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Abstract

As of the past century, the analysis and the graphical representation of
inequality play a very important role in economics. In the literature, sev-
eral curves have been proposed and developed to simplify the description of
inequality. The aim of this paper is a review and a comparison of the most
known inequality curves, evaluating the features of each, with a particular
focus on interpretation.
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Resumen

Desde el siglo pasado el análisis y representación gráfica de la desigualdad
juega un papel importante en la economía. En la literatura varias curvas
han sido propuestas y desarrolladas para simplificar la descripción de la
desigualdad. El objetivo de este artículo es revisar y comparar las curvas de
la desigualdad más conocidas evaluando sus características y enfocándose en
su interpretación

Palabras clave: curva de Bonferroni, curva de Lorenz, curva de Zenga,
distribución del ingreso, índice de desigualdad.

1. Introduction

Inequality is an important characteristic of non-negative distributions. It is
mainly analysed in socio-economics sciences, particularly in relation to income
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distributions. Inequality curves are graphical methods used to analyse this char-
acteristic and are generally related to inequality indexes. The graphs of inequality
functions can usually be drawn in the unitary square.

In this paper three curves are presented. The Lorenz curve (Lorenz 1905) is
the oldest but also the most used nowadays despite its forced behaviour. The
Bonferroni curve (Bonferroni 1930) is another classical curve. It is strictly related
to the Lorenz curve and it has a forced behaviour, too. Finally the I(p) curve
(Zenga 2007) is the most recent although related to the other two curves, it can
assume different shapes which allow to distinguish different situations in terms of
inequality.

These three curves have the common characteristic that they can be defined
using only the mean of the whole population and the means of particular sub-
groups. In the literature, other inequality curves have been introduced, studied
and applied in different fields. One of the first proposals is the δ(p) of Gini which
has the important feature of being uniform for the Pareto distribution, but it does
not lie in the unitary square. Another which can be mentioned is the Z(p) curve,
proposed by Zenga (1984). Such curve is uniform for the Log-normal distribu-
tion. It originates from a different approach because it is based on a ratio of two
quantiles, and therefore not included in this comparison.

In this paper curves are defined for continuous models, but they can be also
applied to discrete distributions and to empirical distributions.

An important application of the inequality curves is that they can be used to
define some orderings. Such orderings allow the comparison of distributions in
terms of inequality. This kind of comparison within the same model allows to
understand how the distribution parameters influence the inequality.

The article is structured as follows. First, all main definitions are introduced in
Section 2. In this section, distribution models used to exemplify inequality curves
are also described. Sections 3, 4, and 5 are devoted to the description of the
Lorenz curve, the Bonferroni curve and the I(p) curve, respectively. In Section 6
the orderings based on the considered curves are introduced and their relationship
investigated. Section 7 provides a method to simplify the comparison of the curves:
an application of this comparison is performed by using data from the 2012 Bank
of Italy sample survey. Finally Section 8 is devoted to some final remarks.

2. Preliminary Definitions

In this section some definitions that will be useful hereunder, are introduced.
The first one is as follows.

Definition 1 (Generalized inverse function). Let F be a non-decreasing function
defined from R to the interval [0, 1]. The generalized inverse function of F is the
function, denoted by F−1, defined as:

F−1(p) =

{
inf{y : F (y) ≥ p} if p ∈ (0, 1]

inf{y : F (y) > 0} if p = 0.
(1)
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In the remainder of this paper, given a distribution function F , F−1 will denote
the inverse function of F or, if needed, the generalized inverse function of F .

It is well recognized in the literature that the inequality does not change in case
of scale-transformations, thus the inequality curves must be non dependent on the
scale parameters of the distribution. The definition of scale parameter follows:

Definition 2 (Scale parameter). Let {Fα, α > 0} be a family of distribution
functions. Then α is a scale parameter of such family if

Fα(x) = F1

(x
α

)
, ∀x ∈ R.

To simplify the explanation, the concepts of lower and upper groups are useful.
Given a population and a statistic variable X evaluated on it, for each p ∈ (0, 1),
the population can be split into two groups. The first one, called lower group
consisting of the proportion p of people with the lowest values of X, and the
second one called upper group composed by all the others. Once the population
is split into the lower and the upper groups, the means of X in these two groups
can be computed, obtaining the lower and the upper mean. The two following
definitions refer to these two means.

Definition 3 (Lower mean). Let X be a continuous random variable, with distri-
bution function F , and support [a, b], where 0 ≤ a < b ≤ +∞. For any p ∈ [0, 1],

the lower mean
−
M (p) is defined as

−
M (p)=

{
1
p

∫ p
0
F−1(t)dt if p ∈ (0, 1]

a if p = 0.

Definition 4 (Upper mean). Let X be a continuous random variable, with distri-
bution function F , and support [a, b], where 0 ≤ a < b ≤ +∞. For any p ∈ [0, 1],

the upper mean
+

M (p) is defined as

+

M (p)=

{
1

1−p
∫ 1

p
F−1(t)dt if p ∈ [0, 1)

b if p = 1.

Note 1. In the Definitions 3 and 4 the lower mean and the upper mean have been
extended by continuity in p = 0 and in p = 1, respectively. It is easy to verify that
for a random variable X with expected value µ, the following formula holds true:

µ = p
−
M (p) +(1− p)

+

M (p), ∀p ∈ [0, 1],

with the convention that whether the support of X is not finite:

(1− p)
+

M (p)= 0 if p = 1.
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In the next sections, in order to calculate the inequality curves for some distri-
bution models, the following is considered:

• the (non-negative) uniform model with distribution function

F (x) =


0 if x < α(1− θ)
x−(1−θ)α

2θα if α(1− θ) ≤ x < α(1 + θ)

1 if x ≥ α(1 + θ),

where 0 ≤ θ ≤ 1 is a direct inequality indicator and α > 0 is a scale
parameter;

• the exponential model with distribution function

F (x) =

{
1− e−x/α if x ≥ 0

0 otherwise,

where α > 0 is a scale parameter;

• the Pareto model with distribution function

F (x) =

{
1−

(
x0

x

)θ if x ≥ x0
0 otherwise,

where θ > 1 (to guarantee a finite expectation) is an inverse inequality
indicator and x0 > 0 is the lower bound of the support and a scale parameter;

• the Log-normal model with distribution function

F (x) =

{
Φ
(

ln(x)−γ
δ

)
if x > 0

0 otherwise,

where δ > 0 is a direct inequality indicator, eγ is a scale parameter and Φ(x)
is the distribution function of the standard normal distribution;

• the Dagum model (see Dagum 1977) with distribution function

F (x) =


[
1 +

(
x
α

)−θ]−β if x > 0

0 otherwise,

where β > 0 and θ > 1 (to guarantee a finite expectation) are inverse
inequality indicators where the other is fixed, and α > 0 is a scale parameter.

3. The Lorenz Curve

The Lorenz curve introduced in the widely known paper by Lorenz (1905) is the
most famous inequality curve used in the literature. Many equivalent definitions
of it have been contributed, the following is from Pietra (1915) and it has been
used also by Gastwirth (1972).
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Definition 5. Let X be a non-negative continuous random variable, with positive
and finite expected value µ, and distribution function F . The Lorenz curve of X
is defined as

L(p) =
1

µ

∫ p

0

F−1(t)dt

=
p
−
M (p)

µ
, p ∈ [0, 1].

An inequality index that can be evaluated using the Lorenz curve is the Gini
index G (Gini 1914). It is worth highlighting that the definition of such index
does not require the Lorenz curve: only later was the relationship with this curve
emphasized. From a graphical standpoint, the Gini index can be interpreted as the
ratio of the concentration area and its theoretical maximum. The concentration
area is the area between the bisector of the first quadrant and the Lorenz curve;
its theoretical maximum corresponds to the area below such bisector.

Definition 6. Let X be a continuous random variable with Lorenz curve L(p).
The Gini index G is defined as

G = 1− 2

∫ 1

0

L(p)dp,

or equivalently as

G =

∫ 1

0

p− L(p)

p
· 2p dp =

∫ 1

0

µ−
−
M(p)

µ
· 2p dp. (2)

The meaning of the Lorenz curve is not very immediate, since it compares
the lower mean and the total mean, using the “weight” p, resulting in a less clear
interpretation of such comparison. However, if the random variable X represents
income, and L(p) is the corresponding Lorenz curve, L(p0) = L0 means that the
“bottom” proportion p0 of the population has the proportion L0 of total income.

It is easy to verify that the Lorenz curve is always zero at p = 0 and equals 1
at p = 1: such restrictions highlight that the behavior of L(p) is a priori fixed. For
this reason the explaining power of the Lorenz curve vanishes for values of p close
to 0 or to 1. Moreover, it is well-known that the Lorenz curve is always convex.
An interesting characteristic of the Lorenz curve is that the maximum length of
the vertical segment between it and the bisector of the first quadrant is known as
the Pietra index P and corresponds to the value p̃ = F (µ):

P =
E(|X − µ|)

2µ
= F (µ)− L[F (µ)].

Moreover the derivative of the Lorenz curve at p̃ = F (µ) is equal to 1.
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Following the approach developed in Zenga (1984), using the Lorenz curve, it
is possible to define a random variable which tends to the situation of maximal
inequality as shown below. Let X be a random variable depending on the param-
eter θ. X is said to tend to the situation of maximal inequality as θ tends to θ0
where

lim
θ→θ0

LX(p; θ) = LM (p) =

{
0 if p ∈ [0, 1)

1 if p = 1.

In such case, G is equal to 1. Analogously, X is said to tend to the situation of
minimal inequality as θ tends to θ0 if

lim
θ→θ0

LX(p; θ) = Lm(p) = p, ∀ p ∈ [0, 1],

meaning that the Lorenz curve tends to the bisector of the first quadrant, and
therefore G tends to 0.

Table 1 shows the Lorenz curve and the Gini index for the distribution models
described in Section 2, where

B(x; a, b) =

∫ x
0
ta−1(1− t)b−1dt∫ 1

0
ta−1(1− t)b−1dt

x ∈ [0, 1], a > 0, b > 0

is the incomplete Beta function ratio, and

Γ(x) =

∫ ∞
0

tx−1e−tdt

is the Gamma function. Figure 1 shows some examples of the Lorenz curves from
Table 1.

Table 1: Lorenz curves and Gini indices for the considered models.
Model Lorenz curve Gini Index
Uniform L(p) = p(1− θ + θp) G = θ/3

Exponential L(p) = p+ (1− p) ln(1− p) G = 0.5

Pareto L(p) = 1− (1− p)(θ−1)/θ G = 1/(2θ − 1)

Log-normal L(p) = Φ[Φ−1(p)− δ] G = 2Φ(δ/
√

2)− 1

Dagum L(p) = B
(
p1/β ;β + 1/θ; 1− 1/θ

)
G =

Γ(β)Γ(2β+1/θ)
Γ(2β)Γ(β+1/θ)

− 1

4. The Bonferroni Curve

The curve was introduced by Bonferroni (1930) and, to the present, has been
analysed and studied by various authors: see for instance De Vergottini (1940),
Tarsitano (1990), Giorgi & Crescenzi (2001) and Zenga (2013).
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Figure 1: Graphs of different Lorenz curves for the considered models.
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The Bonferroni curve is defined as follows:

Definition 7. LetX be a non-negative continuous random variable with a positive
and finite expected value µ, and distribution function F . The Bonferroni curve of
X is defined as

B(p) =
1

pµ

∫ p

0

F−1(t)dt

=

−
M (p)

µ
p ∈ (0, 1].

The Bonferroni inequality index B represents the area above the Bonferroni
curve in the unitary square, namely, the complement to 1 of the Bonferroni curve
mean value.

Definition 8. Let X be a non-negative continuous random variable with Bonfer-
roni curve B(p). The Bonferroni index is defined as

B = 1−
∫ 1

0

B(p)dp.

The Bonferroni curve compares the mean of the lower group with the total
mean. Differently from the Lorenz curve no “weight” is applied. In other words, if
the random variable X represents income, and B(p) is the corresponding Bonfer-
roni curve, B(p0) = B0 means that the average income of the “bottom” proportion
p0 of the population is B0 times the average income of the entire population.

Using the Definitions 3 and 4 it is easy to see that

lim
p→0+

B(p) =
a

µ
and B(1) = 1,

where a denotes the lower bound of the support of the random variable originating
the Bonferroni curve. Moreover, differently from the Lorenz one, the Bonferroni
curve is not necessarily convex.

If the random variable X tends to the situation of maximal inequality, the B(p)
curve tends to the function BM (p), defined as:

BM (p) =

{
0 if p ∈ (0, 1)

1 if p = 1,

and consequently the inequality index is B = 1.
If the random variable X tends to the situation of minimal inequality, the

corresponding Bonferroni curve tends to

Bm(p) = 1 ∀ p ∈ (0, 1],

and consequently the corresponding inequality index is B = 0.
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A particular shape of the Bonferoni curve is obtained when the random variable
X has a uniform distribution, as in this case, it is a linear function. Hence, if X
has a uniform distribution with support [α(1− θ), α(1 + θ)] (see Section 2), then
the corresponding Bonferroni curve is given by

B(p) = (1− θ) + θp,

and the inequality index is B = θ/2.
The Bonferroni curve is related with the Lorenz curve: if L(p) is the Lorenz

curve of X, then the Bonferroni curve can be obtained throught the simple trans-
formation

B(p) =
L(p)

p
, ∀ p ∈ (0, 1]

Table 2 shows the Bonferroni curve and the Bonferroni index for the distribu-
tion models presented in Section 2, where

Ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

denotes the Digamma function, that is, the logarithmic derivative of the Gamma
function. Figure 2 shows some examples of the Bonferroni curves from Table 2.

Table 2: Bonferroni curves and Bonferroni indices for the considered models.
Model Bonferroni curve Bonferroni Index
Uniform B(p) = (1− θ) + θp B = θ/2

Exponential B(p) = 1 +
(1−p)
p

ln(1− p) B = 0.644934

Pareto B(p) =
1−(1−p)(θ−1)/θ

p
B = 1− Ψ(2− 1/θ) + Ψ(1)

Log-normal B(p) =
Φ[Φ−1(p)−δ]

p
B = 1−

∫ 1
0

Φ[Φ−1(p)−δ]
p

dp

Dagum B(p) =
B
(
p1/β ;β+1/θ;1−1/θ

)
p

B = β
[
Ψ
(
β + 1

θ

)
− Ψ(β)

]

5. The I(p) Curve

The I(p) curve was introduced in Zenga (2007). It is the most recent inequality
curve of the three considered in this paper. Nevertheless, the number of papers
discussing it and the related index I is increasing: see for instance Greselin &
Pasquazzi (2009), Radaelli (2010), Langel & Tillé (2012) and Greselin, Pasquazzi
& Zitikis (2013). This curve is defined below:

Definition 9. Let X be a non-negative continuous random variable, with a pos-
itive and finite expected value µ, and distribution function F . The I(p) curve of
X is defined as

I(p) = 1−
(1− p)

∫ p
0
F−1(t)dt

p
∫ 1

p
F−1(t)dt

= 1−
−
M (p)

+

M (p)

, p ∈ (0, 1).
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Figure 2: Graphs of different Bonferroni curves for the considered models.
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Similar to the Bonferroni index, the inequality index I can be obtained from
the mean value of the I(p) curve but it represents the area below the I(p) curve.

Definition 10. Let X be a continuous random variable and let I(p) denotes its
inequality I(p) curve. The inequality index I is defined as

I =

∫ 1

0

I(p)dp.

The I(p) curve can be easily interpreted, and its information is immediate and
intuitive. If the random variable X models income distribution, it follows, by
definition, that if the I(p) curve is equal to I0 at p = p0, this means that the
average income of the “bottom” proportion p0 of the population is (1 − I0)-times
the average income of the remaining population.

As previously mentioned, the Lorenz curve assumes prefixed values for p = 0
and p = 1, whereas the Bonferroni curve is always equal to 1 for p = 1. The
I(p) curve is more flexible, since the values it assumes for the extreme values of p
depend on the distribution function that originated the curve. Polisicchio (2008)
proved that if X is a random variable with support [a, b], where 0 ≤ a < b ≤ +∞
and with finite and positive expected value µ, then

lim
p→0+

I(p) = 1− a

µ
and lim

p→1−
I(p) = 1− µ

b
,

with the convention that µ/b = 0 if b is not finite. Moreover, also the I(p) curve
is not necessarily convex.

If the random variable X tends to the situation of maximal inequality, then
the I(p) curve tends to the function IM (p), defined as

IM (p) = 1, ∀ p ∈ (0, 1),

while, if the random variable X tends to the situation of minimal inequality, the
I(p) curve tends to zero for all p ∈ (0, 1), that is

Im(p) = 0, ∀ p ∈ (0, 1).

Polisicchio (2008) proved that if the I(p) curve of the random variable X is
uniform and equal to 1−k, thenX has a truncated Pareto distribution with param-
eters θ = 0.5, x0 = µk, and µ/k as truncation point. Therefore, the distribution
function of X is

F (x) =


0 if x ≤ µk
1

1−k

[
1−

√
µk
x

]
if µk < x < µ/k

1 if x ≥ µ/k.

The above truncated Pareto distribution has been analysed and from this model,
a new distribution model, which seems very promising for modelling income distri-
butions has been defined, see Zenga (2010), Arcagni & Porro (2013) and Arcagni
& Zenga (2013).
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As the Bonferroni curve, the I(p) curve is also related to the Lorenz curve, and
therefore to the Bonferroni curve itself. The relationships are (see Zenga 2007)

I(p) =
p− L(p)

p[1− L(p)]
∀ p ∈ (0, 1)

I(p) =
1−B(p)

1− pB(p)
∀ p ∈ (0, 1).

Table 3 shows the I(p) curve and the index I for the distribution models
described in Section 2. Figure 3 includes some examples thereof.

Table 3: I(p) curves and I indices for the considered models.

Model I(p) curve I index
Uniform I(p) = θ(1 + θp)−1 I = ln(θ + 1)

Exponential I(p) =
ln(1−p)

p[ln(1−p)−1]
I = 0.843302

Pareto I(p) =
1−(1−p)1/θ

p
I = Ψ(1/θ + 1)− Ψ(1)

Log-normal I(p) =
p−Φ[Φ−1(p)−δ]
p[1−Φ(Φ−1(p)−δ)] I =

∫ 1
0

p−Φ[Φ−1(p)−δ]
p[1−Φ(Φ−1(p)−δ)]dp

Dagum I(p) =
p−B

(
p1/β ;β+1/θ;1−1/θ

)
p[1−B(p1/β ;β+1/θ;1−1/θ)]

I =
∫ 1
0

p−B
(
p1/β ;β+1/θ;1−1/θ

)
p[1−B(p1/β ;β+1/θ;1−1/θ)]

dp

6. The Partial Orders

In the literature, an important application related to inequality curves, is the
possibility to rank the distributions. Such ranking is obtained by a partial order
which can be defined from an inequality curve. Below we include the definition of
the well-known ordering based on the Lorenz curve.

Definition 11 (Partial order based on the Lorenz curve). Let X and Y be two
continuous non-negative random variables, both with finite and positive expected
value. Let LX and LY denote their Lorenz curves. X is said to be larger (or more
unequal) than Y in the order based on the Lorenz curve (and it is denoted by
X ≥L Y ), if

LX(p) ≤ LY (p) ∀ p ∈ (0, 1).

From the graphical point of view, the random variable X is larger than Y in
this order, if its Lorenz curve lies below the Lorenz curve of Y for all p ∈ (0, 1).
Analogously, to the ordering based on the Lorenz curve, the following can be
defined.

Definition 12 (Partial order based on the Bonferroni curve). Let X and Y be two
continuous non-negative random variables, both with finite and positive expected
value. Let BX and BY denote their Bonferroni curves. X is said to be larger
(or more unequal) than Y in the order based on the Bonferroni curve (and it is
denoted by X ≥B Y ), if

BX(p) ≤ BY (p) ∀ p ∈ (0, 1).
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Figure 3: Graphs of different I(p) curves for the considered models.
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Even if less used, such ordering is well-known and is studied in the literature,
see for example Tarsitano (1990), Giorgi & Crescenzi (2001), Pundir, Arora & Jain
(2005).

The third partial order considered was introduced in Porro (2008).

Definition 13 (Partial order based on the I(p) curve). Let X and Y be two
continuous non-negative random variables, both with finite and positive expected
value. Let IX and IY denote their inequality I(p) curves. X is said to be larger
(or more unequal) than Y in the ordering based on I(p) curve (and it is denoted
by X ≥I Y ), if

IX(p) ≥ IY (p) ∀ p ∈ (0, 1)

The relationship amongst these three orderings is summarized in the following
result (for partial proof, see Polisicchio & Porro 2011).

Lemma 1 (Lemma of equivalence). Let X and Y be two continuous non-negative
random variables X and Y , both with finite and positive expected value. Then:

X ≥L Y ⇔ X ≥B Y ⇔ X ≥I Y.

This lemma makes the coherence of the three curves evident; in fact, two
distributions are ordered for one ordering if, and only if, they are ordered for the
other two. It is important to mention that all these orderings are only partial
orders, as there are some distributions with crossing L(p) curves and therefore
with crossing B(p) and I(p) curves, that can not be ordered for all p ∈ (0, 1). But,
if the distributions belong to the same parametric model, these partial orders may
allow to explain how the parameters influence them in terms of inequality. This is
the case of the models defined in Section 2. Their parameters are classified in scale
parameter or in direct and indirect inequality indicators. As defined in the same
section, the scale parameters do not influence inequality. How other parameters
influence the inequality curves is shown in Figures 1, 2 and 3, further showing that
the curves do not intersect.

7. A Unified Point of View

All the curves presented in the previous sections are defined as introduced in
the literature. As the partial orders described in the previous section show, it
does not always happen that, given two inequality curves, the one related to the
situation of more inequality lies above the other. From the graphical point of view,
inequality curves can be more intuitive if they satisfy such restriction, meaning
that for a fixed p ∈ (0, 1), the curve related to the situation of more inequality
takes on a greater value than the curve related to the situation of less inequality.

Following the same approach used by Zenga (1984), such “increasing ranking”
can be achieved by performing a suitable transformation on the inequality curves.
In Zenga (1984) through a simple transformation on the δ(p) of Gini, the new
λ(p) curve is obtained: such new curve lies in the unitary square and satisfies the
aforementioned “increasing ranking”.
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Then, from the Lorenz curve, the curve G(p) can be obtained as:

G(p) = 2[p− L(p)] p ∈ (0, 1),

which coincides with the function in the first integral in formula (2). Analogously
from the Bonferroni curve, the V (p) curve can be otained as:

V (p) = 1−B(p) p ∈ (0, 1).

From the definition of the Bonferroni curve and formula (2) it follows that

G(p) = V (p) · 2p p ∈ (0, 1).

The inequality I(p) curve needs no transformation, since it already satisfies the
“increasing ranking”.

Another interesting result of these transformations is that the new curves have
the following feature: the related inequality indices are the areas below the curves.

As mentioned in the introduction, the curves presented for continuous models
can be applied to empirical distributions. Replacing the distribution function F
of the model by the empirical cumulative distribution function (ECDF) is good
enough. The empirical quantile function is the generalized inverse function F−1

of the ECDF as defined in formula (1). The result is a step-function with integral
between 0 and 1 clearly equal to the empirical mean.

As an example, the formulae presented in this section can be applied to the data
provided by the Bank of Italy (2012). The 2012 sample survey has been analysed
with the R software (R Core Team 2013). The considered dataset consists of 8114
non-negative household incomes with mean equal to EUR 30481.01. In Figure 4
empirical curves G(p), V (p) and I(p), that satisfy the “increasing ranking”, are
drawn. The three curves are drawn together in the unitary square. The values of
the related indexes corresponding to the areas below the curves are included.
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Figure 4: Unified representation of the inequality curves.
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By using this unified representation it is easy to understand why the three
indices assume such different values. In fact, index I is sensitive to the inequality
in both the tails, index B is sensitive to the inequality in the poorest units but
does not bring in the inequality from the richest ones, whereas the index G does
not capture the inequality of both the tails.

8. Final Remarks

This paper is a review of the most known inequality curves. The considered
curves are the Lorenz curve, the Bonferroni curve and the I(p) curve. The main
features of each are described with particular emphasis on their interpretation.
Such curves are graphical methods used to analyse and compare inequality of
non-negative distributions. For instance, inequality curves are used to rank the
distributions through partial orders. The aforementioned curves are exemplified
through five well-known non-negative distribution models, some of which can be
used to describe income distributions. In the last section, a transformation of the
Lorenz curve and a transformation of the Bonferroni curve allow an easier and
more intuitive representation of such graphical tools.

[
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