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Abstract

This paper considers the modeling of the threshold autoregressive (TAR)
process, which is driven by a noise process that follows a Student’s t-dis-
tribution. The analysis is done in the presence of missing data in both
the threshold process {Zt} and the interest process {Xt}. We develop a
three-stage procedure based on the Gibbs sampler in order to identify and
estimate the model. Additionally, the estimation of the missing data and the
forecasting procedure are provided. The proposed methodology is illustrated
with simulated and real-life data.
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Resumen

En este trabajo consideramos el modelamiento de los modelos autoregre-
sivos de umbrales (TAR) con datos faltantes tanto en la serie de umbrales
como la serie de interés cuando el proceso del ruido blanco sigue una distribu-
ción t de student. Desarrollamos un procedimiento de tres etapas basado en
el muestreador de Gibbs para identificar y estimar el modelo, además de la
estimación de los datos faltantes y el procedimiento para el pronóstico. La
metodología propuesta fue aplicada a datos simulados y datos reales.
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1. Introduction

TAR models proposed by Tong (1978) assume that the values of a process
{Zt} (the threshold process) determine not only the values of the process of inter-
est {Xt}, but also its dynamics. When the threshold process is the same process
of interest but is lagged, the model is known as SETAR (Self-exciting TAR, Briñez
& Nieto, 2005). Nieto (2005) developed a Bayesian methodology for the identifi-
cation and estimation of TAR models allowing missing data in the both threshold
process and the process of interest. On the other side, Nieto (2008, 2011) char-
acterized in univariate TAR models in terms of their mean, conditional mean,
variance, conditional variance and also found the expressions for the best predic-
tor. Vargas (2012) improved the prediction with TAR models, taking into account
the variability in the parameters and Nieto & Moreno (2013) explored three kinds
of conditional variance in order to try to compare this type of nonlinear models
with GARCH models. Also the TAR models can be easily extended to thresh-
old autoregressive moving average (TARMA) models, and its Bayesian modeling
with two regimes has been investigated in Sáfadi & Morettin (2000) and Xia, Liu,
Pan & Liang (2012). Another extension of the TAR model is when there are two
threshold variables instead of one and this is done by Chen, Chong & Bai (2012)
within the particular case of two regimes.

Despite TAR models usefulness, they are not easily identified due to the large
number of parameters and the nesting structure between the parameters. For SE-
TAR models, Tsay (1989) provided a simple and widely applicable model-building
procedure. However, generally speaking, most of the parameters, as the thresh-
olds and the number of regimes, are assumed to be known; otherwise they can be
identified using Tong (1990)’s NAIC criterion together with some graphical tech-
niques. Assuming that the noise process is Gaussian, Nieto (2005) developed a
Bayesian procedure in order to identify the number of regimes and estimate the
other parameters, once the thresholds are identified, using NAIC criterion for each
possible number of regimes. This work is accomplished in the presence of missing
data in both the process of interest and the threshold process.

In many cases, the data cannot be appropriately described by the Gaussian
distribution; for example, it is well-known that financial time series often have
heavy tails, and the t-distribution could be more appropriate for the noise process
than the Gaussian distribution. Zhang (2012) estimated the parameters of the
TAR model with t distributed error process when the model is completely identi-
fied. However, in practice, the identification problem may be difficult to be carry
out, because this requires some additional knowledge about the phenomenon and
this fact is particularly unrealistic due to the complex model structure. The focus
of this work is to propose a Bayesian methodology which includes model identi-
fication in the TAR modelling. Specifically, a three-stage methodology based on
the Gibbs sampler is proposed: in the first stage, the number of regimes together
with the thresholds are estimated; in the second, the autoregressive orders in the
regimes are estimated, and finally, in the last stage, the autoregressive orders, the
variance weights and other parameters of the noise process are estimated. In this
way, the identification of the model takes place in the first two stages, and the

Revista Colombiana de Estadística 38 (2015) 239–266



TAR Modeling with Missing Data 241

estimation of the model in the last stage. Additionally, a Bayesian methodology
for the estimation of missing data and the forecasting issue is developed. The
methodologies developed are illustrated with simulated and real-life data in the
finance field.

The work is organized as follows: in Section 2, we introduce the TAR model
with t distributed noise process; in Section 3, we present the estimation procedure
for the non structural parameters when the structural parameters are known; in
Section 4, we present the identification for the structural parameters; in Sections
5 and 6, we present forecasting and missing-data estimation procedures. Finally,
in Section 7, we illustrate the developed methodology in simulated and real-life
data.

2. TAR Model with T -Distributed Noise

In order to introduce the TAR model, first suppose that the set of real numbers
is divided in l disjoint intervals as R =

⋃l
j=1Rj where Rj = (rj−1, rj ], where

r1 < · · · < rl−1 and r0 = −∞, rl = ∞. The R1, . . . , Rl are denomited the
regimes and the values r1, . . . , rl−1 are denominated the thresholds. Let {Zt}
be a stochastic process with stochastic behaviour described by a Markov chain of
order p called the threshold process and let {Xt} be the process of interest.

The dynamic of the process {Xt} is determined by the process {Zt} in the way
that when Zt ∈ Rj = (rj−1, rj ] for some j = 1, . . . , l the model for {Xt} is

Xt = a
(j)
0 +

kj∑
i=1

a
(j)
i Xt−i + h(j)et. (1)

The values k1, . . . , kl are nonnegative integer numbers representing the autore-
gressive orders in the l regimes, that is, different autoregressive orders are allowed
in different regimes. h(j) > 0 for j = 1, . . . , l, Nieto & Moreno (2013) found that
the parameters (h(j))2 correspond to the variance of Xt conditional on the regime
and the past values of X, the so-called type II conditional variance. With respect
to the noise process {et}, Nieto (2005) uses a Gaussian distribution, in this paper a
Student’s t-distribution is used. However, in order to mantain the interpretation of
(h(j))2 mentioned before, we use a t-distribution with degrees of freedom n divided
by its standard deviation

√
n/(n− 2), that is, et ∼iid tn√

n/(n−2)
with n > 2, which

is mutually independent from the process {Zt}; in this way, V ar(et) = 1 for all t
and hence, following Nieto & Moreno (2013), (h(j))2 = V ar(Xt|Rj , xt−1, . . . , x1).
Additionally, we assume that {Zt} is exogenous in the sense that there is no feed-
back of {Xt} towards it.

Nieto & Moreno (2013) found conditions on the coefficients a(j)
i to achieve

stationarity when the distribution for the noise process is Gaussian; however, as
pointed out by Nieto (2005), the stationarity is not required for the correct imple-
mentation of the proposed Bayesian methodology; we have the same situation in
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this paper and the corresponding conditions for stationarity deserve future inves-
tigations.

The parameters of the model can be divided into two groups:

• Structural parameters: the number of regimes l, the l − 1 thresholds r1, . . .,
rl−1 and the autoregressive orders of the l regimes k1, . . ., kl.

• Non-structural parameters: the autoregressive coefficients a(j)
i with i =

0, . . . , kj and j = 1, . . . , l, the variance weights h(1), . . ., h(l) and the de-
grees of freedom of the noise process, n.

In this research, we use the following notation: θ′j = (a
(j)
0 , a

(j)
1 , . . . , a

(j)
kj

)′ for
j = 1, . . . , l, θ′ = (θ′1, . . . ,θ

′
l)
′. and h′ = (h(1), . . . , h(l))′.

2.1. Conditional Likelihood Function of the Model

According to Nieto (2005) and conditioned upon the values of the structural pa-
rameters, the initial values xk = (x1, . . . , xk)′, where k = max{k1, . . . , kl} and the
observed data of the threshold process z = (z1, . . . , zT )′, the conditional likelihood
function is given by:

f(x|z,θx,θz) = f(xk+1|xk, z,θx,θz) · · · f(xT |xT−1, . . . , x1, z,θx,θz),

where θz denotes the vector of parameters of the threshold process {Zt} and
θx denotes the vector of all the non structural parameters, that is θ′x = (θ′,h′, n).
As et ∼ tn√

n/(n−2)
, for t = k+1, . . . , T , the variable xt|xt−1, . . . , x1, z is distributed

as a tn variable multiplied by h(jt)√
n/(n−2)

and adding a(jt)
0 +

∑kjt
i=1 a

(jt)
i xt−i, where

jt = j if Zt ∈ Rj = (rj−1, rj ] for some j = 1, . . . , l. That is, the distribution of
xt, conditioned upon the past values of x and z, is the non-standardized Student’s
t-distribution with n degrees of freedom, location parameter a(jt)

0 +
∑kjt
i=1 a

(jt)
i xt−i

and scale parameter h(jt)√
n/(n−2)

. Thus,

f(xt|xt−1, . . . , x1, z,θx,θz) =

Γ(n+1
2 )√

π(n− 2)Γ(n2 )

1

h(jt)

1 +

[
xt − a(jt)

0 −
∑kjt
i=1 a

(jt)
i xt−i

]2
(h(jt))2(n− 2)


−n+1

2

.

Consequently, the conditional likelihood function is given by

f(x|z,θx,θz) =[
Γ(n+1

2 )√
π(n− 2)Γ(n2 )

]T−k T∏
t=k+1

[
h(jt)

]−1 T∏
t=k+1

(
1 +

e2
t

n− 2

)−n+1
2

, (2)

with et = 1
h(jt)

(
xt − a(jt)

0 −
∑kjt
i=1 a

(jt)
i xt−i

)
and jt = j when Zt ∈ Rj .
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3. Estimation of Non Structural Parameters

In this part of the research, the structural parameters are assumed to be known,
and we focus on finding the posterior conditional distributions of the autoregres-
sive coefficients θj , the variance weights h(j) with j = 1, . . . , l and the degrees
of freedom of the noise process n. Additionally we assume prior independence
between the parameters θ, h and n, as well as prior independence among the non
structural parameters in each one of the l regimes.

The prior distribution for the vector θj is a multivariate normal distribution
with mean vector θ0,j and covariance matrix V−1

0,j , denoted as θj ∼ N(θ0,j ,V
−1
0,j ),

and the posterior conditional distribution of θj is given by the following result:

Proposition 1. For each j = 1, . . . , l, the conditional distribution of θj given the
structural parameters θi, with i 6= j, h, and n is given by

p(θj |θi, i 6= j,h,x, z, n) ∝
∏

{t:jt=j}

1 +

[
xt − a(j)

0 −
∑kj
i=1 a

(j)
i xt−i

]2
(h(j))2(n− 2)


−n+1

2

× exp

{
−1

2
(θj − θ0,j)

′V0,j(θj − θ0,j)

}
.

(3)

Note that the posterior conditional distribution of θj is affected only by h(j),
but not the other components of h in regimes different from j, so we have some
class of posterior independence between regimes.

Now, with respect to the variance weights h(j), we follow the standard Bayesian
methodology assigning an inverse Gamma distribution with shape parameter α and
scale parameter β, (IG(α, β)), as the prior distribution of (h(j))2, that is,

p((h(j))2) ∝ (h(j))−2α−2 exp{−β/(h(j))2}I(0,∞)((h
j)2).

Combining this prior distribution of (h(j))2 and the conditional likelihood func-
tion, we have the following posterior conditional distribution (h(j))2:

Proposition 2. For each j = 1, . . . , l, the posterior distribution of (h(j))2 given
the structural parameters, θj, j = 1, . . . , l, h(i), with i 6= j and n, is given by

p((h(j))2|θ1, . . . ,θl, h
(i), i 6= j,x, z, n)

∝
∏

{t:jt=j}

1 +

[
xt − a(j)

0 −
∑kj
i=1 a

(j)
i xt−i

]2
(h(j))2(n− 2)


−n+1

2

× (h(j))−2α−2−nj exp{−β/(h(j))2}.

(4)

Note that, the posterior conditional distribution of (h(j))2 is affected only by
θj , but not by θi with i 6= j, so again we have the posterior independence between
θj , h(j) in different regimes.
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Finally, we found the posterior conditional distribution of the degrees of free-
dom of the noise process n. The prior distribution of n is a Gamma distri-
bution following the suggestion of Watanabe (2001), since in the distribution
Gamma(α′, β′), the expectation and the variance are given by α′β′ and α′β′2,
respectively. Actually, α′ and β′ can be chosen according to prior knowledge
about n, and in case that there is no prior information about n, we can choose a
quite large prior variance to represent the high degree of uncertainty in the prior
information of n. The prior distribution of n is given by

p(n) ∝ nα
′−1 exp{−n/β′}.

Using this prior distribution, we find the posterior conditional distribution
of n.

Proposition 3. The posterior conditional distribution of the degrees of freedom
of the noise process {et} is given by

p(n|θ1, . . . ,θl,h,x, z)

∝

[
Γ(n+1

2 )
√
n− 2 Γ(n2 )

]T−k T∏
t=k+1

1 +

[
xt − a(jt)

0 −
∑kjt
i=1 a

(jt)
i xt−i

]2
(h(jt))2(n− 2)


−n+1

2

× nα
′−1 exp{−n/β′}.

(5)

In conclusion, the estimation of non structural parameters can be carried out
by means of a Gibbs sampler, using the conditional densities (3), (4) and (5).
We use the grid method to simulate values from these distributions; in order to
define the parameter space, we fit an autoregressive AR(p) model (where p =
max{k1, . . . , kl}) and use the estimation plus and minus two times the standard
error as the parameter space. For example, suppose that l = 2, k1 = 1 and k2 = 2,
and the estimated coefficients of the AR(2) model are 0.8 and -0.4 with standard
error 0.1 and 0.2, then the parameter space for a(1)

1 and a(2)
1 would be (0.6,1) and

the parameter space for a(2)
2 would be (-0.8,0). Also for the coefficients h(j) we

take into account the estimation of the error variance in the AR(2) fitting. Finally,
for the degree of freedom n, we choose the parameter space to be (2,30), since the
t distribution has no finite variance when n ≤ 2 and would be too similar to a
normal distribution for n > 30.

4. Estimation of Structural Parameters

In this section, we develop the results concerning the estimation of the struc-
tural parameters, i.e. the identification of a TAR model. Firstly, we assume that
the number of regimes l and the l − 1 thresholds are known, and we estimate
the autoregressive orders in these regimes; then we consider the case where the
thresholds are known, and finally, we have the general case, where all the structural
parameters are unknown.
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4.1. Estimation of the Autoregressive Orders k1, . . . , kl

As we assume that the number of the regimes and the thresholds are known,
remaining parameters to be estimated are the autoregressive orders and the non-
structural parameters.

We assume that the autoregressive orders k1, . . . , kl are realizations of discrete
random variables K1, . . . ,Kl, and each of theses variables takes value in the set
{0, 1, . . . , kmax}. It is important to note that when the values of some autoregres-
sive orders change, the specification of the TAR model changes and the dimension
of the vector of the autoregressive coefficients Θ also changes. Carlin & Chib
(1995) developed a Bayesian methodology for the selection of models, and Nieto
(2005) adapted this methodology in order to identify the TAR model with Gaus-
sian noise. In this research, we adapt the same methodology to identify the TAR
model with t distributed noise. Suppose that M is a discrete random variable in-
dexing the model which takes values 1, . . . , (kmax + 1)l. For each possible model
M = m, we define the vector of parameters Θm as Θ′m = (θ′1, . . . ,θ

′
l,h
′) for the

model m with m = 1, . . . , (kmax+1)l. The degrees of freedom n can be considered
as a nuisance parameter, since its dimension is the same for all models as well as
its interpretation.

Carlin & Chib (1995) found the following conditional densities

p(M = m|Θ,y) =
p(y|Θm, M = m)P (M = m)∑
m′ p(y|Θ

′
m, M = m′)P (M = m′)

. (6)

where Θ = {Θ1, . . . ,Θ(kmax+1)l}, y = (x, z) is the vector of full data. And

p(Θm|Θm′ 6=m,M,y) ∝

{
p(y|Θm, M = m)p(Θm|M = m) if M = m,

p(Θm|M = m) if M 6= m.
(7)

The densities p(Θm|M = m) are denominated as the link functions which can
be taken as the prior distribution of Θm.

In the context of the problem of identification of the autoregressive orders, the
model indicator M is determined jointly by the values of variables K1, . . . ,Kl.
In this way, computing the density (6) is equivalent to computing the densities
p(kj |Θ, ki,i 6=j ,y) with j = 1, . . . , l, because when we know the conditional dis-
tribution of each kj , we can sample values of kj by using a Gibbs sampler and,
thus, we can sample values of the model indicator M . In order to compute these
densities, Nieto (2005) found that

p(kj |Θ, ki,i 6=j , l,x, z) =
p(x|z,Θ,h,k, l)p(kj)∑k̄j

k′j=0 p(x|z,θ,h,k′, l)p(k′j)
, (8)

where k = (k1, . . . , kl), and k′ is obtained by replacing the component kj of
the vector k by k′j for all j = 1, . . . , l.
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In summary, using the densities (3), (4), (5) and (8), a Gibbs sampler can be
implemented in order to obtain the estimations of the probabilities of all the possi-
ble values for each Kj with j = 1, . . . , l. Denoting these estimated probabilities as
p̂0j , p̂1j , . . . , p̂kmaxj , we can choose the value of Kj for which the highest probability
is associated.

4.2. Estimation of the Number of Regimes l

In order to estimate the number of regimes, we use again the approach devel-
oped in Nieto (2005) adapting the methodology of Carlin & Chib (1995). Suppose
that the number of regimes l is the realization of a discrete random variable L
which takes values in the set {2, . . . , lmax}, and the prior distribution of L is de-
noted by p(l).

Clearly, when the value of l changes, the model specification also changes; we
have lmax − 1 possible models. Suppose that M is the discrete random variable
indexing the model, then M takes values 2, . . ., lmax, and for each possible model,
M = j, Θj denotes the vector of the parameters in this model, that is:

Θ′j = (θ′1, . . . ,θ
′
j ,h
′
j ,k
′
j , n),

with k′j = (k1j , . . . , kjj)
′, where kij denotes the autoregressive order in the i-

th regime in the model M = j, h′j = (h(1), . . . , h(j))′. Finally, we define Θ′ =

(Θ′2, . . . ,Θ
′
lmax

), the vector containing all the parameters for all the possible mod-
els.

Nieto (2005) found the following conditional densities

p(M = j|Θ,y) = p(l|Θ,y) ∝ p(x|z,Θl, l)p(l) for l = 2, . . . , lmax, (9)

p(kij |Θ−kij , l,y) =


p(x|z,Θl, l)p(kij)∑kmax

k′il=0 p(x|z,Θl, l)p(k′il)
if j = l,

p(kij) if j 6= l,

(10)

where Θ−kij denotes the vector Θ without the element kij , and

p(θj , h
(j)|Θ−θj ,h(j) , l,y) ∝

{
p(y|Θl, l)p(Θl) if j = l,

p(Θj) if j 6= l,
(11)

where Θ−θj ,h(j) denotes the vector Θ without the components θj and h(j).

Jointly using the conditional densities (9), (10), (11) and (5), we can implement
a Gibbs sampler and obtain the posterior probabilities for all possible values of L.
The estimation of the number of regimes l could be the value with major posterior
probability or the mode of the value of L in the iterations of the Gibbs sampler.
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4.3. Estimation of the Number of Regimes l and the
Thresholds

Finally, we assume that the l − 1 thresholds are also unknown, and they need
to be estimated jointly with the number of regimes l. Following the approach of
Carlin & Chib (1995), the model is indexed by a discrete variable M , which takes
values 2, . . . , lmax according to the value of the variable L. For each possible model
M = j, the thresholds are denoted as rj = (r1, . . . , rj−1)′ with j = 2, . . . , lmax.

It is straightforward to obtain the posterior conditional density of rj given the
values of other structural and non-structural parameters, given by

p(rj |l,Θ−rj ,y)

∝


T∏

t=k+1

[h(jt)]−1
T∏
t=1

1 +

[
xt−a(jt)0 −

∑kjt
i=1 a

(jt)
i xt−i

]2
(h(jt))2(n−2)

−
n+1
2

if j = l,

p(rj) if j 6= l,

(12)

where jt = j if Zt ∈ Rj = (rj−1, rj ] for some j = 1, . . . , l. The posterior conditional
density of l is given by (9). Note that the expression in (12) depends on the
thresholds rj since jt = j if Zt ∈ Rj = (rj−1, rj ], so Rj and jt depend on the
thresholds, and so does the expression (12). In this way, using the posterior
conditional density of rj , l, and Θj , we can implement a Gibbs sampler and obtain
the estimation of the number of regimes and thresholds. In order to extract samples
from this density, we use the grid method where the parameter space consists of
all possible ordered values of Zt.

With respect to the prior density of rj , we recall that the values of the thresh-
olds are based on the values of the process {Zt}, so we can assume that the
thresholds take values in a interval (a, b), appropriately specified; furthermore, we
assume a uniform distribution for the thresholds r1, . . ., rj−1, that is

p(rj) = p(r1, . . . , rj−1) ∝ k if a < r1 < · · · < rj−1 < b,

for j = 2, . . . , lmax.

4.4. Proposed Algorithm

In conclusion, a three-stage process is proposed for the identification and es-
timation of TAR models with t-distributed noise with no missing data. This
algorithm consists of the following steps:

1. The number of regimes and thresholds are estimated using a Gibbs sampler
based on the densities (9), (10), (11), (12) and (5).

2. The number of regimes and thresholds are fixed and the autoregressive orders
are estimated using a Gibbs sampler based on the densities (7), (8) and (5).
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3. Finally, conditioned upon the estimated structural parameters, we estimate
the non-structural parameters using a Gibbs sampler with densities (3), (4)
and (5).

5. Forecasting

In order to develop the predictive inference, we focus on finding the posterior
predictive distribution of the variable XT+h conditional on the observed xT =
(x1, . . . , xT ) and zT = (z1, . . . , zT ) with h > 0. Vargas (2012) worked on the
formal Bayesian approach to find the predictive density of XT+h involving the
variability in the parameters of the model; this predictive density is given by:

p(xT+h|xT , zT ) =

l∑
j=1

p(xT+h|Rj ,xT , zT )pj(h),

where pj(h) = P (ZT+h ∈ Rj |xT , zT ), for h = 1, 2, . . ., and j = 1, . . . , l, and

p(xT+h|Rj ,xT , zT ) =

∫
Θj

p(xT+h,θ
(j)|Rj ,xT , zT )dθ(j)

=

∫
Θj

p(xT+h|θ(j), Rj ,xT , zT )p(θ(j)|Rj ,xT , zT )dθ(j),

(13)

where θ(j) denotes the vector of the non-structural parameters in the regime j,
and

p(xT+h|θ(j), Rj ,xT , zT ) =

∫
· · ·
∫
p(xT+h|θ(j), Rj ,xT+h−1)

× p(xT+h−1|θ(j), Rj ,xT+h−2)

× · · · × p(xT+1|θ(j), Rj ,xT )dxT+1 · · · dxT+h−1.

(14)

On the other hand, in order to forecast the threshold variable ZT+h, Nieto
(2008) found that:

p(zT+h|zT ) =

∫
· · ·
∫
p(zT+h|zT+h−1, zT+1, zT )

× p(zT+h−1|zT+h−2, zT+1, zT ) · · · p(zT+1|zT )dzT+1 · · · dzT+h−1. (15)

Based on the equations (13), (14) and (15), we can compute forecasts for
both processes {Xt} and {Zt}. In order to draw values from p(zT+h|zT ) with
h = 1, 2, . . ., Congdon (2001) suggests to draw a value for zT+1 from p(zT+1|zT ),
then draw value for zT+2 from p(zT+2|zT+1, zT ) and so on.

On the other hand, in order to forecast the process {Xt}, notice that p(xT+h|
xT , zT ) is a mixture density, so we just draw a value from p(xT+h|Rj ,xT , zT ) with
probability pj(h). Secondly, we note that each term p(xT+m|θ(j), Rj ,xT+m−1, ) for
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m = 1, . . . , h corresponds to the density of a non-standarized Student’s t-distribu-

tion with n degrees of freedom, location parameter a(j)
0 +

kj∑
i=1

a
(j)
i xT+m−i and scale

parameter h(j)√
n/(n−2)

. This concludes the forecasting process.

6. Estimation of Missing Data

We assume that there are missing observations in both processes {Xt} and
{Zt} and that the observed data of {Xt} are located in time points t1, . . . , tN with
1 ≤ t1 ≤ · · · ≤ tN ≤ T ; similarly, the observed data of {Zt} are located in time
points s1, . . . , sM with 1 ≤ s1 ≤ · · · ≤ sM ≤ T . The estimation of these missing
data can be carried out using the approach of Nieto (2005) as shown below.

The TAR model without missing data can be put in state space form taking
the state vector as αt = (Xt, Xt−1, . . . , Xt−k+1)′, with k = max{k1, . . . , kl}, as:

Xt = Hαt, (16)
αt = CJt +AJtαt−1 +RJtωt, (17)

where H = (1, 0, . . . , 0), ωt = (et, 0, . . . , 0)′ and Jt = j if Zt ∈ Rj . For each
j = 1, . . . , l, Cj = (a

(j)
0 , 0, . . . , 0)′,

Rj =

(
h(j) 0′

0 0

)
and

Aj =

(
a

(j)
1 a

(j)
2 · · · a

(j)
k−1 | a

(j)
k

Ik−1 | 0

)
,

where a(j)
i = 0 for i > k and Ik−1 denote the identity matrix of order k − 1.

The equation (16) is the observation equation and the equation (17) is the state
equation. As pointed by Nieto (2005), this state space form corresponds to a state
space model with regime switching and can be analysed efficiently using MCMC
simulation procedure.

When there are missing data, the state space form in (16) can be modified to
include such missing data; the new observation equation is:

Xt = Htαt + δtW,

where Ht = H and δt = 0 if t ∈ {t1, . . . , tN} and Ht = 0′ and δt = 1, otherwise,
W is a discrete random variable with Pr(W = w0) = 1 for some point w0 in the
support of Xt. The state equation remains the same.

Since the optimal estimates of the missing data, in the sense of minimum mean
square error criterion, are the conditional expectations of the missing data given
observed data, we need to sample from the density p(xm, zm|xo, zo), where xm
and zm denote the missing data set, and xo and zo denote the observed data set.
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Nieto (2005) states that this goal can be achieved by sampling from p(α, z|x),
where x and z are constituted by full data x1, . . . , xN and z1, . . . , zN , and the
missing data are replaced by artificial data, for example, the median of {xt} and
{zt} and α = (α1, . . . ,αT )′.

Nieto (2005) propose the use of a Gibbs sampler in order to draw samples from
p(z|α,x) and p(α|z,x). The density p(z|α,x) it is found to be:

p(z|α,x) = p(zT |α,x)

T−p∏
t=1

p(zt|zt+p,xt,αt),

where zt = (zt−p+1, . . . , zt), αt and xt are similarly defined, and

p(zT |α,x) ∝
T∏

j=T−p+1

p(αj |zT , αj−1)fp(zT )

and for t = T − p, . . . , 1

p(zt|zt+p,αt,xt) ∝ p(αt|zt+p−1,αt−1)fp(zt+p|zt+p−1)fp(zt+p−1).

Finally, in order to sample values from the joint distribution of p(α|z,x), note
that

p(α|z,x) = p(αT |αT−1, . . . ,α1, z,x)p(αT−1|αT−2, . . . ,α1, z,x) · · · p(α2|α1, z,x),

where sampling each term p(αt|αt−1, . . . ,α1, z,x) is equivalent to sample values
from αt|αt−1, Zt since αt = (Xt, Xt−1, . . . , Xt−k+1)′; and this is equivalent to
sample values from the density p(Xt|Xt−1, . . . , Xt−k, Zt), so we just need to sam-
ple values from the density of a non-standardized Student’s t-distribution with n

degrees of freedom, location parameter a(j)
0 +

kj∑
i=1

a
(j)
i xT+m−i and scale parameter

h(j)√
n/(n−2)

.

In summary, the estimation of missing data in TAR models can be carried out
as follows:

1. Completion of the time series replacing the missing data {xt} and {zt}, with
their respective median.

2. Identification and estimation of the TAR model using the completed time
series following the algorithm presented in subsection 2.4.

3. Estimation of the missing data by means of a Gibbs sampler using the above
methodology.

4. Re-estimation of the TAR model with the missing data replaced by their
estimates.
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7. Illustrations

7.1. Simulated Examples

In this section we present two simulation examples in order to illustrate the
performance of the proposed methodology.

7.1.1. Example 1

We simulated a series {xt} of 100 observations from the model:

Xt =

{
1 + 0.5Xt−1 − 0.3Xt−2 + et if Zt ≤ 0

−0.5− 0.7Xt−1 + 1.5et if Zt > 0,
(18)

with et ∼ t5√
5/3

, Zt = 0.5Zt−1 + εt and εt is a Gaussian white noise process of

mean 0 and variance 1 (GWN(0,1)). The simulated series are shown in Figure 1.

Time
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0
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0 20 40 60 80 100

−4
0

4

Figure 1: Simulated data in example1.

In the first stage, we identified the number of regimes and the thresholds.
Following Nieto, Zhang & Li (2013), the prior distribution for l is the Poisson
distribution truncated1 in the set {2, 3, 4} with parameter 3, and the prior distri-
bution of the thresholds is as described above. We run a Gibbs sampler of 1,000
iterations with a burn-in period of 200. In order to ensure that for each parame-
ter, the draws have converged to the posterior distribution, we use the Geweke’s
Z-score plot (Geweke 1992) from the package coda in R (Plummer, Best, Cowles &
Vines 2006). Geweke’s Z-score computes the difference between the means of the
first and last part of the draws of a Markov chain, and the plot shows the values
of the Z-score where successively larger numbers (at most half of the chain) of
iterations are removed from the beginning of the chain. For the number of regimes
and autoregressive orders, we monitor the corresponding posterior probabilities.
Since there are a lot of parameters in the model, we cannot show all the plots, only

1Note that we have excluded the value 1 which corresponds to a linear AR model, in real
applications, non-linear should be carried out.
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a few where we consider that the burn-in period of 200 iterations is appropriate
(Figure 2).
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Figure 2: Geweke’s Z-score for some of the parameters in the Gibbs sampler.

The posterior probability of the number of regimes is given in Table 1, where we
can see that the number of regimes associated with the largest posterior probability
is 2.

Table 1: Posterior probability for the number of regimes L in example 1.

l 2 3 4
Posterior probability 0.60 0.40 0

The estimation of the threshold is 0.08462. The 95% credible interval for the
threshold is given by (-0.2892, 0.6737) containing the real threshold 0.

2For a certain model l = j, the possible values of the thresholds rj are the quantiles of the
process {Zt}, after removing the thresholds that induce regimes with too little data; in this case,
we eliminate the thresholds that induce any regime with less than 20 data.
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In the second stage, we estimated the autoregressive order in each of the two
regimes where the number of regimes is fixed to be 2 and the value of the threshold
to be 0.0846. The prior distribution for kj is the truncated Poisson distribution
with parameter 2 in the set {0, 1, 2, 3}3 for each j = 1, 2. We run a Gibbs sampler
of 1,000 iterations, and obtained the posterior probabilities for k1 and k2 displayed
in Table 2. We can see that the identified autoregressive orders are k̂1 = 2 and
k̂2 = 1, corresponding to the real autoregressive orders.

Table 2: Posterior probabilities of the variables K1 and K2 in example 1.

Autoregressive order Regime
1 2

0 0.00 0.00
1 0.00 0.72
2 0.51 0.17
3 0.49 0.11

Finally, we estimated the non-structural parameters: autoregressive coeffi-
cients, the variance weights and the degrees of freedom of the process of error.
The prior distribution for these parameters is: N(0, 10) for the autoregressive co-
efficients aji with i = 1, · · · , kj and j = 1, 2; distribution IG(2, 3) for the variance
weights (h(1))2 and (h(2))2; and distribution Gamma(1, 0.1) for the degrees of free-
dom n. In this way, the prior mean of n is 10 and the prior variance is 100, which
can be considered as a non-informative prior distribution.

We run another Gibbs sampler of 1,000 iterations; the estimation and the 95%
credible intervals of the autoregressive coefficients and the variance weights are
given in Table 3. These estimations are close to the true parameters and all the
95% credible intervals contain the true parameters.

Table 3: Estimation and 95% credible intervals for the non-structural parameters for
the simulated data in example 1.

Regime a
(j)
i h(j)

1 0.89 0.55 -0.41 0.95
(0.58, 1.20) (0.41, 0.68) (-0.52, -0.28) (0.74, 1.25)

2 -0.38 -0.67 1.49
(-0.74, 0.00) (-0.84, -0.52) (1.21, 1.89)

With respect to the degrees of freedom n, the results obtained from the Gibbs
sampler are displayed in Figure 4, where we noted that the values of n with large
posterior probability is around the true parameter 5. The posterior mean of n is
given by 7.25, and a 95% credible interval of n is given by (3.3, 21.56). In order
to check the appropriateness of the model, we use the CUSUM and CUSUMSQ
plot of the standardized residuals since to our knowledge, there is no investigation
about the distribution of the usual statistical tests in TAR models. These plots
are shown in the Figure (3) where we can see that the overall performance is good.

3The maximum autoregressive order is chosen to be the autoregressive order p of the linear
model AR(p) that best fitted the data, which is 3
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Figure 3: CUSUM and CUSUMSQ plot of the standardized residuals of the estimated
model in example 1.
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Figure 4: Histogram of the simulated values of the degrees of freedom n in example 1.

In conclusion, identification and estimation results were satisfactory, and we
proceeded with the illustration of the estimation of the missing data. We set the
number of missing data in the processes {Zt} and {Xt} to be 4 and 6, respectively,
and placed the missing data randomly. The resulting missing data for {Zt} and
{Xt} were situated at time points 8, 55, 63, 83 and 2, 13, 37, 41, 77, 80, respectively.
The estimation and the credible intervals for the missing data after 5000 iterations
are shown in Table 4. We can see that the overall performance of the procedure is
satisfactory except at time 63 for {Zt}, where the observed value lays beyond the
95% credible interval.
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Table 4: Estimation and 95% credible intervals for the missing data in example 1.

Process {Zt}
Time Observed Estimated Credible interval
8 -0.86 -0.37 (-2.0, 1.14)
55 -0.63 -0.33 (-1.8, 1.24)
63 -2.13 -0.14 (-1.67, 1.43)
83 -0.05 -0.42 (-2.21, 1.03)

Process {Xt}
Time Observed Estimated Credible interval
2 1.17 -0.19 (-3.10, 2.69)
13 -0.03 -0.95 (-3.81, 1.80)
37 -0.17 -0.35 (-3.15, 2.75)
41 -1.30 -1.22 (-4.05, 1.75)
77 -0.51 -1.73 (-4.72, 1.24)
80 0.65 0.16 (-2.697, 3.092)

Finally, we illustrate the forecast procedure where the sample period consid-
ered is 1-92, and the forecast horizon is set to be 8. We assume that non-structural
parameters are known and for each horizon we simulate 100 series from the model
(18). For each we estimate the structural parameters and compute the forecasting
value and the respective credible interval. In order to illustrate the results we com-
pute the percentage of these 100 credible intervals containing the true observation.
In Table 5 we show these percentages.

Table 5: Coverage of the credible intervals of forecasting results for the simulated {Xt}
in example 1.

Forecasting horizon
Coverage 1 2 3 4 5 6 7 8

Xt 1 1 1 1 1 1 1 1

Also we illustrate the predictive density using kernel density for one of the 100
iterations described before (see Figure 5).

7.1.2. Example 2

We simulated a series {xt} of 300 observations from the model

Xt =


1 + 0.5Xt−1 + et if Zt ≤ −0.6

0.5 + 0.2Xt−1 + 0.5Xt−2 + 1.5et if −0.6 < Zt ≤ 0.6

−0.5− 0.7Xt−1 + 2et if Zt > 0.6

,

with et ∼ t5√
5/3

, Zt = 0.5Zt−1 + εt and εt ∼ GWN(0, 1). The simulated series are

shown in Figure 6.
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Figure 5: Kernel density of the predictive densities with forecast horizon 1, . . ., 8.
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Figure 6: Simulated data in example 2.

In the first stage, we identified the number of regimes and the thresholds. The
prior distribution for l is the Poisson distribution truncated in the set {2, 3, 4} with
parameter 3, and the prior distribution of the thresholds is as described before.
We run a Gibbs sampler of 1,000 iterations and the posterior probability for all
the possible values of the number of regimes are shown in Table 6 suggesting that
l̂ = 3.

Table 6: Posterior probability for the number of regimes L in example 2.

l 2 3 4
Posterior probability 0.25 0.75 0

The estimation of the two thresholds are -0.6394 and 0.5205, respectively. In
Figure (7), we present the histogram of the simulated values for the threshold.
The 95% credible interval for the threshold is given by (−1.1701, 0.6956) and
(−0.3848, 1.1779), respectively, containing the real values of the two thresholds.
However, note that the histogram of the simulated thresholds seems to be bimodal,
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so we computed the median given by -1.08 and 0.723, which are slightly away from
the simulated values. In future research, we will do more simulations in order to
validate that , in the cases, the median works well.
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Figure 7: Histogram of the simulated values of the thresholds for three regimes in ex-
ample 2.

In the second stage, we estimated the autoregressive order in each of the two
regimes. The prior distribution for kj is the truncated Poisson distribution with
parameter 2 in the set {0, 1, 2, 3} for each j = 1, 2, 3. We run a Gibbs sampler
of 1,000 iterations, and obtained the posterior probabilities for K1, K2 and K3,
displayed in Table 7. We can see that the identified autoregressive orders are
k̂1 = 1, k̂2 = 2 and k̂3 = 1, corresponding to the real autoregressive orders.

Table 7: Posterior probabilities of the variables K1 and K2 in example 2.

Autoregressive order Regime
1 2 3

0 0 0 0
1 0.37 0 0.38
2 0.35 0.75 0.38
3 0.28 0.25 0.24

Finally, we estimated non-structural parameters: autoregressive coefficients,
variance weights and degrees of freedom of the process of error. The prior distri-
bution for these parameters is: N(0, 10) for the autoregressive coefficients aji with
i = 1, . . . , kj and j = 1, 2, 3; distribution IG(2, 3) for the variance weights (h(1))2

and (h(2))2; distribution Gamma(1, 0.1) for the degrees of freedom n, which can
be considered a non-informative prior distribution as discussed in the example 1.

We run another Gibbs sampler of 1,000 iterations; the estimation of the au-
toregressive coefficients and the variance weights are given in Table 8. These
estimations are close to the true parameters and, except for paramter a(2)

1 whose
value is 0.2, all the 95% credible intervals contain the true parameters.
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Table 8: Estimation and 95% credible intervals for the non-structural parameters in
example 2.

Regime a
(j)
i h(j)

1 0.94 0.53 1.21
(0.66, 1.22) (0.43, 0.63) (0.99, 1.47)

2 0.40 0.32 0.52 1.43
(0.19, 0.66) (0.21, 0.44) (0.39, 0.64) (1.19, 1.76)

3 -0.68 -0.61 1.82
(-0.97, -0.38) (-0.71, -0.49) (1.49, 2.24)

With respect to the degrees of freedom n, the results obtained from the Gibbs
sampler are displayed in Figure 8, where we noted that the values of n with large
posterior probability are around the true parameter 5. The posterior mean of n is
given by 5.11 and a 95% credible interval of n is given by (3.17, 8.92).
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Figure 8: Histogram of the simulated values of the degrees of freedom n in example 2.

The CUSUM and CUSUMSQ plot of standardized residuals of the estimated
model are shown in the Figure (9).

Since identification and estimation results are, generally speaking, satisfactory,
we proceeded with the estimation of the missing data. We set the number of
missing data in the processes {Zt} and {Xt} to be 10 in both series, and placed
the missing data randomly. The estimation and the credible intervals after 5000
iterations are shown in Table 9. We can see that the overall performance of the
procedure is satisfactory in the sense that all the observed data are within the 95%
credible interval.

Finally, we illustrate the forecast procedure where the sample period considered
is 1-290, and the forecast horizon is set to be 10. We assume that the non-structural
parameters are known and for each horizon we simulate 100 series from the model
(18). Like the previous example, we compute the percentage of these 100 credible
intervals containing the true observation. In Table 10 we show these percentages.

Revista Colombiana de Estadística 38 (2015) 239–266



TAR Modeling with Missing Data 259

0 50 100 150 200 250 300

−4
0

0
40

CUSUM

t

0 50 100 150 200 250 300

0.
0

0.
6

CUSUMSQ

t

Figure 9: CUSUM and CUSUMSQ plot of the standardized residuals of the estimated
model in example 2.

Table 9: Estimation and 95% credible intervals for the missing data in example 2.

Process {Zt}
Time Observed Estimated Credible interval
32 0.71 0.48 (-0.88, 2.03)
88 -0.55 -0.14 (-1.68, 1.32)
95 0.25 0.18 (-1.44, 1.76)
105 -0.67 0.01 (-1.64, 1.68)
116 1.90 0.36 (-1.08, 2.26)
180 -0.90 -0.12 (-1.76, 1.53)
181 -0.95 -0.31 (-2.11, 1.20)
213 0.92 0.06 (-2.09, 2.36)
292 -0.53 -0.07 (-2.06, 1.93)
293 -1.17 0.12 (-2.15, 2.22)

Process {Xt}
Time Observed Estimated Credible interval
3 4.05 2.62 (0.11, 5.08)
46 -1.85 -0.50 (-2.66, 1.80)
82 -1.46 -1.92 (-2.50, 0.36)
86 -3.08 -1.55 (-4.77, -1.89)
183 -0.29 1.48 (-1.15, 3.84)
189 -0.44 0.62 (-2.94, 2.03)
216 -0.30 -1.15 (-3.51, 1.22)
262 0.30 1.48 (-1.10, 3.69)
290 0.60 0.42 (-1.94, 2.88)
294 0.92 1.59 (-0.66, 3.98)

Table 10: Coverage of the credible intervals of forecasting results for the simulated {Xt}
in example 2.

Forecasting horizon
Coverage 1 2 3 4 5 6 7 8 9 10

Xt 0.97 1 1 1 1 0.98 1 1 0.98 1

Also we illustrate the predictive density using kernel density for one of the 100
iterations described before (see Figure 10).
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Figure 10: Kernel density of the predictive densities with forecast horizon 1, . . ., 10.

7.2. An Application in Finance

In this section, we applied the proposed algorithm to financial time series
to illustrate the methodology. Specifically, we used the daily log return of the
Dow Jones industrial average as the threshold series, and the daily log return of
the BOVESPA index (Brasil Sao Paulo Stock Exchange Index) as the series of
interest, from December 12th, 2000 to June 2nd, 2010. Moreno (2010) tested
the non-linearity of the data using the test of Tsay (1998) with lag up to 4
for the log return of the Dow Jones index, and found that the appropriate lag
is 0. In this way, we defined Xt = ln(BOV ESPAt) − ln(BOV ESPAt−1) and
Zt = ln(DOWJONESt) − ln(DOWJONESt−1). The log return of these series
is displayed in Figure 11.

In the first stage of the algorithm, the identified number of regimes is 3 with
probability 1, that is, in all of the 1,000 iterations of the Gibbs sampler, the
sampled value of L is 3. The estimated thresholds are -0.0051 and 0.0054, with re-
spective credible intervals (-0.0242, 0.0099) and (-0.0081, 0.0226). The histograms
of the sampled thresholds are shown in Figure 12. Observing the values of the
two thresholds, we could name the three regimes as large negative return in Dow
Jones, small return in Dow Jones and large positive return in Dow Jones.

Once the number of regimes and thresholds were identified, we proceeded with
the identification of the autoregressive orders using another Gibbs sampler. In
Table 11, we show the posterior probabilities for all possible values of the autore-
gressive orders, suggesting that k̂1 = k̂2 = 1 and k̂3 = 3.
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Figure 11: Finance data. X: daily log return of the Dow Jones industrial average and
Z: daily log return of the BOVESPA index.
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Figure 12: Histograms of the sampled thresholds for the finance data.

Table 11: Posterior probability density of the autoregressive orders in each regime.

Regime
autoregressive order 1 2 3

0 0 0 0
1 1 1 0
2 0 0 0
3 0 0 1

Finally with all the structural parameters identified, we estimated the non-
structural parameters, leading to the following model for the data:

Xt =


−0.0106 + 0.1296Xt−1 + 0.0355et if Zt < −0.0051

0.0009 + 0.0099Xt−1 + 0.0259et if −0.0051 ≤ Zt < 0.0054

0.0128− 0.0054Xt−1 − 0.0201Xt−2

−0.0917Xt−3 + 0.0354et if Zt > 0.0054

, (19)

where the degrees of freedom of the process {et} are estimated to be 2.3.
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The credible intervals of the parameters in (19) are given in

Table 12: 95% credible intervals for the parameters in the model (19).

Regime a
(j)
i h(j)

1 (-0.012, -0.009) (0.062,0.189) (0.033,0.037)
2 (0.000, 0.001) (-0.030,0.052) (0.025,0.027)
3 (0.012, 0.014) (-0.068,0.062) (-0.085,0.040) (-0.152,-0.023) (0.033,0.037)

Moreno (2010) found a similar TARmodel for the same data using the approach
of Nieto (2005), that is, assuming the Gaussian distribution for the noise process.
The TAR model found in Moreno (2010) is:

Xt =


−0.0127 + 0.111Xt−1 − 0.068Xt−2 + 0.0198et if Zt < −0.0054
0.00068 + 0.0137et if −0.0054 ≤ Zt < 0.0057

0.0135− 0.0837Xt−1 − 0.0684Xt−2 − 0.1687Xt−3

−0.0633Xt−4 + 0.0191et if Zt > 0.0057

(20)

We can observe that the number of regimes is the same and that the two
thresholds are quite similar. Also, the type II conditional variance in the first and
third regimes are similar and larger than the conditional variance in the second
regime, that is, the series of log return of BOVESPA is more stable when the
Dow Jones index is relatively stable. On the other hand, in spite of the fact
that the autoregressive orders are different in the two models, the autoregressive
coefficients in common are also similar. However, we note a better fit with t noise
since the DIC (deviance information criterion) is 5,485.377 for the TAR model
with Gaussian error and 4338.799 for TAR with t error (up to a constant).

In order to check the appropriateness of the model, we use the CUSUM and
CUSUMSQ plot of standardized residuals, shown in Figure 13, which suggests that
the fitted model (19) is appropriate.
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Figure 13: CUSUM and CUSUMSQ plot of the standardized residuals of the model
(19).

As shown in the work of Moreno (2010), the TAR model with Gaussian noise
(20), in spite of showing good performance in the CUSUM and CUSUMSQ plots

Revista Colombiana de Estadística 38 (2015) 239–266



TAR Modeling with Missing Data 263

of the residuals, the squared residuals show large autocorrelations, which is a
disadvantage compared to the family of GARCH models where the residuals show
strong evidence of independence (see the ACF of residuals and squared residuals of
a GARCH(1,1) model in Figure 14). In Figure 15, we can observe the ACF of the
residuals and squared residuals, and obviously the squared residuals of the TAR
model with t distributed noise still exhibit the same problem as the TAR model
with Gaussian noise. Although the TAR model seems to fail in capturing all the
structure of dependence in the data, Nieto & Moreno (2013) found the expression
for the conditional variance V ar(Xt|xt−1, . . . , x1) in a TAR model, making this
class of model comparable with the GARCH models. In Figure 16, we show the
conditional variance V ar(Xt|xt−1, . . . , x1) in the TAR model 19, as well as the
GARCH(1,1) model; we can see that the general behaviour is similar for the two
models, although the bottom line in the TAR model is around 0.0076, while in the
GARCH model it around 0.0003.
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Figure 14: ACF of residuals and squared residuals of the model GARCH(1,1).
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Figure 15: ACF of residuals and squared residuals of the model (19).
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Figure 16: Conditional variance of the TAR model and the GARCH model.

8. Conclusion

In this work, we proposed a new family of TAR models: the TAR models with
t-distributed noise process with a three-stage procedure consisting of: (1) iden-
tifying the number of regimes and the corresponding thresholds, (2) identifying
the autoregressive order in each regime, and (3) estimating non-structural pa-
rameters, i.e., the autoregressive coefficients and the type II conditional variance
in each regime, and other parameters that each particular model may contain.
The performance of the developed methodology is satisfactory in simulated data,
however, the GARCH models seems to better capture the heterocedastic aspect
contained in financial data. In future investigation the GARCH models may be
used together with the TAR model.[
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