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Abstract

In this study, we explore a robust mixture regression procedure based on
the skew t distribution in order to model heavy-tailed and/or skewed errors in
a mixture regression setting. We present an EM-type algorithm to compute
the maximum likelihood estimators for the parameters of interest using the
scale mixture representation of the skew t distribution. The performance of
proposed estimators is demonstrated by a simulation study and a real data
example.
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Resumen

En este estudio se explora una mixtura robusta de modelos de regresión
basada en la distribución t asimétrica, con el propósito de modelar colas pe-
sadas o asimétricas en los errores, en un escenario de mixtura de regresiones.
Se usa un algoritmo EM para obtener los estimadores máximo verosímiles
empleando una mixtura de escala de la distribución t asimétrica. El com-
portamiento de los estimadores propuestos se ilustra a través de une estudio
de simulación y de un ejemplo con datos reales.
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1. Introduction

Mixture regression models are used to investigate the relationship between
variables that come from some unknown latent groups. These models were first
introduced by Quandt (1972) and Quandt & Ramsey (1978) as switching regres-
sion models and are widely used in areas such as engineering, genetics, biology,
econometrics and marketing. The parameter estimation of a mixture regression
model is usually based on the normality assumption. It is well-known that the
estimators that are based on the normality assumption perform well when the
error distribution is normal, but they are very sensitive to departures from nor-
mality (outliers, heavy-tailedness, skewness). To deal with the departures from
normality, robust mixture regression procedures have been proposed. Some of
these works can be summarized as follows: Markatou (2000) and Shen, Yang &
Wang (2004) used a weight function to estimate the parameters robustly in the
mixture regression models. Bashir & Carter (2012) used the S-estimation method
for the mixture linear regression model. Bai (2010) and Bai, Yao & Boyer (2012)
proposed a robust estimation procedure based on M-regression estimation to esti-
mate the parameters of the mixture regression model. Wei (2012) and Yao, Wei
& Yu (2014) explored the mixture regression model based on t distribution, which
is an extension of the mixtures of t distributions studied by Peel & McLachlan
(2000). Furthermore, Zhang (2013) studied the robust mixture regression model
using the Pearson Type VII distribution, and Song, Yao & Xing (2014) proposed
a robust estimation procedure for mixture regression model using the mixtures of
Laplace distributions. As it is pointed out by these authors, the robust mixture
regression estimation procedure based on the Laplace distribution can be regarded
as the application of the least absolute deviation (LAD) regression estimation to
the mixture regression models. Liu & Lin (2014) proposed mixture regression
model based on the skew normal distribution. Also, Pereira, Marques & da Costa
(2012) studied the performance of the estimates procedure for the mixtures of skew
normal distributions.

In this paper, we examine a robust mixture regression procedure based on the
skew t distribution to efficiently deal with heavy-tailedness and skewness in the
mixture regression model setting. This is an extension of the mixtures of skew
t distributions proposed by Lin, Lee & Hsieh (2007) to the mixture regression
models. We will use the skew t distribution results from the scale mixture of
the skew normal distribution that was introduced by Gupta, Chang & Huang
(2002), Gupta (2003) and Azzalini & Capitaino (2003). The scale mixture repre-
sentation of the skew t distribution enables to easily implement an Expectation-
Maximization (EM) algorithm to obtain the maximum likelihood (ML) estimators
for the parameters of interest in the mixture regression model. For the mixture
regression model based on the skew t distribution, refer to the works by Doğru &
Arslan (2014) and Doğru (2015).

Recently, Zeller, Cabral & Lachos (2016) have proposed in robust mixture
regression model based on scale mixtures of skew normal distributions. They con-
sider the problem in general for the scale mixtures of skew normal distributions
and compare the performance of the skew normal, skew t, and skew slash distri-
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butions via simulation studies and real data example. In their simulation study
and real data example, they assumed equal variance, which differs from our exten-
sive simulation study and real data example. Also, in our paper, we consider the
performance of the estimators for the outlier case, apart from heavy-tailedness,
(see simulation study Case the V) which is not considered in their paper. We also
explore the outlier case in real data example by adding ten extra outliers to the
data to illustrate the performance of the estimators that are considered in this
study. Furthermore, we compute the standard errors using Fisher information
based theory in real data example.

The paper is organized as follows: In Section 2, we give the basic definition
of the mixture regression model. In Section 3, we present the robust mixture
regression results based on the skew t distribution. In Sections 4 and 5, we give
a simulation study and a real data example to compare the performance of the
proposed estimation procedure with the other estimation procedures obtained from
normal, t (Yao et al. 2014), and skew normal (Liu & Lin 2014) distributions. The
paper ends with a conclusion section.

2. Mixture Regression Model

The model setting for a general mixture of linear regression model can be
defined as follows. Let x be a p-dimensional vector of observed values of the
explanatory variables, Y be the response variable, and Z be a latent class variable
independent of x. Suppose that given Z = i, the response variable Y depends on
the explanatory variable x in a linear way

Y = x′βi + εi, i = 1, 2, . . . , g, (1)

where βi = (βi1, βi2, . . . , βip)
′ is the regression parameters, εi is the error term,

and g is the number of components in the mixture regression model. It is assumed
that εi and x are independent and x includes both predictors and constant 1. In
the literature, it is often assumed that the random errors (εi) have distributions
from the location-scale family with zero means and σi scale parameters. Suppose
that P (Z = i | x) = wi, i = 1, 2, . . . , g denote the mixing probabilities with∑g
i=1wi = 1, then the conditional density function of Y given x is

f(y | x,Θ) =

g∑
i=1

wifi(y; x′βi, σi), (2)

where fi(y; x′βi, σi) is the probability density function (pdf) of the ith component
with some shape parameters (e.g. degrees of freedom for t distribution), and
Θ = (w1, . . . , wg,β1, . . . ,βg, σ1, . . . , σg)

′ is the unknown parameter vector. This
model is called as a g-component mixture regression model. The ML estimation
method is used to estimate the unknown parameter vector Θ in model (2). Let
{(x1, y1), (x2, y2),. . ., (xn, yn)} be a given sample. Then, the ML estimator of Θ
is obtained by maximizing the following log-likelihood function with respect to Θ
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`(Θ) =

n∑
j=1

log

( g∑
i=1

wifi(yj ; x
′
jβi, σi)

)
. (3)

However, it should be noted that the ML estimators cannot be explicitly obtained.
The EM algorithm (Dempster, Laird & Rubin 1977) is used to find the ML esti-
mates.

3. Robust Mixture Regression Based on the Skew t
Distribution

In this section, we will use the skew t distribution in order to model possible
skewed and heavy-tailed errors in the mixture regression model. By doing so, we
will obtain more robust estimators for the mixture regression model parameters.
We will use the Azzalini type skew t distribution (Gupta et al. 2002, Gupta 2003,
Azzalini & Capitaino 2003) with the pdf

f(ε;σ2, λ, ν) =
2

σ
tν(η)Tν+1

(
λη

√
ν + 1

η2 + ν

)
, η =

ε

σ
, ε ∈ R, (4)

where λ ∈ R is the skewness parameter, tν(·) is the pdf of the t distribution with
ν ∈ (0,∞) degrees of freedom, and Tν+1(·) is the cumulative density function (cdf)
of the t distribution with ν + 1 degrees of freedom.

In the mixture regression model given in (2), assume that the errors have a skew
t distribution with zero location, and σ2

i , λi and νi scale, skewness, and degrees
of freedom parameters, respectively. In contrast to the symmetric case, the mean
E(εi) 6= 0. For the skew t distribution, E(εi) = σiδλi

√
νi
π

Γ(
νi−1

2 )

Γ(
νi
2 )

when νi > 1,

where δλi = λi/
√

(1 + λ2
i ). Thus, E(yj) = x′jβi + E(εi), which only affects the

intercept. Thus, when we estimate the intercept, we will take this into account
and correct β̂0 by using Ê(εi). In order to estimate the unknown parameters, we
should maximize the following log-likelihood function

`(Θ) =

n∑
j=1

log

( g∑
i=1

wifi(yj ; x
′
jβi, σ

2
i , λi, νi)

)
, (5)

where Θ = (w1, . . . , wg,β1, . . . ,βg, σ
2
1 , . . . , σ

2
g , λ1, . . . , λg, ν1, . . . , νg)

′. However,
the maximizer of the above log-likelihood function cannot be explicitly obtained,
so an EM-type algorithm should be used to estimate Θ. Here, we will use the
following EM algorithm to obtain the estimators.

Let Zj = (Z1j , . . . , Zgj)
′ be the latent variables such that

Zij =

{
1, if jth observation is from ith component
0, otherwise,
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where j = 1, . . . , n and i = 1, . . . , g. To simplify the EM algorithm’s steps, we will
use the stochastic representation of the skew t distribution given by Azzalini &
Capitaino (2003) (see Appendix for more detailed explanations). This stochastic
representation yields the following hierarchical formulation in terms of the condi-
tional distributions

Yj | γj , τj ∼ N
(

x′jβi + αiγj ,
κ2
i

τj

)
,

γj | τj ∼ TN
(

0,
1

τj
; (0,∞)

)
,

τj ∼ Gamma(νi/2, νi/2),

where TN(·) denotes the truncated normal distribution, αi = σiδλi , and κ2
i =

σ2
i (1− δ2

λi
). Then, considering (γ, τ ) and zj are missing data, the complete data

log likelihood function for (y,γ, τ , zj) given X can be written as

`c(Θ; y,γ, τ , z) =

n∑
j=1

g∑
i=1

zij

(
logwi − log π − log κ2

i

2

+
νi
2

log
(νi

2

)
+
νi
2

log τj

− log
(

Γ
(νi

2

))
− νiτj

2
−

(yj − x
′

jβi − αiγj)2

2κ2
i /τj

−
τjγ

2
j

2

)
,

(6)

where X =(x1, . . . ,xn)′,y = (y1, . . . , yn),γ = (γ1, . . . , γn) and τ = (τ1, . . . , τn).
Moreover, based on the theory of the EM algorithm, the conditional expectation
of the complete data log-likelihood function, given the observed data and the
current parameter estimate Θ̂

(k)
, should be calculated. That is, we have to find

the following conditional expectation

E (`c(Θ; y,γ, τ , zj) | yj) =

n∑
j=1

g∑
i=1

E(Zij | yj)
(

logwi −
log κ2

i

2
+
νi
2

log
(νi

2

)
− log Γ

(νi
2

)
+
νi
2
E(log τj | yj)−

νi
2
E(τj | yj)

−
E(τj | yj)

(
yj − x

′

jβi

)2

2κ2
i

−
α2
iE(τjγ

2
j | yj)

2κ2
i

+
αiE(τjγj | yj)(yj − x

′

jβi)

κ2
i

)
.

(7)

The conditional expectations E(τj | yj), E(τjγj | yj), E(τjγ
2
j | yj), and E(log τj |

yj) can be calculated using the conditional expectations presented in the Appendix.
The conditional expectation E(Zij | yj) can be computed using the classical theory
of mixture modeling. Then, the steps of the EM algorithm can be given as follows.
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EM algorithm:
1. Take initial parameter estimate Θ(0) and a stopping rule ∆.

2. E step: Compute the conditional expectations z(k)
ij , s

(k)
1ij , s

(k)
2ij , s

(k)
3ij and s

(k)
4ij for

k = 0, 1, 2, . . . using the following equations for k = 0, 1, 2, . . . iteration

ẑ
(k)
ij = E

(
Zij | yj , Θ̂

(k)
)

=
ŵ

(k)
i fi

(
yj ; x

′

jβ̂
(k)

i , σ̂
2(k)
i , λ̂

(k)
i , ν̂

(k)
i

)
f
(
yj ; xj , Θ̂

(k)
) , (8)

ŝ1ij = E
(
Zijτj | yj , Θ̂

(k)
)

= ẑ
(k)
ij

(
ν̂ki + 1

η̂
2(k)
ij + ν̂

(k)
i

)T
ν̂
(k)
i +3

(
M̂

(k)
ij

√
ν̂
(k)
i +3

ν̂
(k)
i +1

)
T
ν̂
(k)
i +1

(
M̂

(k)
ij

) , (9)

ŝ2j = E
(
Zijγjτj | yj , Θ̂

(k)
)

=
δ̂

(k)
λi

(
yj − x

′

jβ̂
(k)

i

)
ŝ

(k)
1ij

σ̂
(k)
i

+
ẑ

(k)
ij

√
1− δ̂2(k)

λi

πσ̂
(k)
i f̂(yj)

(
η̂

2(k)
ij

ν̂
(k)
i

(
1− δ̂2(k)

λi

) + 1

)−( ν̂
(k)
i
2 +1

)
,

(10)

ŝ
(k)
3ij = E

(
Zijγ

2
j τj | yj , Θ̂

(k)
)

= δ̂
2(k)
λi

(
yj − x

′

jβ̂
(k)

i

σ̂
(k)
i

)2

ŝ
(k)
1ij + ẑ

(k)
ij

{
(1− δ̂2(k)

λi
)

+
δ̂

(k)
λi

(
yj − x

′

jβ̂
(k)

i

)√
1− δ̂2(k)

λi

πσ̂
2(k)
i f̂(yj)(k)

(
η̂

2(k)
ij

ν̂
(k)
i (1− δ̂2(k)

λi
)

+ 1

)−( ν̂
(k)
i
2 +1

)}
,

(11)
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ŝ
(k)
4ij = E

(
Zij log(τj) | yj , Θ̂

(k)
)

= ẑij

{
DG

(
ν̂

(k)
i + 1

2

)
− log

(
η̂

2(k)
ij + ν̂

(k)
i

2

)

+

(
ν̂

(k)
i + 1

η̂
2(k)
ij + ν̂

(k)
i

)Tν̂(k)
i +3

(
λ̂

(k)
i η̂

(k)
ij

√
ν̂
(k)
i +3

ν̂
(k)
i +η̂

2(k)
ij

)
T
ν̂
(k)
i +1

(
λ̂

(k)
i η̂

(k)
ij

√
ν̂
(k)
i +1

ν̂
(k)
i +η̂

2(k)
ij

) − 1



+
λ̂

(k)
i η̂

(k)
ij (η̂

2(k)
ij − 1)√

(ν̂
(k)
i + 1)(ν̂

(k)
i + η̂

2(k)
ij )3

t
ν̂
(k)
i +1

(
λ̂

(k)
i η̂

(k)
ij

√
ν̂
(k)
i +1

ν̂
(k)
i +η̂

2(k)
ij

)

T
ν̂
(k)
i +1

(
λ̂

(k)
i η̂

(k)
ij

√
ν̂
(k)
i +1

ν̂
(k)
i +η̂

2(k)
ij

)

+
1

T
ν̂
(k)
i +1

(
λ̂

(k)
i η̂

(k)
ij

√
ν̂
(k)
i +1

ν̂
(k)
i +η̂

2(k)
ij

) M̂
(k)
ij∫

−∞

g
ν̂
(k)
i

(x)t
ν̂
(k)
i +1

(x)dx

}
,

(12)

where DG(·) = Γ′(·)
Γ(·) is the digamma function and

η̂
(k)
ij =

(yj − x′jβ̂
(k)

i )

σ̂
(k)
i

, δ̂
λ
(k)
i

=
λ̂

(k)
i√

1 + λ̂
2(k)
i

, M̂
(k)
ij = λ̂

(k)
i η̂

(k)
ij

√√√√ ν̂
(k)
i

ν̂
(k)
i + η̂

2(k)
ij

,

gν̂(x) = DG(
ν̂ + 2

2
)−DG(

ν̂ + 1

2
)− log

(
1 +

x2

ν̂ + 1

)
+

x2(ν̂ + 1)− ν̂ − 1

(ν̂ + 1)(ν̂ + 1 + x2)
,

f̂(yj)
(k) =

g∑
i=1

ŵ
(k)
i

2

σ̂
(k)
i

t
ν̂
(k)
i

(η̂
(k)
ij )T

ν̂
(k)
i +1

(M̂
(k)
ij ).

Then, we form the following objective function Q
(
Θ; Θ̂

(k)
)

Q
(
Θ; Θ̂

(k)
)

=

n∑
j=1

g∑
i=1

ẑ
(k)
ij

(
logwi −

1

2
log(κ2

i ) +
νi
2

log
(νi

2

)
− log

(
Γ
(νi

2

)))
−
νiŝ

(k)
1ij

2
+
νiŝ

(k)
4ij

2
−
ŝ

(k)
1ij(yj − x

′

jβi)
2

2κ2
i

+
αiŝ

(k)
2ij(yj − x

′

jβi)

κ2
i

−
α2
i ŝ

(k)
3ij

2κ2
i

.

(13)
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3. M step 1: Maximize the Q
(
Θ; Θ̂

(k)
)
with respect to the unknown parameters

(wi,βi, σ
2
i ), assuming that (λi, νi) are fixed, in order to obtain (k+ 1)th values for

the parameters (wi,βi, σ
2
i ). This maximization yields

ŵ
(k+1)
i =

n∑
j=1

ẑ
(k)
ij

n
, (14)

β̂
(k+1)

i =

 n∑
j=1

ŝ
(k)
1ijxjx

′

j

−1 n∑
j=1

(
yj ŝ

(k)
1ij − δ̂

(k)
λi
ŝ

(k)
2ij

)
xj

, (15)

α̂
(k+1)
i =

n∑
j=1

ŝ
(k)
2ij(yj − x

′

jβ̂
(k)

i )

n∑
j=1

ŝ
(k)
3ij

, (16)

κ̂
2(k+1)
i =

n∑
j=1

ŝ
(k)
1ij(yj − x

′

jβ̂
(k)

i )2 − 2α̂
(k)
i ŝ

(k)
2ij(yj − x

′

jβ̂
(k)

i ) + α̂
2(k)
i ŝ

(k)
2ij

n∑
j=1

ẑ
(k)
ij

, (17)

σ̂
2(k+1)
i = κ̂

2(k+1)
i + α̂

2(k+1)
i . (18)

4. M step 2: Using the new values for (wi,βi, σ
2
i ) that were obtained in M step

1, the following equations are solved to obtain new estimates for the parameters
(λi, νi)

δλi(1− δ2
λi)

n∑
j=1

ẑ
(k)
ij − δλi

 n∑
j=1

ŝ
(k)
1ij

(yj − x′jβ̂
(k+1)

i )2

σ̂
2(k+1)
i

+

n∑
j=1

ŝ
(k)
3ij


+(1 + δ2

λi)

n∑
j=1

ŝ
(k)
2ij

(yj − x′jβ̂
(k+1)

i )

σ̂
(k+1)
i

= 0, (19)

log
(νi

2

)
+ 1−DG

(νi
2

)
+

∑n
j=1

(
ŝ

(k)
4ij − ŝ

(k)
1ij

)
∑n
j=1 ẑ

(k)
ij

= 0. (20)

Also the (k + 1)th estimate of λi can be obtained by using the following equation

λ̂
(k+1)
i = δ̂

(k+1)
λi

/

√
1− δ̂2(k+1)

λi
, (21)

where δ̂(k+1)
λi

= α̂
(k+1)
i / σ̂

(k+1)
i .
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5. Repeat E and M steps until the convergence criteria ‖ Θ̂
(k+1)

− Θ̂
(k)
‖<

∆ is satisfied. Alternatively, the absolute difference of the actual log-likelihood
‖ `(Θ̂

(k+1)
) − `(Θ̂

(k)
) ‖< ∆ or ‖ `(Θ̂

(k+1)
) / `(Θ̂

(k)
) ‖< ∆ can be used (see Dias

& Wedel 2004).
Note that the equation given in (20) can be used to estimate the degrees of

freedom of the skew t distribution. However, for the sake of robustness, we will
assume that the degrees of freedom are fixed throughout this paper. We take all the
degrees of freedom as 2. This is suggested by Lange, Little & Taylor (1989). Also,
it is pointed out by Lucas (1997) that the estimators based on the t distribution
are not locally robust when the degrees of freedom are estimated.

4. Simulation Study

In this section, we present a simulation study to demonstrate the performance
of the proposed mixture regression model based on skew t distribution (MixregST)
over the mixture regression model based on normal distribution (MixregN), mix-
ture regression model based on t distribution (Mixregt) and mixture regression
model based on skew normal distribution (MixregSN) in terms of bias and mean
squared error (MSE). The formulas of bias and MSE are given

b̂ias(θ̂) = θ̄ − θ,

M̂SE(θ̂) =
1

N

N∑
i=1

(θ̂i − θ)2,

where θ is the true parameter value, θ̂i is the estimate of θ for the ith simulated
data, θ̄ = 1

N

∑N
i=1 θ̂i, and N = 500 is the number of replicates. In the simulation

study, the sample sizes are taken as 200 and 400. The simulation study and
real data example are conducted using MATLAB R2013a. For all numerical
calculations, the stopping rule ∆ is taken as 10−6.

We generate the data {(x1j , x2j , yj), j = 1, . . . , n} from the following two com-
ponent mixture regression models (Bai et al. 2012)

Y =

{
0 +X1 +X2 + ε1, Z = 1,

0−X1 −X2 + ε2, Z = 2,

where P (Z = 1) = 0.25 = w1, X1 ∼ N(0, 1) and X2 ∼ N(0, 1). Furthermore, the
model coefficients are β1 = (β10, β11, β12)

′
= (0, 1, 1)

′
and β2 = (β20, β21, β22)

′
=

(0,−1,−1)
′
.

We take the following error distributions:
Case I: ε1, ε2 ∼ N(0, 1), standard normal distribution.
Case II: ε1, ε2 ∼ t3(0, 1), t distribution with the degrees of freedom 3.
Case III: ε1, ε2 ∼ 0.95N(0, 1) + 0.05N(0, 25), contaminated normal distribution.
Case IV: ε1, ε2 ∼ ST(0, 1, 0.5, 3), skew t distribution.
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Case V: ε1, ε2 ∼ N(0, 1), standard normal distribution with %5 outliers, X1 =
20, X2 = 20 and Y = 100.

We use Case I to compare the estimators with the traditional MLE (MixregN)
when the error terms have the normal distribution and there are no outliers. Case
II is the example for the heavy-tailed error distribution case. The distribution
given in Case III is to create outliers. This distribution is often considered in
literature as an outlier model. Case IV is to examine the behavior of the estimators
when the error term is skewed and heavy-tailed. Case V is considered to test the
performances of the estimators to deal with the high leverage points. In this case
%5 of the observations are replaced by X1 = 20, X2 = 20 and Y = 100.

Table 1 and 2 show the simulation results for the sample sizes 200 and 400.
The tables include the MSEs, and the biases of the parameter estimates, and
the true parameter values. We can observe from the simulation study results
that the MixregN has the best result in Case I. Moreover, the other estimators
obtained from Mixregt, MixregSN, and MixregST have similar performances when
the errors have a normal distribution. In Case II, Mixregt performs best, as
expected. Also, MixregST has a lower bias and MSE values compared to the
MixregN and MixregSN for almost all cases. For Case III, MixregN and MixregSN
are drastically affected by the contamination. However, Mixregt and MixregST
perform better than the other estimators and Mixregt is comparable with the
MixregST. Similarly, MixregN and MixregSN have the worst performance and
Mixregt, and MixregST have similar performance in Case IV. Finally, in the outlier
case, all estimators are affected by the outliers. However, Mixregt and MixregST
have the lowest bias and MSE values in almost all cases. In summary, concerning
all the estimators, the Mixregt and MixregST are resistant to the skewness and the
heavy tailedness in the data, and they behave better than MixregN and MixregSN
in the case of outliers in x direction.
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Table 1: MSE (bias) values of estimates for n = 200.

MixregN Mixregt MixregSN MixregST

Case I:ε1, ε2 ∼ N(0, 1)

β10:0 0.0456 (0.0150) 0.0587 (0.0134) 0.1726 (−0.3560) 0.1317 (0.2306)

β20:0 0.0090 (0.0019) 0.0098 (0.0039) 0.1447 (−0.3678) 0.0575 (−0.2084)

β11:1 0.0348 (−0.0013) 0.0495 (−0.0064) 0.0349 (−0.0016) 0.0546 (−0.0036)

β21:−1 0.0085 (−0.0004) 0.0103 (0.0031) 0.0085 (−0.0004) 0.0118 (0.0212)

β12:1 0.0401 (−0.0243) 0.0483 (−0.0308) 0.0401 (−0.0242) 0.0617 (−0.0296)

β22:−1 0.0089 (−0.0062) 0.0107 (0.0024) 0.0089 (−0.0062) 0.0125 (0.0201)

w:0.25 0.0021 (0.0079) 0.0023 (0.0059) 0.0021 (0.0079) 0.0035 (−0.0063)

Case II:ε1, ε2 ∼ t3(0, 1)

β10:0 11.5674 (−0.2939) 0.0930 (−0.0121) 11.6586 (−0.9305) 0.3151 (0.2406)

β20:0 1.2217 (0.0796) 0.0136 (−0.0050) 1.3914 (−0.5527) 0.1397 (−0.3327)

β11:1 7.6108 (0.4273) 0.0959 (−0.0180) 7.6526 (0.3704) 0.1415 (0.0036)

β21:−1 1.2984 (−0.0331) 0.0145 (−0.0064) 1.2011 (0.0192) 0.0171 (0.0259)

β12:1 8.2789 (0.1660) 0.0981 (0.0027) 8.2956 (0.2624) 0.1678 (0.0282)

β22:−1 1.9409 (0.1250) 0.0137 (−0.0031) 1.6075 (0.0762) 0.0167 (0.0283)

w:0.25 0.0226 (−0.0372) 0.0033 (0.0112) 0.0214 (−0.0352) 0.0055 (−0.0067)

Case III:ε1, ε2 ∼ 0.95N(0, 1) + 0.05N(0, 25)

β10:0 6.0158 (−0.0052) 0.0634 (−0.0062) 6.1249 (−0.6206) 0.1517 (0.2053)

β20:0 0.6299 (0.0054) 0.0118 (−0.0080) 0.6282 (−0.5670) 0.0911 (−0.2711)

β11:1 4.5781 (0.2371) 0.0599 (0.0078) 4.8849 (0.2067) 0.0727 (0.0119)

β21:−1 0.2236 (0.0418) 0.0106 (−0.0068) 0.1302 (0.0649) 0.0124 (0.0155)

β12:1 2.9126 (−0.0271) 0.0620 (0.0021) 2.7706 (0.0830) 0.0774 (0.0192)

β22:−1 0.1607 (0.0628) 0.0090 (0.0033) 0.0614 (0.0778) 0.0108 (0.0250)

w:0.25 0.0167 (−0.0472) 0.0026 (0.0039) 0.0136 (−0.0526) 0.0034 (−0.0098)

Case IV:ε1, ε2 ∼ ST(0, 1, 0.5, 3)

β10:0 8.4499 (1.0601) 0.2783 (0.4422) 6.1264 (0.3167) 0.9691 (0.7550)

β20:0 0.3472 (0.4787) 0.1524 (0.3759) 0.1323 (−0.0886) 0.0231 (0.0590)

β11:1 2.9291 (0.2448) 0.0851 (−0.0296) 2.7053 (0.2225) 0.1605 (−0.0107)

β21:−1 0.0600 (0.0432) 0.0120 (−0.0133) 0.0540 (0.0381) 0.0146 (0.0230)

β12:1 5.9774 (−0.1412) 0.0862 (−0.0195) 5.6460 (−0.0863) 0.1911 (0.0005)

β22:−1 0.0789 (0.0798) 0.0115 (−0.0029) 0.0731 (0.0715) 0.0154 (0.0336)

w:0.25 0.0125 (−0.0296) 0.0033 (0.0118) 0.0116 (−0.0260) 0.0050 (−0.0156)

Case V:ε1, ε2 ∼ N(0, 1) (% 5 outliers)

β10:0 2.2247 (0.1553) 1.3245 (0.1820) 2.5926 (−0.4879) 5.9114 (2.1745)

β20:0 0.0146 (0.0111) 0.0106 (0.0072) 0.2401 (−0.4728) 0.0392 (−0.1678)

β11:1 3.2773 (1.5211) 2.8341 (1.5030) 3.3162 (1.5107) 2.6095 (1.4250)

β21:−1 0.0833 (0.2528) 0.0234 (0.1077) 0.0826 (0.2519) 0.0296 (0.1283)

β12:1 3.1162 (1.4674) 2.7897 (1.4869) 3.2436 (1.4870) 2.7237 (1.4655)

β22:−1 0.0798 (0.2482) 0.0225 (0.1055) 0.0786 (0.2472) 0.0281 (0.1244)

w:0.25 0.0093 (−0.0937) 0.0061 (−0.0751) 0.0094 (−0.0939) 0.0112 (−0.1029)

Note: Value in parentheses indicates the bias.
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Table 2: MSE (bias) values of estimates for n = 400.

MixregN Mixregt MixregSN MixregST

Case I:ε1, ε2 ∼ N(0, 1)

β10:0 0.0203 (0.0088) 0.0265 (0.0114) 0.1564 (−0.3687) 0.0782 (0.2081)

β20:0 0.0043 (0.0044) 0.0050 (0.0058) 0.1427 (−0.3716) 0.0565 (−0.2211)

β11:1 0.0149 (0.0008) 0.0192 (−0.0019) 0.0149 (0.0009) 0.0227 (0.0034)

β21:−1 0.0040 (−0.0028) 0.0048 (0.0016) 0.0040 (−0.0027) 0.0057 (0.0197)

β12:1 0.0160 (−0.0100) 0.0213 (−0.0185) 0.0161 (−0.0100) 0.0245 (−0.0110)

β22:−1 0.0044 (0.0009) 0.0053 (0.0070) 0.0044 (0.0010) 0.0065 (0.0247)

w:0.25 0.0012 (0.0035) 0.0013 (0.0006) 0.0012 (0.0035) 0.0018 (−0.0123)

Case II:ε1, ε2 ∼ t3(0, 1)

β10:0 14.3296 (−0.3312) 0.0365 (−0.0137) 14.2254 (−0.9701) 0.0830 (0.1669)

β20:0 0.6052 (0.0125) 0.0066 (−0.0066) 0.6330 (−0.6752) 0.1411 (−0.3601)

β11:1 10.6597 (0.4839) 0.0321 (−0.0054) 10.1135 (0.4010) 0.0427 (0.0239)

β21:−1 0.5987 (0.0527) 0.0068 (−0.0052) 0.1809 (0.0921) 0.0083 (0.0272)

β12:1 12.1779 (0.3384) 0.0334 (0.0052) 11.8293 (0.5888) 0.0421 (0.0288)

β22:−1 1.5732 (0.0903) 0.0062 (−0.0041) 0.9058 (0.0454) 0.0078 (0.0273)

w:0.25 0.0161 (−0.0602) 0.0014 (0.0049) 0.0143 (−0.0591) 0.0020 (−0.0134)

Case III:ε1, ε2 ∼ 0.95N(0, 1) + 0.05N(0, 25)

β10:0 4.6683 (−0.0431) 0.0287 (0.0004) 5.1651 (−0.7278) 0.0729 (0.1830)

β20:0 0.0088 (0.0037) 0.0056 (−0.0012) 0.3555 (−0.5817) 0.0848 (−0.2769)

β11:1 4.2093 (0.1003) 0.0229 (0.0038) 4.2202 (0.0962) 0.0278 (0.0214)

β21:−1 0.0313 (0.0872) 0.0053 (0.0024) 0.0319 (0.0875) 0.0066 (0.0243)

β12:1 3.2445 (0.1817) 0.0251 (0.0166) 3.1090 (0.1611) 0.0327 (0.0303)

β22:−1 0.0328 (0.0886) 0.0054 (0.0064) 0.0325 (0.0878) 0.0069 (0.0292)

w:0.25 0.0093 (−0.0572) 0.0014 (−0.0020) 0.0093 (−0.0570) 0.0019 (−0.0160)

Case IV:ε1, ε2 ∼ ST(0, 1, 0.5, 3)

β10:0 7.8868 (0.9770) 0.2082 (0.4344) 5.1906 (0.0754) 0.4395 (0.6371)

β20:0 0.2110 (0.4604) 0.1461 (0.3853) 0.0373 (−0.1476) 0.0105 (0.0455)

β11:1 5.0109 (0.1370) 0.0247 (−0.0192) 5.6461 (0.1695) 0.0400 (0.0140)

β21:−1 0.0280 (0.0717) 0.0053 (−0.0065) 0.0259 (0.0686) 0.0066 (0.0263)

β12:1 6.6126 (0.3814) 0.0301 (−0.0120) 7.0245 (0.3604) 0.0485 (0.0140)

β22:−1 0.0308 (0.0723) 0.0049 (−0.0044) 0.0276 (0.0691) 0.0069 (0.0290)

w:0.25 0.0081 (−0.0459) 0.0014 (0.0040) 0.0073 (−0.0436) 0.0021 (−0.0168)

Case V:ε1, ε2 ∼ N(0, 1) (% 5 outliers)

β10:0 1.5208 (0.2485) 1.0975 (0.2305) 1.6056 (−0.3105) 6.9413 (2.5194)

β20:0 0.0094 (0.0158) 0.0059 (0.0056) 0.2483 (−0.4883) 0.0419 (−0.1880)

β11:1 2.6872 (1.4449) 2.4663 (1.4533) 2.6444 (1.4307) 2.3970 (1.4530)

β21:−1 0.0783 (0.2591) 0.0175 (0.1066) 0.0770 (0.2572) 0.0239 (0.1284)

β12:1 2.9720 (1.5383) 2.7078 (1.5341) 3.0209 (1.5560) 2.3044 (1.4204)

β22:−1 0.0813 (0.2646) 0.0176 (0.1072) 0.0810 (0.2639) 0.0230 (0.1279)

w:0.25 0.0098 (−0.0974) 0.0069 (−0.0814) 0.0098 (−0.0976) 0.0138 (−0.1159)

Note: Value in parentheses indicates the bias.
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5. Real Data Example

In this section, we will analyze the tone perception data set (Cohen 1984) in
order to further illustrate the performance of the mixture regression model based
on the skew t distribution on a real data set. In Cohen (1984) tone perception
experiment, a pure fundamental tone was played to a trained musician. Also, elec-
tronically obtained overtones were added, which were determined by a stretching
ratio. This ratio is between the adjusted tone and the fundamental tone. In the
experiment, 150 trials were performed by the same musicians. The aim of this
experiment was to find out how the tuning ratio affects the perception of the tone
and to decide if either of two musical perception theories was reasonable (see Co-
hen (1984) for more detailed explanations). This data set can be accessed by using
a fpc package (Henning 2013) in R. The variable perceived tone ratio is taken as
the response variable and the actual tone ratio variable is taken as the explanatory
variable. This data set has also been analyzed by Yao et al. (2014) and Song et al.
(2014) to test the performance of the mixture regression estimates based on the
t and Laplace distributions, respectively. Figure 1 shows the scatter plot and the
histogram of the perceived tone ratio. From these plots, it is clear that there are
two groups in the data; non-normality is also shows.
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Figure 1: (a) The scatter plot of the data. (b) Histogram of the perceived tone ratio.

We use this data set to compare the estimator’s performances both with and
without outliers cases. For the comparison of the mixture regression models, we
use the Akaike information criterion (AIC) (Akaike 1973), consistent AIC (CAIC)
(Bozdogan 1993), and the Bayesian information criterion (BIC) (Schwarz 1978)
values, which have the following form

−2`(Θ̂) +mcn,

where `(·) is the maximized log-likelihood, m is the number of parameters to be
estimated, and cn is the penalty term. We use cn = 2 for AIC, cn = log(n) for BIC
and log(n) + 1 for CAIC. We present the scatter plots with the fitted regression
lines obtained from the MixregN, Mixregt, MixregSN, and MixregST procedures in
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Figure 2 for the tone perception data set. Also, we summarize the ML estimates,
standard errors (SE) of estimates, and some information criteria in Table 3. For
all mixture regression models, the standard errors of estimates are calculated using
the Fisher information-based method (see Basford, Greenway, McLachlan & Peel
1997). Note that in real data example, we set the normal mixture regression
estimates as initial values for the mixing probability and regression coefficients.
We also take small value from skewness parameters and we assume that in both
groups the degrees of freedom are equal to 2. We try other values of degrees of
freedom and get similar results. We observe that MixregST has the best fit than
the other mixture regression models in terms of AIC, CAIC, and BIC criterion
values.
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Figure 2: Fitted mixture regression lines for the tone perception data set. (a): dashed
line- MixregN, solid line-Mixregt, (b): dashed line- MixregN, solid line-
MixregSN, (c): dashed line- MixregN, solid line-MixregST, (d): dashed line-
MixregSN, solid line-MixregST.

Next, we add ten pairs of outliers at (0,5). These points are shown in Figure
3 by an asterisk. These outliers can be considered as high leverage points. By
adding these points, we want to see the performance of the estimators against the
high leverage points. Figure 3 displays the scatter plots of the data set with the
fitted regression lines obtained from MixregN, Mixregt, MixregSN, and MixregST
procedures. The Table 4 presents the ML estimation results. We can see that
MixregN and MixregSN are drastically affected by the high leverage points. On
the other hand, the estimators based on the t and the skew t distributions (Mixregt
and MixregST) give fits to the majority of the data without influencing from the
high leverage points. Also, MixregST gives the best results in terms of information
criteria. Note that the estimates, including the estimates for skewness parameters
with and without outliers, are very similar (see Tables 3 and 4).
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Figure 3: Fitted mixture regression lines with ten outliers at (0,5). (a): dashed line-
MixregN, solid line-Mixregt; (b): dashed line- MixregN, solid line-MixregSN;
(c): dashed line- MixregN, solid line-MixregST; (d): dashed line-MixregSN,
solid line-MixregST.

Table 3: ML estimates, SE of estimates and some information criteria for fitting mixture
regression models to the tone perception data set.

MixregN Mixregt MixregSN MixregST

Estimate SE Estimate SE Estimate SE Estimate SE

β̂10 1.91637 0.02259 1.95857 0.01755 1.92157 1.08982 1.95232 0.05878

β̂11 0.04254 0.01044 0.02642 0.00782 0.04254 0.01053 0.03094 0.02299

β̂20 −0.01927 0.12571 0.01776 0.03975 −0.05439 0.49340 0.00544 0.01118

β̂21 0.99229 0.04721 0.99181 0.01835 0.99096 0.69809 0.99815 0.00331

σ̂1 0.04619 0.00382 0.02805 0.00389 0.04648 0.11867 0.03903 0.00192

σ̂2 0.13283 0.00836 0.02096 0.00328 0.13817 0.13592 0.00327 0.00335

λ̂1 - - - - −0.4106 29.89308 −0.22245 0.00003

λ̂2 - - - - 0.36875 5.71451 0.44809 0.28316

ŵ1 0.69772 0.04724 0.55182 0.05352 0.69775 0.06488 0.64037 0.43502

`(Θ̂) 141.19840 190.81770 141.24909 211.65935

AIC −268.39680 −367.63541 −264.49818 −405.31870

CAIC −240.32235 −339.56096 −228.40247 −369.22298

BIC −247.32235 −346.56096 −237.40247 −378.22298

Note: Bold value indicates the smallest values of AIC, CAIC and BIC.
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Table 4: ML estimates, SE of estimates and some information criteria for fitting mixture
regression models to the tone perception data set with ten outliers at (0,5).

MixregN Mixregt MixregSN MixregST

Estimate SE Estimate SE Estimate SE Estimate SE

β̂10 1.90577 0.02686 1.95289 0.02635 1.92316 1.56013 1.96201 0.03431

β̂11 0.04707 0.01294 0.02877 0.01177 0.04722 0.01745 0.02960 0.01683

β̂20 4.40096 0.41131 0.02512 0.04855 4.37160 4.75098 0.00567 0.00324

β̂21 -0.79538 0.17740 0.98808 0.02157 -0.79334 0.24530 0.99810 0.00189

σ̂1 0.05060 0.00391 0.03999 0.00426 0.05946 0.15277 0.05356 0.00504

σ̂2 0.85912 0.14761 0.02795 0.00496 1.06486 2.30277 0.00306 0.00002

λ̂1 - - - - 0.12257 33.27402 -0.27627 0.19334

λ̂2 - - - - 0.57263 7.37487 0.45105 0.48747

ŵ1 0.73677 0.03747 0.60833 0.05431 0.73624 0.07519 0.67532 0.05843

`(Θ̂) 54.09971 77.57685 39.83069 108.07958

AIC −94.19942 −141.15371 −61.66139 −198.15916

CAIC −65.67320 −112.62749 −24.98483 −161.48260

BIC −72.67320 −119.62749 −33.98483 −170.48260

Note: Bold value indicates the smallest values of AIC, CAIC and BIC.

6. Conclusions

In this paper, we have explored a robust mixture regression procedure based on
the skew t distribution. For the proposed mixture regression model, we have given
an EM-type algorithm to compute the estimates. We have presented a simulation
study to compare the performance of the estimators based on the skew t distribu-
tion with the performance of estimators obtained from mixture regression model
based on normal, t, and skew normal distributions. The simulation results con-
firm that when heavy-tailedness and skewness are present, the proposed estimators
behave better than their counterparts. We have also given a real data example
to further illustrate the capability of the proposed estimators in dealing with the
outliers and/or high leverage points in the data. Likewise, for the real data, our
proposed estimators show superiority over the estimators based on normal, t and,
skew normal.
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Appendix

If a random variable Y has the skew t distribution (ST(ξ, σ2, λ, ν)) with the
location parameter ξ ∈ R, scale parameter σ2 ∈ (0,∞), skewness parameter λ ∈ R
and degrees of freedom ν, it has the following stochastic representation (Azzalini
& Capitaino 2003)

Y = ξ + σ
Z√
τ
, Z ∼ SN(λ), τ ∼ Gamma(ν/2, ν/2),

where Z and τ are independent and SN shows the skew normal distribution, re-
spectively. Also, we can further give the following stochastic representation for Z,
which has already given by (Azzalini 1986, p. 201) and (Henze 1986, Theorem 1)

Z = δλ | U1 | +
√

1− δ2
λU2,

where U1 and U2 are independent standard normal random variables and | U1 |
will have truncated normal distribution. This stochastic representation can be
used to obtain the following conditional distributions

Y | γ, τ ∼ N(ξ + σδλγ,
1− δ2

λ

τ
σ2),

γ | τ ∼ TN(0,
1

τ
; (0,∞)).

These conditional distributions will help us to undertake the steps of the EM
algorithm. According to Proposition 2 of Lin et al. (2007), we can obtain the
following conditional expectations for τ, γτ, γ2τ , and log(τ) given Y = y

E(τ | y) =

(
ν + 1

η2 + ν

)Tν+3

(
M
√

ν+3
ν+1

)
Tν+1(M)

,

E(γτ | y) = δλ
(y − ξ)
σ

E(τ | y) +

√
1− δ2

λ

πσf(y)

(
η2

ν(1− δ2
λ)

+ 1

)−( ν2 +1)

,

Revista Colombiana de Estadística 40 (2017) 45–64



64 Fatma Zehra Doğru & Olcay Arslan

E(γ2τ | y) = δ2
λ

(y − ξ)2

σ2
E(τ | y) + (1− δ2

λ)

+
δλ(y − ξ)

√
1− δ2

λ

πσ2f(y)

(
η2

ν(1− δ2
λ)

+ 1

)− ν2 +1

,

E(log τ | y) = DG

(
ν + 1

2

)
− log

(
η2 + ν

2

)

+

(
ν + 1

η2 + ν

)(Tν+3

(
λη
√

ν+3
η2+ν

)
Tν+1

(
λη
√

ν+1
η2+ν

) − 1

)

+
λη(η2 − 1)√

(ν + 1)(η2 + ν)3

tν+1

(
λη
√

ν+1
η2+ν

)
Tν+1

(
λη
√

ν+1
η2+ν

)
+

1

Tν+1

(
λη
√

ν+1
η2+ν

) ∫ M

−∞
gν(x)tν+1(x)dx,

where M = λη
√

ν+1
η2+ν and

gν(x) = DG

(
ν + 2

2

)
−DG

(
ν + 1

2

)
− log

(
1 +

x2

ν + 1

)
+

x2(ν + 1)− ν − 1

(ν + 1)(ν + 1 + x2)
.

Note that these conditional expectations will be used in the EM algorithm pre-
sented in Section 3.
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