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Abstract

In this paper, we consider the problem of improving the efficiency of a
linear combination of two estimators when the population coefficient of vari-
ation is known. We generalized the discussion from the case of a parameter
to a function of are interested parameter. We show that two estimators ob-
tained from a improved linear combination of two estimators and a linear
combination of two improved estimators are equivalent in terms of efficiency.
We also show how a doubly-improved linear combination of two estimators
can be constructed when the population coefficient of variation is known.
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Resumen

En este artículo, se considera el problema de mejorar la eficiencia de
una combinación lineal de dos estimadores cuando el coeficiente de variación
poblacional es conocido. Se generaliza el caso de un solo parámetro al de
una función del parámetro. Se muestra que hay equivalencia, en términos
de eficiencia, entre usar combinaciones lineales mejoradas y combinaciones
lineales de estimadores mejorados. También se muestra como construir una
combinación lineal doblemente mejorada cuando el coeficiente de variación
poblacional es conocido.
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1. Introduction

In many practical inferential studies some prior information such as coefficient
of variation (CV), kurtosis or skewness of population are available in advance.
Using prior information to improve the efficiency of a given estimator has been
considered in literature, repeatedly Searls (1964) and Arnholt & Hebert (2001)
proposed an improved estimators for the population mean given the population
CV. Wencheko & Wijekoon (2007) improved their results and obtained a shrunken
estimator for the mean of one parameter exponential families. Also, given the
population CV, Khan (1968) constructed a convex combination of two uncorre-
lated and unbiased estimators of the population mean with minimum mean square
error (MSE). Improved estimators for the population variance that utilize the
population kurtosis have been discussed by many authors notably Searls (1964),
Kleffe (1985), Searls & Intarapanich (1990), Kanefuji & Iwase (1998), Wencheko
& Chipoyera (2005) and Subhash & Cem (2013). In this regard, Laheetharan &
Wijekoon (2010) proposed an improved estimator for the population variance and
compared it with other estimators based on the scaled squared error loss function.
The problem of finding improved estimators given an additional information has
also been considered, for situations in which the dimension of sufficient statistics
is grater than the dimension of the interested parameter. Gleser & Healy (1976)
considered the problem of minimizing the MSE of a non-convex combination of
two uncorrelated and unbiased estimators given a known population coefficient of
variation. Samuel-Cahn (1994) expand their solution to a more general case for
two correlated and unbiased estimators. Also, Arnholt & Hebert (1995) discussed
non-convex combination of two correlated and biased estimators for an unknown
parameter when the CV of both two estimators are known. It should be noted
that the process of finding improved estimator usually leads to a biased estimator;
therefore, the MSE criterion plays a main role in all results due to its empha-
sis on both variance and biasness of estimators. Some important results related
to improving biased estimators are given by Bibby (1972), Bibby & Toutenburg
(1977) and Bibby & Toutenburg (1978). The following theorems provide some of
the most important results related to the problem of finding improved estimators
in the presence of some prior information.

Theorem 1 (Arnholt & Hebert, 2001 and Laheetharan & Wijekoon, 2011).
Let X = (X1, . . . , Xn)

′
be a random sample from a population with distribu-

tion f(x|θ) and T1(X) and T2(X) be estimators of θ, possibly correlated with
E(Ti(X)) = kiθ, i = 1, 2. Suppose that the ratios νi = V ar(Ti)

θ2 , i = 1, 2 are
free from θ and V ar(T1(X)) < V ar(T2(X)). Under these conditions, the estima-
tor T ∗(X) = α∗1T1(X) + α∗2T2(X) uniformly has the minimum MSE among all
estimators that are linear in T1(X) and T2(X), where

α∗1 =
1− ρλ

k1(1− 2ρλ+ λ2 + (1− ρ2)(ν1/k2
1))

,

α∗2 =
λ(λ− ρ)

k2(1− 2ρλ+ λ2 + (1− ρ2)(ν1/k2
1))

.
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Furthermore, λ2 =
k22ν1
k21ν2

and ρ = Cov(T1(X),T2(X))√
V ar(T1(X))V ar(T2(X))

are known and free from θ.

Theorem 2 (Laheetharan & Wijekoon, 2010). Let X = (X1, . . . , Xn)
′

be a
random sample from a population with distribution f(x|θ) and g(θ) be a real-
valued function on the parameter space Θ. Let T1(X) and T2(X) be point es-
timators of g(θ) with E(Ti(X)) = kig(θ), where ki ∈ <. Then, the estimators
T ∗i (X) = α∗i Ti(X), i = 1, 2 uniformly have the minimum MSE among all esti-
mators in class of CTi(αi) = {αiTi(X) | 0 < αi < ∞}, where α∗i = ki

k2i+τ2
i

and

τ2
i = V ar(Ti(X))

[g(θ)]2 , i = 1, 2 are free from θ. Furthermore, if k2 < k1(τ2/τ1) then
T ∗1 (X) has smaller MSE and if k2 > k1(τ2/τ1), then T ∗2 (X) has smaller MSE.

In this paper, we consider the problem of improving the efficiency of a linear
combination of two estimators, when the population CV is known. The rest of pa-
per is organized as follows: in Section 2, we briefly review the main results related
to the improved linear combination of estimators. In Section 3 we generalized the
discussion from the case of a parameter to a function of an interested parameter by
expanding the results of Gleser & Healy (1976) and and Arnholt & Hebert (2001).
In section 4, we show that two estimators obtained from a improved linear combi-
nation of two estimators and a linear combination of two improved estimators are
the same in terms of efficiency. In section 5, we show that how a doubly-improved
linear combination of two estimators can be construct when the population CV is
known. In section 6, we provide some illustrative examples.

2. Improved Linear Combination of Two Estimators
for a Parameter

In this section, we briefly review the main results related to an improved linear
combination of estimators, when some additional information is available.

Using some prior information may reduce the dimension of parameter space.
For example, when the coefficient of variation ν = σ

µ is known, the distribution of
N(µ, σ2), µ 6= 0 can be written as N(µ, ν2µ2) due to the equation σ2 = ν2µ2. It
can be seen that the dimension of sufficient statistics, (X̄, S2), is more than the
dimension of the parameter of interest, µ. In this situation using only a part of
the sufficient statistics leads to a loss of some information about the parameter
of interest. Therefore, the simultaneous use of two or more estimator is necessary
to achieve more possible information about the parameter of interest. One can
use a combination of estimators to construct an efficient estimator. Khan (1968)
proposed the optimal combinations of two independent and unbiased estimators of
the population mean when the sampling distribution is normal and the population
coefficient of variation, ν, is known. Consider T1(X) = X̄n, T2(X) = cnS, cn =
(n1/2Γ((n− 1)/2))/((2a)1/2Γ(n/2)), as two unbiased and independent estimators
for µ, where S is the sample standard deviation and a =

√
ν. Then, the shrinkage

estimator

T (X) = α∗X̄ + (1− α∗)cnS,
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is the optimal combination of estimators X̄ and cnS, where α∗ = dn/(dn + n−1a)
and dn = [n−1(n − 1)acn

2 − 1]. Of course, it is not necessary to restrict these
combinations to be convex. Gleser & Healy (1976) considered a more general case
with T = α1T1 + α2T2, where Ti are any independent and unbiased estimators of
θ and α1 + α2 is not necessarily equal to 1. The only restriction is that the ratios
ν2
i = θ2V ar(Ti), i = 1, 2 are free from θ, where νi denotes the CV of estimator
Ti. This restriction holds, for example, when the Ti, i = 1, 2 are unbiased and
ν is known. Since the estimator T is not necessarily convex, it is not necessarily
an unbiased estimator for θ. The authors showed that the optimal weights in this
case are given by

α∗1 =
ν2

ν1 + ν2 + ν1ν2
, α∗2 =

ν1

ν1 + ν2 + ν1ν2
.

Samuel-Cahn (1994) studied another generalized case of optimizing a convex com-
bination of two unbiased, dependent estimators with a known correlation coeffi-
cient ρ. They derived the optimal weight as α∗ = (1− ρλ)/(1− 2ρλ+ λ2), where
λ2 = V ar(T1)/V ar(T2). The authors assumed that λ2 is known and free from θ.
It should be noted that when the estimators CV are known and free from θ for
both estimators, this restriction is held.

3. Improved Linear Combination of Two Estimators
for a Function of a Parameter

In a population with distribution f(x|θ) there are different interested param-
eters such as mean, variance, etc. these appear as different functions of θ, hence
it is interesting to look for improved estimators for a function of a parameter. In
recent years some authors, notably Laheetharan & Wijekoon (2010), have con-
sidered the problem of finding improved estimators for a function of an interested
parameter, say g(θ). In this section, we derived an optimal shrinkage estimator for
a function of a parameter with assumption of known population CV. The following
lemma, which is left without proof, provides a preliminary necessary fact for the
next theorem.

Lemma 1. Let T (X) be an estimator of parameter θ and g(·) be a real valued
function, where E(T (X)) = kg(θ). If the population CV is known, then the ratio
τ2 = V ar(T (X))

[g(θ)]2 is free from θ.

Using the Lemma 1, we improved the Gleser & Healy (1976) and Arnholt
& Hebert (2001) results to estimate a function of parameter, g(θ), in the next
theorem.

Theorem 3. Let X = (X1, . . . , Xn)
′

be a random sample from a population
with distribution f(x|θ) and let T1(X) and T2(X) be estimators for g(θ), possi-
bly correlated with E(Ti(X)) = kig(θ), and i = 1, 2. Under these conditions,
T ∗LC(X) = α∗1T1(X) + α∗2T2(X) uniformly has the minimum MSE among all es-
timators in the class CT1,T2(α1, α2) = {α1T1(X) + α2T2(X) | 0 < α1, α2 < ∞},
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where

α∗1 =
1− ρλ

k1(1− 2ρλ+ λ2 + (1− ρ2)(τ2
1 /k

2
1))

,

α∗2 =
λ(λ− ρ)

k2(1− 2ρλ+ λ2 + (1− ρ2)(τ2
1 /k

2
1))

.

(1)

In addition, τ2
i = V ar(Ti(X))

[g(θ)]2 , λ2 =
k22τ

2
1

k21τ
2
2

and ρ = Cov(T1(X),T2(X))√
V ar(T1(X))V ar(T2(X))

are known

and free from θ.

Proof . Let TLC(X) = α1T1(X) + α2T2(X); 0 < α1, α2 < ∞. Without loss of
generality, we assume that k1, k2 > 0, then

MSE(TLC(X)) = V ar(TLC(X)) + bias2(TLC(X))

= V ar(α1T1(X) + α2T2(X))

+ [E(α1T1(X) + α2T2(X))− g(θ)]2

= α2
1V ar(T1(X)) + α2

2V ar(T2(X))

+ 2α1α2ρ
√
V ar(T1(X))V ar(T2(X))

+ (α1k1 + α2k2 − 1)2[g(θ)]2.

(2)

Differentiating (2) with respect to α1 and α2 and equating it to zero leads to the
following system of equations:

∂MSE(TLC(X))
∂α1

= 2α1V ar(T1(X))) + 2α2ρ
√
V ar(T1(X))V ar(T2(X))

+2k1[g(θ)]2(α1k1 + α2k2 − 1) = 0,
∂MSE(TLC(X))

∂α2
= 2α2V ar(T2(X))) + 2α1ρ

√
V ar(T1(X))V ar(T2(X))

+2k2[g(θ)]2(α1k1 + α2k2 − 1) = 0.

(3)

The solutions of equations (3) are given by

α∗1 =
(1− α∗2k2)k1g(θ)

2 − α∗2ρ
√
V ar(T1(X))V ar(T2(X))

V ar(T1(X)) + k2
1g(θ)

2

k1 − α∗2(k1k2 + ρτ1τ2)

k2
1 + τ2

1

(4)

α∗2 =
(1− α∗1k1)k2g(θ)

2 − α∗1ρ
√
V ar(T1(X))V ar(T2(X))

V ar(T2(X)) + k2
2g(θ)

2

=
k2 − α∗1(k1k2 + ρτ1τ2)

k2
2 + τ2

2

.

(5)

Substituting (4) in (5), we have

α∗2 =
k2 − k1−α∗2(k1k2+ρτ1τ2)

k21+τ2
1

(k1k2 + ρτ1τ2)

k2
2 + τ2

2

=
k2τ

2
1 − ρk1τ1τ2 + α∗2k

2
1k

2
2 + 2α∗2ρk1k2τ1τ2 + α∗2ρ

2τ2
1 τ

2
2

(k2
1 + τ2

1 )(k2
2 + τ2

2 )
.
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Therefore

α∗2 =
k2τ

2
1 − ρk1τ1τ2

(k2
1 + τ2

1 )(k2
2 + τ2

2 )− k2
1k

2
2 − 2ρk1k2τ1τ2 − ρ2τ2

1 τ
2
2

=
λ(λ− ρ)

k2(1 + λ2 − 2ρλ− (1− ρ2)
τ2
1

k21
)
.

Similarly, we have

α∗1 =

k1 − λ(λ−ρ)

k2(1+λ2−2ρλ−(1−ρ2)
τ21
k21

)
(k1k2 + ρτ1τ2)

k2
1 + τ2

1

=
1− ρλ

k1(1 + λ2 − 2ρλ− (1− ρ2)
τ2
1

k21
)
.

The second order partial derivations of (2) with respect to α1 and α2 given by
∂2MSE(TLC(X))

∂α2
1

= 2V ar(T1(X)) + 2k2
1[g(θ)]2

∂2MSE(TLC(X))
∂α2

2
= 2V ar(T2(X)) + 2k2

2[g(θ)]2,
(6)

which are both positive, therefore α∗1 and α∗2 minimize the value ofMSE(TLC(X)),
and the estimator T ∗LC(X) = α∗1T1(X) + α∗2T2(X) uniformly has the minimum
MSE among all estimators in the class CT1,T2(α1, α2) = {α1T1(X) + α2T2(X) |
0 < α1, α2 <∞}.

Obviously, Theorem 3 is assumptions are culmination of the required assump-
tions for Theorems 1 and 2, which are provided in the section. The next corollary
is an immediate consequence of Theorem 3.

Corollary 1. The estimators proposed by Arnholt & Hebert (2001) can be obtained
as special cases, in Theorem 3, for g(θ) = θ and τ2

i = νi,. Also, for g(θ) = θ,
ki = 1, ρ = 0 and τ2

i = νi, we obtained Gleser & Healy (1976) results.

4. Linear Combination of Two Improved
Estimators

One may expected, intuitively, that using two estimators with improved effi-
ciency to construct an optimal linear combination, leads to a more efficient esti-
mator. In the other words, it may be expected that improving the two estimators
T1(X) and T2(X) by using Theorem 2 and then constructing an optimal combi-
nation of these improved estimators by Theorem 3 leads to a more efficient linear
combination. The following theorem shows that this intuitive expectation is not
true. In fact, it shows that two estimators obtained from an improved linear com-
bination of two estimators and a linear combination of two improved estimators
are equivalent, in terms of efficiency.
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Theorem 4. Suppose based on Theorem 2, T ∗1 (X) and T ∗2 (X) are improved ver-
sions of estimators T1X) and T2(X), respectively. Let T ∗LC(X) = α∗1T1(X) +
α∗2T2(X) is the optimal Linear Combination (LC) of T1(X) and T2(X), based
on Theorem 3. If T ∗LCI(X) = α∗∗1 T ∗1 (X) + α∗∗2 T ∗2 (X) be the optimal Linear
Combination of Improved (LCI) estimators T ∗1 (X) and T ∗2 (X), respectively, then
T ∗LCI(X) = T ∗LC(X).

Proof . Let TLCI(X) = α1T
∗
1 (X) + α2T

∗
2 (X) = α1b1T1(X) + α2b2T2(X); 0 <

α1, α2 < ∞.
Without loss of generality, we assume that k1, k2 > 0. Then,

MSE(TLCI(X)) = V ar(TLCI(X)) + bias2(TLCI(X))

= V ar(α1b1T1(X) + α2b2T2(X))

+ (E(α1b1T1(X) + α2b2T2(X))− g(θ))2,

= α2
1b

2
1V ar(T1(X)) + α2

2b
2
2V ar(T2(X))

+ 2α1α2b1b2ρ
√
V ar(T1(X))V ar(T2(X))

+ (α1b1k1 + α2b2k2 − 1)2(g(θ))2.

(7)

Differentiating (7) with respect to α1 and α2 and equating to zero leads to the
following system of equations:

∂MSE(TLCI(X))
∂α1

= 2α1b
2
1V ar(T1(X))) + 2α2b1b2ρ

√
V ar(T1(X))V ar(T2(X))

+2k1[g(θ)]2(α1k1 + α2k2 − 1) = 0,
∂MSE(TLCI(X))

∂α2
= 2α2V ar(T2(X))) + 2α1ρ

√
V ar(T1(X))V ar(T2(X))

+2k2[g(θ)]2(α1k1 + α2k2 − 1) = 0.
(8)

The solutions of equation (8) are given by

α∗∗1 =
(1− α∗2b2k2)b1k1g(θ)

2 − α∗2b1b2ρ
√
V ar(T1(X))V ar(T2(X))

b21[V ar(T1(X)) + k2
1g(θ)

2
]

=
k1 − α∗2b2(k1k2 + ρτ1τ2)

b1(k2
1 + τ2

1 )
,

(9)

α∗∗2 =
(1− α∗1b1k1)b2k2g(θ)

2 − α∗1b1b2ρ
√
V ar(T1(X))V ar(T2(X))

b22[V ar(T2(X)) + k2
2g(θ)

2
]

=
k2 − α∗1b1(k1k2 + ρτ1τ2)

b2(k2
2 + τ2

2 )
.

(10)

Substituting (9) in (10) we have the following,

α∗∗1 =
1

b1

1− ρλ
k1(1 + λ2 − 2ρλ− (1− ρ2)

τ2
1

k21
)

=
1

b1
α∗1,

α∗∗2 =
1

b2

λ(λ− ρ)

k2(1 + λ2 − 2ρλ− (1− ρ2)
τ2
1

k21
)

=
1

b2
α∗2,
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where α∗1 and α∗2 presented in equation (1). Then

T ∗LCI(X) = α∗∗1 T ∗1 (X) + α∗∗2 T ∗2 (X)

=
α∗1
b1
T ∗1 (X) +

α∗∗2
b2

T ∗2 (X)

= α∗1T1(X) + α∗2T2(X)

= T ∗LC(X).

5. A Doubly-Improved Linear Combination of Two
Estimators

In this section, we show how a Doubly-Improved (DI) linear combination of
two estimators of a parameter can be construct when the population CV is known.
In the next theorem, we try to further improve the improved linear combination
estimator that resulted from Theorem 3 by applying Theorem 2.

Theorem 5. Consider the assumptions of Theorem 3. Suppose T ∗LC(X) = α∗1T1(X)+
α∗2T2(X) are the optimal linear combination of estimators T1(X) and T2(X) where
α∗1 and α∗2 are given in equation (1). Then,

a) The doubly-improved estimator T ∗DI(X) = α∗T ∗LC(X) uniformly has the min-
imum MSE among all estimators of g(θ) that are in the class CT∗LC (α) =

{αT ∗LC(X) | α ∈ (0,∞)} where α∗ = k
k2+τ2 .

b) The minimum value of MSE(T ∗DI(X)) is given by τ2

k2+τ2 [g(θ)]2

Proof . a) Since

T ∗DI(X) = αT ∗LC(X); 0 < α <∞,
E(T ∗LC(X)) = (α∗1k1 + α∗2k2)g(θ) = kg(θ),

k = α∗1k1 + α∗2k2,

τ2 =
V ar(T ∗LC(X))

[g(θ)]2
= α∗1

2τ2
1 + α∗2

2τ2
2 + 2α∗1α

∗
2ρτ1τ2,

hence,

E(T ∗DI(X)) = αE(T ∗LC(X))

= α(α∗1k1g(θ) + α∗2k2g(θ))

= α(α∗1k1 + α∗2k2)g(θ)

= αkg(θ).
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Also, V ar(T ∗DI(X)) = V ar(αT ∗LC(X)) = α2V ar(T ∗LC(X))). Therefore the MSE of
T ∗DI(X) ∈ CT∗s (α) that is obtained is:

MSE(T ∗DI(X)) = V ar(T ∗DI(X)) + bias2(T ∗DI(X))

= V ar(αT ∗LC(X)) + [E(αT ∗LC(X))− g(θ)]2

= α2V ar(T ∗LC(X)) + (αk − 1)2[g(θ)]2.

Due to following system of equations{
∂MSE(T∗DI(X))

∂α = 2αV ar(T ∗LC(X)) + 2k(αk − 1)[g(θ)]2,
∂2MSE(T∗DI(X))

∂α2 = 2V ar(T ∗LC(X)) + 2k2[g(θ)]2 > 0,
(11)

it can be easily shown that the estimator T ∗DI(X) = k(k2 + τ2)−1T ∗LC(X) has the
minimum MSE in the class CT∗LC (α).
b) We have

min
α∗

MSE(T ∗DI(X)) = min
α∗

MSE(α∗T ∗LC(X))

= min
α∗
{α∗2V ar(T ∗LC(X)) + [E(α∗T ∗LC(X))− g(θ)]2}

=
k2

(k2 + τ2)2
V ar(T ∗LC(X)) +

τ4

(k2 + τ2)2
[g(θ)]2

= [
g(θ)

k2 + τ2
]2(k2V ar(T

∗
LC(X))

[g(θ)]2
+ τ4)

= [
g(θ)

k2 + τ2
]2[k2τ2 + τ4]

=
τ2

k2 + τ2
[g(θ)]2.

6. Illustrative Examples

Using Theorem, 2 it is possible to obtain optimal shrunken estimators for both
the population mean, say T ∗µ(X), and the population variance, say T ∗σ2(X). Note
that if the population CV, ν, is known, then one can easily use the mean based
estimator T ∗σν2(X) = ν2[T ∗µ(X)]2 as another estimator for the population variance.
Laheetharan & Wijekoon (2010) compared the MSE of estimators T ∗σ2(X) and
T ∗σν2(X).

Suppose E(Tµ(X)) = k1µ and E(Tσ2(X)) = k2σ
2 are estimators of the popu-

lation mean and variance, respectively. Since the population CV is known, then
the estimator Tσν2(X) = ν2[Tµ(X)]2 can be considered as another estimator for
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the population variance. Hence, if V ar(Tµ(X)) = cσ2, we have the following

E(Tσ2(X)) = k2σ
2,

E(Tσν2(X)) = E(ν2[Tµ(X)]2)

= ν2[V ar(Tµ(X)) + E2(Tµ(X))]

= cν2σ2 + k2
1ν

2µ2

= (cν2 + k2
1)σ2

= kσν2σ2,

where k1, k2, kσ2
ν
and c are known constants. Using the above information,

and based on Theorems 4 and 5, we have the following theorem to estimate the
population variance.

Theorem 6. Let X = (X1, . . . , Xn)
′
be a random sample from a population with

distribution f(x|θ), and let Tσν2(X) and Tσ2(X) be estimators of σ2, possibly cor-
related with E(Tσν2(X)) = kσν2σ2 and E(Tσ2(X)) = k2σ

2. Then,

i) Based on Theorem 4, the linear combination T ∗LC(X) = ασν2
∗Tσν2(X) +

ασ2
∗Tσ2(X) uniformly has the minimum MSE of all estimators in the class

CTσν2 ,Tσ2
(ασν2 , ασ2) = {ασν2Tσν2(X) + ασ2Tσ2(X) | 0 < ασν2 , ασ2 < ∞},

where

α∗σν2 =
1− ρλ

kσν2(1− 2ρλ+ λ2 + (1− ρ2)(τ2
σν2/k2

σν2))
,

α∗σ2 =
λ(λ− ρ)

k2(1− 2ρλ+ λ2 + (1− ρ2)(τ2
σν2/k2

σν2))
.

(12)

Also, τ2
σν2 =

V ar(Tσν2 )

[σ2]2 ,τ2
σ2 =

V ar(Tσ2 )

[σ2]2 , λ2 =
k22τ

2
σν2

k2
σν2τ

2
σ2

and

ρ =
Cov(Tσν2(X), Tσ2(X))√
V ar(Tσν2(X))V ar(Tσ2(X))

are known and free from σ2.

ii) Since

E(T ∗LC(X)) = (ασν2
∗ + ασ2

∗k2)σ2 = kσ2,

and

τ2 =
V ar(T ∗LC(X))

[σ2]2

= [ασν2
∗]2τ2

σν2 + [ασ2
∗]2τ2

σ2 + 2ασν2
∗ασ2

∗ρτσν2τσ2

is free from σ2 and known, based on Theorem 5, the doubly-improved es-
timator T ∗DI(X) = α∗T ∗LC(X) uniformly has the minimum MSE of all σ2

estimators that are in the class CT∗LC (α) = {αT ∗LC(X) | α ∈ (0,∞)}, where
α∗ = k

k2+τ2 .
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Example 1. Let X = (X1, . . . , Xn)′ be a random sample from a population with
a location-scale exponential distribution E(θ, θ), given by

f(x) =
1

θ
exp(

x− θ
θ

)I(θ,+∞)(x).

Since the estimators T1(X) = X(1) and T2(X) =
∑n
i=1(Xi − X(1)) are jointly

sufficient statistics for g(θ) = θ, our motivation is to use a combination of these
two estimators. We can to estimate an interested parameter. It is easy to shaw
that the mean and variance of T1 and T2 are given by

E(T1(X)) =
n+ 1

n
θ,

V ar(T1(X)) =
1

n2
θ2,

(13)

and

E(T2(X)) = (n− 1)θ,

V ar(T2(X)) = (n− 1)θ2,
(14)

respectively. Hence, based on the notation of Theorem 3.1, we have k1 = n+1
n ,

k2 = n − 1, τ2
1 = 1

n2 , τ2
2 = n − 1, λ2 = 1

(n+1)2 , ρT1,T2 = −1. Therefore, according
to equation (1), the improved linear combination of two estimators T1 and T2 is
given by T ∗LC(X) = α∗1T1(X) + α∗2T2(X), where

α∗1 =
n

n+ 2
,

α∗2 =
1

(n− 1)(n+ 2)
.

(15)

This improved estimator uniformly has the minimum MSE among all estimators
in the class CT1,T2

(α1, α2) = {α1T1(X) + α2T2(X) | 0 < α1, α2 < ∞}. The value
of MSE for an improved estimator has been computed for different sample sizes
and plotted in Figure 1. Decreasing the value of MSE by increasing the sample
size, indicates that the improved shrinkage estimator will become more consistent.

Example 2. Let X = (X1, . . . , Xn) be a random sample from a population with
normal distribution N(θ, θ2). This is a curved exponential family with a two-
dimensional sufficient statistic. The joint minimal sufficient statistic for g(θ) = θ2

is (T1(X), T2(X)) = (X̄2,
∑n
i=1(Xi − X̄)2) and the following equations hold for

these estimators:

E(T1(X)) =
n+ 1

n
θ2,

V ar(T1(X)) =
12n2 + 2

n2
θ4,

E(T2(X)) = (n− 1)θ2,

V ar(T2(X)) = 2(n− 1)θ4.

(16)
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Figure 1: MSE of the improved shrinkage estimator for estimation of g(θ) = θ2 versus
sample size in E(θ,θ) distribution.

Hence, based on Theorem 3.1 is notation, we obtain k1 = n+1
n , k2 = n − 1, τ2

1 =
12n2+2
n2 , τ2

2 = 2(n−1), λ2 = (6n2+1)(n−1)
(n+1)2 and ρ

T1,T2
= 0 due to the independence of

X̄ and S2 in normal distribution. Therefore, according to Equation (1), improved
linear combination of two estimators T1 and T2 is given by T ∗LC(X) = α∗1T1(X) +
α∗2T2(X), where

α∗1 =
n(n+ 1)

3

(n+ 1)
4

+ 2(n− 1)(6n2 + 1)
2 ,

α∗2 =
(n+ 1)

2
(6n2 + 1)

(n+ 1)
4

+ 2(n− 1)(6n2 + 1)
2 .

Again, this improved estimator uniformly has the minimum MSE among all esti-
mators in the class CT1,T2

(α1, α2) = {α1T1(X) +α2T2(X) | 0 < α1, α2 <∞}. The
value for the improved estimator has been computed for different sample sizes and
plotted in Figure 2. Decreasing the value of MSE by increasing the sample size
indicates that the improved shrinkage estimator becoming more consistent.

Example 3. Let X = (X1, . . . , Xn)′ be a random sample from a population with
Inverse Gaussian distribution IG(θ, θ). Let

T1(X) =
1

n

n∑
i=1

1

Xi
,

T2(X) =
1

X̄
,

(17)
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Figure 2: MSE of the improve shrinkage estimator for estimation of g(θ) = θ versus
sample size in N(θ,θ2) distribution.

and g(θ) = 1
θ . It is easy to see that the mean and variance of T1 and T2 are given

by

E(T1(X)) =
2

θ
,

V ar(T1(X)) =
3

nθ2
,

(18)

and

E(T2(X)) =
n+ 1

nθ
,

V ar(T2(X)) =
n+ 2

n2θ2
,

(19)

respectively. To compute the coefficient of correlation between T1 and T2, let
V =

∑n
i=1( 1

Xi
− 1

X̄
), Then

V ar(V ) = V ar(

n∑
i=1

(
1

Xi
− 1

X̄
))

=

n∑
i=1

V ar(
1

Xi
− 1

X̄
)

= n(V ar(
1

Xi
) + V ar(

1

X̄
)− 2Cov(

1

Xi
,

1

X̄
))

= n(
3

θ2
+
n+ 2

n2θ2
− 2Cov(

1

Xi
,

1

X̄
)).

Therefore,

Cov(
1

Xi
,

1

X̄
) =

3

2θ2
+
n+ 2

2n2θ2
− 1

2n
V ar(V ). (20)
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From Inverse Gaussian distribution we know that E(V p) = 2p

θp
Γ(n+2p−1

2 )

Γ(n−1
2 )

, (see for
example, Singh & Pandit 2008). Therefore,

V ar(V ) = E(V 2)− E(V )
2

=
4

θ2
c(n),

(21)

where c(n) =
[

Γ(n+3
2 )

Γ(n−1
2 )
− (

Γ(n+1
2 )

Γ(n−1
2 )

)2
]
. Substituting (21) in (20), we have

Cov(
1

Xi
,

1

X̄
) =

3

2θ2
+
n+ 2

2n2θ2
− 2

nθ2
c(n)

= k(n)
1

θ2
,

where k(n) =
[

3
2 + n+2

2n2 − 2c(n)
n

]
. Therefore, the coefficient of correlation between

T1 and T2 obtained is:

ρ
T1,T2

=
Cov(T1, T2)√
V ar(T1)V ar(T2)

=
Cov( 1

n

∑n
i=1

1
Xi
, 1
X̄

)√
V ar(T1)V ar(T2)

=
1
n

∑n
i=1 Cov( 1

Xi
, 1
X̄

)√
V ar(T1)V ar(T2)

=
Cov( 1

Xi
, 1
X̄

)√
V ar(T1)V ar(T2)

= h(n),

(22)

where h(n) = k(n)√
3n+6

n3

is a free from θ quantity. Considering the equations (18), (19)

and (22), and based on the notation of Theorem 3.1, we have k1 = 2, k2 = n+1
n ,

τ2
1 = 3

n , τ
2
2 = n+2

n2 , λ2 = 3n(n+1)2

4(n+2)2
and ρ

T1,T2
= h(n). Therefore, according to

equation (1), the improved linear combination of two estimators T1 and T2 is
given by T ∗LC(X) = α∗1T1(X) + α∗2T2(X) where,

α∗1 =
1− h(n) (n+1)

√
3n

2(n+2)

2
(
1− h(n)(n+1)

√
3n

n+2 + 3n(n+1)2

4(n+2)2
+ (1− h(n)

2
)( 9

4n2 )
) ,

α∗2 =

(n+1)
√

3n
2(n+2)

( (n+1)
√

3n
2(n+2) − h(n)

)
n+1
n

(
1− h(n)(n+1)

√
3n

n+2 + 3n(n+1)2

4(n+2)2
+ (1− h(n)

2
)( 9

4n2 )
) .

This improved estimator, uniformly has the minimum MSE among all estima-
tors in class CT1,T2

(α1, α1) = {α1T1 + α2T1}. The value of MSE for improved
estimators has been computed for different sample sizes and plotted in Figure
3. Decreasing the value of MSE by increasing the sample size indicates that the
improved shrinkage estimator becomes more consistent.
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Figure 3: MSE of improved shrinkage estimator for the estimation of g(θ) = 1/θ versus
sample size in IG(θ,θ) distribution.

7. Discussion and Results

Sometimes the complete information about the interested parameter is dis-
tributed in two or more different estimators. In these situations, using only one
of given estimators leads to loss of information of other estimators. Therefore,
a combination of estimators must be employed to achieve a more efficient esti-
mator. Moreover, it is interesting to look for improved estimators for a general
form function of interested parameters, say g(θ). In recent years, some authors,
notably Laheetharan & Wijekoon (2010), have been considered the problem in
term of finding improved estimators for a function of an interested parameter. In
this context, we have presented an optimal shrinkage estimator for a general form
function of an interested parameter with an assumption of a known population
coefficient of variation. We have also showed that two estimators obtained from
the improved linear combination of two estimators and the linear combination of
two improved estimators are equivalent, in terms of efficiency.

We think that using other coefficients of distributions, as additional information
to be able to achieve a more efficient linear combination of two or more estimators,
is an interesting field of research. Future studies will need to address this problem.
Of course, it is our opinion that using the coefficient of variation in this direction,
as an informative coefficient of distribution, will remain forever interesting. In fact,
whenever prior information about the size of coefficient of variations is available,
the shrinkage procedure could be useful. The possible results for some distributions
with particular properties may be more interesting. For example, considering
one-parameter exponential family of distributions is quite interesting. In some
members of this distributions family such as normal, Poisson, gamma, binomial
and negative binomial, it is known that variance is at most a quadratic function
of the mean. Therefore, identifying the pertinent coefficients in the quadratic
function is equivalent to determining the coefficient of the variations. As is obvious
from theorems’ assumptions, one can use any correlated or uncorrelated pair of
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estimators to construct an optimal linear combination to estimate any parametric
function of an interested parameter. The results show that the efficiency of the
proposed improved shrinkage estimator increase when the sample size increases.[

Received: June 2015 — Accepted: April 2016
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