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Abstract

Human gait analysis is used to indirectly monitor the rehabilitation of
patients affected by diseases or to directly monitor patients under orthotic
care. Visualization of gait patterns on the instrument are used to capture
the data. In this study, we created a mobile application that serves as a
wireless sensor to capture movement through a smartphone accelerometer.
The application was used to collect gait data from two groups (able-bodied
and unilateral transtibial amputees). Standard gait activities such as walk-
ing, running and climbing, including non-movement, sitting were captured,
stored and analyzed. This paper discusses different visualization techniques
that can be derived from accelerometer data. Removing gravity data, ac-
celerometer data can be transformed into distribution data using periodicity;
features were derived from histograms. Decision tree analysis shows that only
three significant features are necessary to classify subject activity, namely:
average of minimum peak values, student t-statistics of minimum peak val-
ues and mode of maximum peak values. We found that the amputee group
had a higher acceleration and a lower skewness period between peaks of ac-
celerations than the able-bodied group.
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Resumen
Análisis del paso de humanos es usado como una manera indirecta de

monitorear la rehabilitación de pacientes afectados por enfermedades o bajo
el cuidado ortopédico. La visualización de patrones de paso se usa para
captura de datos. En este estudio, se creó una aplicación móvil que sirve
como un sensor inalámbrico para capturar el movimiento a través de un
acelerómetro en un teléfono móvil. Se recolectaron datos de dos grupos
(con y sin discapacidad tibial). Datos de actividades de paso estándar tales
como caminar, correr y escalar, incluso moverse o sentarse fueron recogidos,
grabados y analizados. Este artículo discute diferentes técnicas de visualiza-
ciíon que fueron derivadas de estos datos de acelerómetro. Removiendo datos
de gravedad, los datos del acelerómetro pueden ser transformados en datos de
distribución usando periodicidad a partir de histogramas. Análisis del árbol
de decisión muestra que sólo tres características significativas son necesarios
para clasificar la actividad de los sujetos: promedio estadísticas t-student y
moda de valores altos mínimos. Se encontró que el grupo de personas con
discapacidad tibial tienen una aceleración alta, y un período de sesgo más
bajo entre picos de aceleración que el grupo de no discapacitados.

Palabras clave: análisis de árboles de desición, discapacitados, monitores
de paso, selección de característica, sensores inalámbricos.

1. Introduction

1.1. Defining Gait

Gait is defined as a cycle of limb movements meant to safely advance the body
with minimum effort; where the act of walking involves periodic movement of
each foot and ground reaction forces (Baritz, Cotoros, Cristea & Rogozea 2010).
A gait cycle is defined as consecutive movements of the same leading extrem-
ity during locomotion (Khan 2010). Simply put, gait can be defined as a man-
ner or style of walking (Kishner & Monroe 2013). Between periodic movement
and ground reaction forces, the periodic movement defines the cyclic nature of
a human gait (Arnold 2007). One cycle consist of eight events including initial
contact (0%), loading response (0-10%), midstance (10-30%), terminal stance (30-
50%), pre-swing(50-60%), initial swing (60-70%), mid-swing(70-85%), and termi-
nal swing(85-100%) (Baritz et al. 2010). However, the definitions of these terms
are not universally accepted. For instance, there is no universal definition for mid-
stance and mid-swing when describing the gait cycle thus hindering comparison
between different gait studies (Gibson, Jeffery & Bakheit 2006). Therefore, other
dimensions are used in defining and measuring gait.

1.2. Gait Detection and Analysis in Rehabilitation

Gait detection and analysis is an essential component in rehabilitation (Howell,
Kobayashi, Hayes, Foreman & Bamberg 2013). For example, there are studies that
look into how particular diseases affect gait such as in stroke patients (Maidan,
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Freedman, Tzemah, Giladi, Mirelman & Hausdorff 2014)(Ferrarello, Bianchi, Bac-
cini, Rubbieri, Mossello, Cavallini, Marchionni & Di Bari 2013) and diabetes
(de Bruin, Hubli, Hofer, Wolf, Murer & Zijlstra 2012), to name a few. Other
studies compare parameters such as location, training over ground or treadmill
(Bonnyaud, Pradon, Zory, Bensmail, Vuillerme & Roche 2013), wearable or non-
wearable systems (Muro-de-la Herran, Garcia-Zapirain & Mendez-Zorrilla 2014),
age such as children (Gibson et al. 2006), elders (Maidan et al. 2014) aging adults
(Salvendy 2012), and type of footwear (Najafi, Khan, Fleischer & Wrobel 2013).
Gait detection is also crucial in prosthesis use (Buckley, De Asha, Johnson &
Beggs 2013) because amputees adapt a new form of ambulation with the use of a
prosthesis (Kishner & Monroe 2013). In unilateral transtibial patients, gait mea-
sures the correctness of form and fit of a prosthesis (Kishner & Monroe 2013).
Correct alignment is captured and viewed to see whether ambulation is achieved
with minimum amount of energy (the spatial, n.d.).

1.3. Measuring Gait

Gait is measured to understand the way a person moves. Gait measurement
tools usually comprise a detection device, similar to a treadmill, where a person
performs gait activity such as walking. Such devices provide visual reports on
various features of gait such as acceleration, velocity, stride length and cadence,
among others. Although this equipment provides gold standards in gait detec-
tion and analysis, its cost makes access very limited (Macleod, Conway, Allan &
Galen 2014). For home rehabilitation for example, it is necessary to come up
with low cost alternatives. Without a gait machine, gait analysis can be done
by observation using a scale (Bella, Rodrigues, Valenciano, Silva & Souza 2012).
For example, five of the most common gait observation tools include: New York
Medical School Orthotic Gait Analysis (NYMSOGA), the Hemiplegic Gait Anal-
ysis Form (HGAF), the Wisconsin Gait Scale (WGS), the Gait Assessment and
Intervention Tool (GAIT), and the Rivermead Visual Gait Assessment (RVGA)
(Ferrarello et al. 2013). In particular, GAIT is preferred over the other tools, in
the context of stroke victim rehabilitation, as it has proven to be reliable, com-
prehensive, valid and sensitive to change (Ferrarello et al. 2013). Video data is
another way of collecting spatio-temporal information for gait analysis (Okusa &
Kamakura 2013). Video data can be processed using a segmentation method to
single out each pedestrian without the background. Then the pattern of move-
ment of pedestrians can be captured by observing the cycle behavior of segmented
pedestrians. Video recording and a detailed observational tool for gait analysis is
often used to further validate findings (Ferrarello et al. 2013).

An alternative way to measure gait is the development of simple gait analysis
devices taking advantage of the affordance and affordability of wireless sensors.
Wi-Gat is an example of a portable wireless gait assessment tool that measures
spatio-temporal gait parameters, proving to be a possible candidate for those in
search of a low cost assessment tool (Macleod et al. 2014). Such devices would be
very useful in remote areas in developing countries, where monitoring pathological
gait requires development of low-cost alternatives.

Revista Colombiana de Estadística 37 (2014) 471–488



474 Kardi Teknomo & Maria Regina Estuar

In this study the accelerometer in a mobile phone for is used to gather data
for gait analysis. Specifically, we created a mobile and cloud application using
the phone’s accelerometer to collect raw gait information later sent to the cloud
for data transformation, analysis, modeling and prediction. The web component
provides a visualization and a report on the gait pattern. The mobile phone
receives the predicted gait movement (currently able to detect walking, running,
climbing and stationary movement).

This paper presents gait analysis between able-bodied and transtibial patients
studied in three dimensions. The first dimension is detecting gait. In gait detec-
tion, instruments are attached to the human subject, usually in the limb section,
as the subject performs specific activities such as walking or stair climbing. In
this dimension, the goal is to detect whether the action performed falls under the
definition of gait, as opposed to simply moving the device (pretending to per-
form a gait motion). The next dimension is gait identification. Gait identification
involves analyzing the movement and determining what kind of movement was
performed, validating it against expected movement. For example, if the subject
walks, gait movement should be detected and movement should be classified as
walking, as opposed for example, to running. Using periodicity, raw accelerometer
data was transformed to generate spatio-temporal features. A decision tree was
used to classify four movements, namely: sitting, walking, climbing and running.
The third dimension of gait analysis is visualization which allows physicians to
monitor progress. This paper presents different visualization techniques on the
patient collected gait data.

2. Methodology

2.1. Participants

The study included a total of 26 participants, 18 abled bodies and 6 transitibial
amputees. In the able body group, 8 females with age range of 22 to 45 and 10
females in an age range between 22 to 40 participated. The transtibial amputee
group, was composed of 3 male participants in an age range of 18 to 50 and 5
females in an age range of 23 to 50. There was no inclusion criteria for able bodied
persons. Transtibial amputation was the inclusion criteria for amputees.

2.2. Capture of Accelerometer Data

An android based application was developed to capture motion data using the
built-in 3D accelerometer sensor in the phone. The unit used was an HTC One
Android phone with a built in Bosch BMA250 3 - axis accelerometer Version 1
with a power of .1 mA, resolution .038 SU and maximum range of 39.23 SU. Sensor
Tester, a free software, was used to calibrate the accelerometer.

The phone was placed in a pouch which was attached to the calf. The applica-
tion requires the following input: name of the Participant and the Type of Motion
(sit, walk, run, climb). The mobile phone is placed on the participant’s calf and
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the start button indicates the start of capture. The stop button indicates the end
of data capture.

The data collected is stored in an array with the following values: ax(t), ay(t),
az(t) and the number of steps at that given time. Figure 1 shows an example of
the raw acceleration data.
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Figure 1: Raw acceleration data.

2.3. Gait Experiments

Gait experiments were conducted to capture motion data for two main groups
of subjects, the able-bodied group and the amputee group. All subjects performed
four types of activities. Figure 2 shows the list of experiments. The eight categories
of subject-activities are included in the right column.

Gait
Experiment

Amputees

Able Bodied

Sit

Walk

Climb

Run

Sit

Walk

Climb

Run

1

2

3

4

5

6

7

8

Figure 2: Experiment guide.

Revista Colombiana de Estadística 37 (2014) 471–488



476 Kardi Teknomo & Maria Regina Estuar

Procedure for the experiment is shown in Figure 3.

Attach device to
person’s calf

Run the application on
the device

Enter personal
information and

activity

Stop the application
Perform motion

activities (sit, walk, run, 
climb) for 30 seconds

Figure 3: Procedure of Experiment.

Experiments were performed in covered walkways and corridors. The device is
attached to the person’s calf securely fastened with strong adhesive. The applica-
tion is launched and person’s name and the type of gait (sit, walk, run or climb)
was selected. Participants were instructed to perform assigned gait for 30 seconds
after which the application is set to stop. Figure 4 shows an image of the actual
walking experiment.

Figure 4: Image of smartphone attached to leg or prosthesis during the walking
experiment.

3. Results

The motion data set was derived from two main groups: Motion captured from
able bodied individuals and transtibial amputees. Each subject in the experiment
was asked to walk, sit, climb, or run. We registered 8 categories according to the
subject and the activities performed:
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1. Able-bodied subject sit

2. Able-bodied subject walk

3. Able-bodied subject climb

4. Able-bodied subject run

5. Amputee subject sit

6. Amputee subject walk

7. Amputee subject climb

8. Amputee subject run.

The number of datasets (each data set consists of approximately 30 seconds
acceleration values gathered at a frequency of approximately 30 Hertz) is not equal
for all categories owing to availability of volunteer subjects for the experiments.
Table 1 shows the number of participants per activity.

Table 1: Number of participants per activity.

Number of data Activity
Subject Sit Walk Run Climb
Able Bodied Person 7 19 5 7
Amputees Person 5 7 1 1

3.1. Data Transformation

The goal of the study is to detect gaits based on acceleration data. Our ap-
proach is to use the distribution of the peaks in terms of their magnitude and
period between two consecutive peaks.

The data consists of 3 directions of acceleration ax(t), ay(t), az(t). The grav-
ity value of 9.81 m/s2 was removed from the data to ensure that the data only
comprised acceleration. The acceleration value for each point is computed as a
modulus of the three acceleration directions.

at =
√
a2x(t) + a2y(t) + a2z(t)

Each data set was obtained at a frequency of approximately 30 Hertz (30
sample points per second).

To filter out possible noise value, the data was smoothed clean using low pass
filter:

āt = αāt−1 + (1− α)at

The value of the smoothing parameter α = 0.1 was chosen such that the data
and smoothed value peaked at almost the same time. Figure 5 shows an example
of smoothed data (blue) and the actual data (red). The horizontal axis is the time
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stamp and the vertical axis represents acceleration. The value of the smoothed
data is slightly lower than actual acceleration. Our goal is to keep the periods of
the peak and the magnitude of the peak as close as possible to the original data.
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Figure 5: Example of raw data and smoothed data.

3.2. Peaks and Peak Magnitude Distribution

Once the data was smoothed, the peaks of the smoothed data were found by
searching the neighboring values of each data point. A point t is considered to
have maximum peak value ât if the neighboring points have lower value than ât,
that is ât > at−1 > at−2 > L > at−h and ât > at+1 > at+2 > L at−h. The window
length of the neighbors h represents the strength of the peak. Similarly, we can
obtain minimum peak value ăt if the neighboring points have higher value than yp,
that is ă < at−1 < at−2 < · · · < at−h and ăt < at+1 < at+2 < L < at+h. Setting
the minimum window length h = 1 will obtain any maximum and minimum peaks
higher than its immediate neighbors. The left figure in Figure 6 shows a typical
peak finding of the same smoothed data in Figure 5. The green circles are the
identified maximum peaks and the red circles are the identified minimum peaks.
Connecting only the maximum peaks and the minimum peaks the right figure in
Figure 6 is obtained.

Based on peak values, we also derive the distribution of the magnitude of
acceleration peaks. The distribution is separated between maximum peak values
and minimum peak values. An example of peak value distribution from Figure 6
is given in Figure 7.

The distribution tends to be skewed towards the left and the values on the
horizontal axes show that maximum peaks supposedly have higher values than
minimum peaks. These values represent the magnitude of acceleration during the
peaks.
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Figure 6: Peak values.
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Figure 7: Peak distribution.

3.3. Deriving Distribution of Period Peaks

In addition to acceleration peak magnitude distribution, we must obtain accel-
eration peak period distribution.

Suppose maximum peak of acceleration âp happens at time p. A maximum
period is defined as the difference between two immediate maximum peaks, that
is

T̂p = âp − âp−1

Similarly, minimum peak of acceleration ăp happens at time p. A minimum
period is defined as the difference between two immediate minimum peaks, that is

T̆p = ăp − ăp−1

Period is the union of maximum period sets and minimum period sets, that is

T = {T̂p} ∪ {T̆p} for ∀ p
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Having the periods of acceleration peaks, we can derive the distribution of the
periods. Figure 8 shows the distribution of the periods of the peaks identified in
the aforementioned figures.
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Figure 8: Distribution of period of the peaks.

3.4. Derived Features

The following statistics of the histogram were used as the derived features to
represent the histogram itself:

1. Average of T

2. Median of T

3. Mode of T

4. N = Number of data in set { T }

5. Ratio of the Number of data in set and the number of data in acceleration

6. Student t statistics of period =
Average of T / (Standard deviation of T /

√
N )

7. Minimum of T

8. Maximum of T

9. Range of T

10. Standard deviation of T

11. Skewness of T

12. Kurtosis of T
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Similar statistics also were used as derived features for the magnitude his-
togram, that is the histogram of minimum peak values and the histogram of max-
imum peak values. Since we have three histograms and 12 derived features, each
dataset is now represented by 36 values.

3.5. Feature Selection

The purpose of feature selection analysis is to find the derived features that
can be clearly used to cluster subject-activities categories.

Table 2 indicates the derived features in the columns and the last column is
the subject-activity category. Each row represents one dataset of an experiment.
The contents of this table stem from the derived features of the histograms as
explained in the previous section.

Table 2: Features of Subject-Activity.

Subject
ID

Number of
acceleration
data

Average
of
T

. . .
Average of
min
peak

. . .
Average of
max
peak

. . .

Category
of
subject
-activity

1 1

2 1

. . . . . .

51 8

Table 3 shows the average maximum and minimum peak values. The accel-
eration of sitting is very low. Walking has lower acceleration than climbing and
the climbing activity has a lower acceleration value than running. An amputee, in
general, has higher acceleration than able-bodied subjects for all activities except
sitting. Similar results were obtained for the median of maximum and minimum
peak values, as shown in Table 4.

Table 3: Average Maximum and Minimum Peak Values.

Activity
Able Bodied Amputees

max peak value min peak value max peak value min peak value
Sitting 0.06 0.03 0.02 0.01

Walking 3.6 1.42 7.19 5.68

Climbing 4.29 1.82 16.9 10.67

Running 5.87 2.99 18.5 13.97

The median period of walking is higher for both able-bodied and amputee
individuals (Table 5). Other activities are not distinguishable in terms of median
periods between peaks.

The t statistics of maximum and minimum peak values are presented in Table
6. A transtibial amputee has higher t-statistics than an able bodied individual.
Amongst activities, however, the values are not distinguishable.

Revista Colombiana de Estadística 37 (2014) 471–488



482 Kardi Teknomo & Maria Regina Estuar

Table 4: Median of Maximum and Minimum Peak Values.

Activity
Able Bodied Amputees

max peak value min peak value max peak value min peak value
Sitting 0.038 0.017 0.024 0.008

Walking 3.215 1.209 6.912 5.642

Climbing 3.843 1.632 16.499 10.259

Running 5.469 2.938 18.675 14.886

Table 5: Median Period.

Activity Able Bodied Amputees

Sitting 3.57 4

Walking 5.37 4.58

Climbing 3.43 4

Running 3.6 4

Table 6: t statistics of the Maximum and Minimum peak values.

Activity
Able Bodied Amputees

max peak value min peak value max peak value min peak value
Sitting 19.084 17.596 36.458 27.429

Walking 25.088 23.796 73.677 92.701

Climbing 25.578 27.004 47.763 39.142

Running 35.117 41.664 89.15 62.596

Table 7 presents the skewness of period between peaks. It shows that the
skewness of sitting is higher than walking and walking is higher than climbing;
and climbing is higher than running. A transtibial amputee has a lower skewness
period than an able bodied person.

Table 7: Skewness of Period between Peaks.

Activity Able Bodied Disable

Sitting 3.88 1.835

Walking 2.206 1.072

Climbing 1.221 0.983

Running 1.078 0.71

Table 8 shows that the average period of peak acceleration has no distinguish-
able values among the categories. In fact, the average period of a transtibial
amputee is almost equal regardless of the activities performed longer Walking, in
general, has a period between peaks than other activities.

As occurs with the average period of peak acceleration, no distinguishable
values were obtained for all other derived features.
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Table 8: Number of participants per activity.

Activity Able Bodied Amputee

Sitting 4 4.54

Walking 5.67 4.78

Climbing 3.85 4.33

Running 4.24 4.33

3.6. Decision Tree Analysis

Decision Tree analysis was performed on all 36 derived features. Figure 9
presents the results of the decision tree analysis. Results show that only 3 derived
features are necessary to classify subject-activities, namely:

1. Average of minimum peak values

2. Student t statistics of minimum peaks values

3. Mode of maximum peaks values

Average of
minimum

peaks values

Average of
minimum

peaks values

Average of
minimum

peaks values

Mode of
minimum

peaks values

t statistics of
minimum

peaks values

Amputees
Sitting  

Able Bodied
Sitting  

Able Bodied
 Climbing

Able Bodied
Walking

Able Bodied
Running

Amputees
Walking  

< 0.499606 >= 0.499606

<1.77209 >= 1.77209

< 0.0146762 >= 0.0146762

< 0.383084 <= 0.383084 < 69.9493 >= 69.9493

Figure 9: Results of decision tree analysis.

The decision tree analysis, however, failed to classify amputee climbing and
disabled running, probably due to lack of data (only one observation for each
category).

3.7. Visualization of Features

Based on the three derived features identified by the decision tree, we visualize
each observation as one point. The points are then colored based on the label
category (See Figure 10).
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Figure 10: Visualization of derived features.

The visualization reveals possible derived features to overcome the weakness of
the decision tree. Average minimum peak values higher than 8.510 m/s2 and lower
than 12.321 m/s2 are related to class 7 which is the disabled-climbing activity and
average minimum peak value higher than 12.321 m/s2 corresponds to class 8 which
is the amputee-running activity.

We revised the decision tree in Figure 9 into the following figure to accommo-
date all categories.

Table 9 shows the confusion matrix as a percentage to total respondents (51
persons). The strong values on the diagonal of the confusion table show that
the majority of subjects are correctly classified. The off diagonal elements are
the errors. The percentage of correctly classified is 92.16%. This is obtained by
summing the diagonal elements of Table 9. The majority of error (6%) comes from
misclassifying able-bodied-climbing as able-bodied-running. Another case of error
(2%) is associated with misclassifying able-bodied-running as able-bodied-walking.

To elaborate error analysis, we take the percentage of the total predicted
further, Table 10 shows the error of misclassifying able-bodied-running as able-
bodied-walking is only 5% but the error of that misclassifying able-bodied-climbing
as able-bodied-running is actually 43%.
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Average of
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Able Bodied
Running
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Walking  

< 0.383084 <= 0.383084 < 69.9493 >= 69.9493

Amputees
Sitting  

Able Bodied
Sitting  

< 0.0146762 >= 0.0146762

<1.77209 >= 1.77209

< 0.499606
Between

< 0.499606
and

8.510

Amputees
Climbing

Amputees
Running

Between
8.510
and

12.321

>0 12.321

Figure 11: Revised decision tree.

Table 9: Confusion Matrix (percentage to total).

Count
True Values

Total
1 2 3 4 5 6 7 8

P
re
di
ct
ed

1 14% 14%

2 37% 2% 39%

3 8% 8%

4 6% 8% 14%

5 10% 10%

6 12% 12%

7 2% 2%

8 2% 2%

Total 14% 37% 14% 10% 10% 12% 2% 2% 100%

3.8. Validation of Derived Features

To further validate the derived features, we run Analysis of Variance on the 8
categories. Results show that there are significant differences in the 8 categories
regarding the following features: minimum Peak Values (mean, median, mode, t-
statistic, minimum, maximum, range, standard deviation, skewness and kurtosis)
at p = .001 and maximum peak values (mean, median and mode) at p = .001.

4. Conclusion

“A multidisciplinary approach is a definite benefit in the diagnosis and treat-
ment of pathologic gait. An amputation is supposed to optimize the overall func-
tion of the patient. This is accomplished through the proper prescription of a pros-
thetic and appropriate rehabilitation training” (Kishner & Monroe 2013). Since
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Table 10: Confusion Matrix (Percentage to total columns).

Count
True Values

Total
1 2 3 4 5 6 7 8

P
re

d
ic

te
d

1 100% 100%

2 95% 5% 100%

3 100% 100%

4 43% 57% 100%

5 100% 100%

6 100% 100%

7 100% 100%

8 100% 100%

Total 14% 37% 14% 10% 10% 12% 2% 2% 100%

most studies on prosthesis use focus on the design of the device rather than how
it is used (Sawers, Hahn, Kelly, Czerniecki & Kartin 2012), visualization of gait
data and identification of important parameters or features for gait classification
can facilitate the rehabilitation process.

In the study, we show that through visualization of the statistics of derived
features we were able to revise the decision tree that originally could not produce
the classification of certain categories. It is good to note that exhaustive plotting
between two derived features may not reveal which features can actually be used to
classify subject-activity. Only after we use the decision tree and cross tabulation
to select possible features we can use the visualization. The visualization may
help to reveal clear clusters of missing categories based on two or three derived
features.

We can also conclude that the period between peaks (which we suspect to
present the pace of activities) apparently does not reveal any significant derived
features to classify subject-activity. However, individual features, namely: average
of minimum peak values, mode of maximum peak values and t-statistic of mini-
mum peak values are sufficient for predicting subject-activity, distinguishing gait
between able bodied and transtibial amputee individuals.

In general, transtibial amputee have higher acceleration than able bodied sub-
jects for all activities except sitting. Transtibial amputee also have a lower skew-
ness period between peaks of acceleration than able bodied subjects. Such findings
can further improve identification and classification of gait patterns between able
bodied persons and transtibial amputees.

Further studies include validation of wireless sensor applications with standard
gait analysis tools. There is also a need to increase the sample size and conduct
experiments on gait measurement with location of the sensor as an independent
variable.
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