, q > 0,

F (u) =

n1∑
k=0

∞∑
s=2n2−k

(
n2

k

)
qk

s!(1 + q)n2
(
u

q
)se−

u
q ,
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F (v) =

n1∑
k1=0

∞∑
s1=2n1−k

(
n1

k1

)
pk1

s1!(1 + p)n1
(
v

p
)s1e−

v
p

When calculating the integral equation (15), when u ≤ v and u > v, we get
R̂Ur,k.

3.3. Bayes estimator ofRr,k

To find the Bayesian estimators of unknown parameters p, q, and the stress-
strength reliability model Rr,k, which is denoted by R̂Br,k, we consider a non-
informative and an informative gamma prior for unknown parameters p and q
(see Jeffrey 1961). Let X1, . . . , Xn2

be a random sample of the strengths of n2

systems that are distributed as Lindley random variables with parameter q, and let
Y1, . . . , Yn1 be a random sample of the stresses of n1 systems that are distributed
as Lindley random variables with parameter p. We assume p and q have gamma
prior distributions of the following forms

π(p) =
ba11

Γ(a1)
pa1−1e−pb1 , p > 0, a1 > 0, b1 > 0 (16)

and,

π(q) =
ba22

Γ(a2)
qa2−1e−qb2 , q > 0, a2 > 0, b2 > 0 (17)

where, a1, a2, b1, and b2 are known.
The joint posterior distribution of p and q is defined by

π(p, q | data) = kL(p, q | data)π(p)π(q)

where, k = 1/
∫∞

0

∫∞
0
L(p, q | data)π(p)π(q) dpdq, and

L(p, q | data) =
p2n1q2n2

(1 + p)n1(1 + q)n2

n2∏
i=1

(1 + xi)

n1∏
j=1

(1 + yj)e
−p

∑n1
j=1 yj−q

∑n2
i=1 xi .

The Bayes estimator of any parametric function Rr,k under square error loss
function (SELF) can be written as

R̂Br,k =

∫ ∞
0

∫ ∞
0

Rr,kπ(p, q |data)dpdq (18)

We have no closed form for R̂Br,k, hence numerical computations are needed.

3.3.1. Lindley Approximation

Lindley (1980) proposed an approximation technique to find the Bayes esti-
mators of stress-strength parameters p, q and Rr,k under the squared error loss
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function, which are given by θ∗l,SELF = θ̂l,MLE + ρ̂lσ̂ll + 0.5(L̂lllσ̂ll) = θl,MLE ,
l = 1, 2 and,

R̂Br,k = R∗SELF = ˆRr,k +
1

2
[σ̂11(R̂11 + 2R̂1ρ̂1) + σ̂22(R̂22 + 2R̂2ρ̂2)]

+
1

2
[L̂111R̂1σ̂

2
11 + L̂222R̂2σ̂

2
22]

(19)

where, θ̂1,MLE = p̂MLE , θ̂2,MLE = q̂MLE ,

(
σ11 σ12

σ21 σ22

)
= [I(θ

−
)]−1 =

( −2n1

θ21
+ n1

(1+θ1)2 0

0 −2n2

θ22
+ n2

(1+θ2)2

)−1

I(θ
−

) is the asymptotic expected Fisher information matrix, θ
−

= (θ1, θ2),θ1 = p,

θ2 = q, ρl = ∂Logπ(θ1,θ2)
∂θl

, π(θ1, θ2) = πj(θ1, θ2) is the joint prior wing a methodol-
ogy given by Jeffrey (1961), which ca be presented by the following formula

πj(θ1, θ2) =

√
(θ2

1 + 4θ1 + 2)(θ2
2 + 4θ2 + 2)

θ1θ2(1 + θ1)(1 + θ2)
, (20)

or π(θ1, θ2) = πg(θ1, θ2) is the joint prior when θ1 and θ2 have prior gamma
distribution as in equation (16) and (17), respectively, which is then given as

πg(θ1, θ2) ∝ θa1−1
1 θa2−1

2 e−(θ1b1+θ2b2), (21)

Llll =
∂3LogL(θ1, θ2)

∂θ3
l

, L111 =
4n1

θ3
1

− 2n1

(1 + θ1)3
,

L222 =
4n2

θ3
2

− 2n2

(1 + θ2)3
, L112 = L122 = 0,

Let,

Rr,k =k

(
n2

k

) n1∑
j=r

n1−j∑
l1=0

n2−k∑
l2=0

k−1∑
l3=0

k−l3−1∑
l4=0

j∑
l5=0

j−l5∑
l6=0

(−1)k+j−l3−l5−1

(
n1

j

)

×
(
n1 − j
l1

)(
n2 − k
l2

)(
k − 1

l3

)(
k − l3 − 1

l4

)
×
(
j

l5

)(
j − l5
l6

)
ABCDE

where:

A =
q2

(1 + q)
, B = (

p

1 + p
)n1−l1−l5−l6 , C = (

q

1+
)n2−l2−l3−l4−1
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D = (
Γ(n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6)

(q(n2 − l3) + p(n1 − l5))(n1+n2−l1−l2−l3−l4−l5−l6
),

E = (
n1 + n2 − l1 − l2 − l3 − l4 − l5 − l6

(q(n2 − l3) + p(n1 − l5))
+ 1), Rl =

∂Rr,k
∂θl

.

Where,

∂Rr,k
∂θ1

=

(
n2

k

) n1∑
j=r

n2−k∑
l1=0

n1−j∑
l2=0

k−1∑
l3=0

k−l3−1∑
l4=0

j∑
l5=0

j−l5∑
l6=0

k(−1)k+j−l3−l5−1

(
n1

j

)

×
(
n2 − k
l1

)(
n1 − j
l2

)(
k − 1

l3

)(
k − l3 − 1

l4

)(
j

l5

)
×
(
j − l5
l6

)(
BCDE

dA

dθ1
+ACDE

dB

dθ1
+ABCE

∂D

∂θ1
+ABCD

∂D

∂θ1

)

∂Rr,k
∂θ2

=

(
n2

k

) n1∑
j=r

n2−k∑
l1=0

n1−j∑
l2=0

k−1∑
l3=0

k−l3−1∑
l4=0

j∑
l5=0

j−l5∑
l6=0

k(−1)k+j−l3−l5−1

(
n1

j

)

×
(
n2 − k
l1

)(
n1 − j
l2

)(
k − 1

l3

)(
k − l3 − 1

l4

)(
j

l5

)
×
(
j − l5
l6

)(
ABDE

dC

dθ2
+ABCE

∂D

∂θ2
+ABCD

∂D

∂θ2

)

Similarly we can calculate Rll = ∂2R
∂θ2
l

. Note that all terms and derivatives
written with a hat are calculated by replacing θ1, θ2, and R with their maximum
likelihood estimators.

4. Simulation Study

In this section we perform a simulation study to:

1. Study the behavior of R̂MLE
r,k by using different sample sizes. The average

bias and average mean square error are computed. Also the average confi-
dence length of the simulated 95% confidence intervals are computed.

2. We Lindley’s approximation to compute R̂Br,k. Also average bias and average
mean square error are computed.

3. Compare the performance of R̂MLE
r,k and R̂Br,k.
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4.1. Simulation Study to Investigate the Behavior of R̂MLE
r,k

To study the behavior of R̂MLE
r,k , we use the following steps

1. Compute the true value of Rr,k with given parameters (p, q) = (3, 1.5),
(2.5,1.5), (2,1.5), (1.5,1.5), (1.5,2), (1.5,2.5),(1.5,3) and the sample sizes
n1 = n2 = 5, 10, 30.

2. For the given sample sizes and given parameters in (1) generate random
samples from the Lindley distribution

3. Computep̂MLE ,q̂MLE and R̂MLE
r,k .

4. Repeat (1) and (2) N = 104 times.

5. Compute Bias and mean square error (MSE).

Note 1. To avoid the difficulty of computations, we take r = 1, k = 3 and perform
the study for R1,3.

From Table 1, we can observe that the bias decreases as p decreases and q
becomes fixed; it also decreases as q increases and p becomes fixed. Also, MSE
decreases as the sample sizes increases.

Table 1: The average bias and average mean square error for different sample sizes for
R1,3.

(p, q)

Sample Sizes
n1 = n2 =5 n1 = n2 =10 n1 = n2 = 30
Bias MSE Bias MSE Bias MSE

(3,1.5) −0.0016 0.0001 −0.0006 0.0000 0.0003 0.0000
(2.5,1.5) −0.0029 0.0004 −0.0005 0.0000 0.0004 0.0000
(2,1.5) −0.0029 0.0004 −0.0036 0.0001 −0.0008 0.0002
(1.5,1.5) 0 0 0 0 0 0
(1.5,2) 0.0099 0.0049 0.0152 0.0023 0.0016 0
(1.5,2.5) 0.02522 0.0031 0.0025 0.0006 −0.0027 0.0002
(1.5,3) 0.0233 0.0027 0.0056 0.0003 −0.0051 0.0007

From Table 2, we can observe that the average confidence length decreases as
p decreases and q becomes fixed; it also decreases as q increases and p becomes
fixed.

Table 2: Average confidence length of the simulated 95% confidence intervals of R1,3.

(p, q)
Sample Sizes

n1 = n2 =5 n1 = n2 =10 n1 = n2 =30
(3,1.5) 0.3096 0.1502 0.0161
(2.5,1.5) 0.1108 0.1799 0.0233
(2,1.5) 0.0271 0.0963 0.0118
(1.5,1.5) 0.3174 0.0535 0.0069
(1.5,2) 0.0056 0.1153 0.0110
(1.5,2.5) 0.0038 0.064 0.0260
(1.5,3) 0.0022 0.0345 0.0256
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4.2. Study the behavior of R̂B
r,k

To study the behavior of R̂Br,k we use the following algorithm

1. Equation (19) is used to compute R̂Br,k when the joint prior π(θ1, θ2) =
πj(θ1, θ2)

2. Repeat (1) N = 104 times.

3. Compute bias and mean square error (MSE).

Note 2. Note: we use the sample sizes n1 = n2 = 5, 10.

From Table 3, we can observe that the MSE decreases as the sample size
increases. Also it decreases as q increases and p becomes fixed, and increases as
p decreases and q becomes fixed. Also, from Table 1 and Table 3 we can observe
that the MSE of R̂MLE

r,k is less than R̂Br,k.

Table 3: The average bias and average mean square error for different sample sizes for
R1,3(Bayes estimator).

(p, q)

Sample Sizes
n1 = n2 =5 n1 = n2 =10
Bias MSE Bias MSE

(3,1.5) −0.0205 0.0021 −0.0026 0.0000
(2.5,1.5) −0.0304 0.0046 −0.0035 0.0001
(2,1.5) −0.0323 0.0052 −0.0003 0.0000
(1.5,1.5) −0.0041 0.0000 −0.0127 0.0016
(1.5,2) −0.0411 0.0084 0.0000 0.0000
(1.5,2.5) −0.0077 0.0003 0.0000 0.0000
(1.5,3) −0.0050 0.0001 −0.0443 0.0196

5. Data Analysis

To decide whether the proposed model in the previous section can be used in
practice, we consider two real data sets reported by Lawless (1982) and Proschan
(1963). The first data set is obtained from Lawless (1982) and it represents the
number of revolutions before the failure of 23 ball bearings in life tests, which are
as follows:

Data Set I: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12,
55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12,105.84, 127.92, 128.04,
173.40.

The second data set is obtained from Proschan (1963) and represents the times
between the successive failures of 15 air conditioning (AC) units in a Boeing 720
airplane, which are as follows:

Data Set II:12, 21, 26, 27, 29, 29, 48, 57, 59, 70, 74, 153, 326, 386, 502.
To estimate the stress strength model using the above data sets, we use the

following steps:
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1. Check the validity of the Lindley distribution for given data sets by using
the Kolmogrov-Smirnov (K-S) test.

2. Find the maximum likelihood estimators for p and q.

3. Compute the maximum likelihood estimator of Rr,k and asymptotic confi-
dence interval.

Table 4 and Figures 2 and 3 show the result of goodness of fit and the maximum
estimators of Rr,k, p, and q.

Figure 2: Fitted Lindley distribution for data set I.

Figure 3: Fitted Lindley distribution for data set II.

Table 4: The model fitting summary for both the data sets.

Data set K − S p− value

Data set (1) 0.1928 0.318
Data set (2) 0.102 0.698

Table 5: Data analysis results.

Parameters (r, k) (p̂MLE ,q̂MLE) R̂MLE
r,k 95%ACI

(p,q) (1,3) (0.0273,0.0163) 0.215 (0.0384,0.3915)

6. Conclusions

In this paper, we have considered the problem of estimation reliability in a mul-
ticomponent stress-strength model Rr,k = P [Yr:n1 < Xk:n2 ] for which the stress
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and strength variables are given by a Lindley distribution. The three estimation
methods of Rr,k applied were the maximum likelihood, the uniformly minimum
variance unbiased, and the Bayes estimators. By simulation we made a compar-
ison between the maximum likelihood and Bayes estimators. In both estimators
the mean square error decreases as sample sizes increases. Also, the maximum
likelihood estimator has a mean square error that is less than the Bayes estimator,
as can be seen in Table 1 and Table 3. Real data was used as a practical applica-
tion of the proposed model. Finally we recommend that the Lindley distribution
is used as the multicomonent stress-strength model.
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