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Abstract

A biplot is a graphical representation of two-mode multivariate data
based on markers for rows and columns often provided in a two-dimensional
space. These markers define parameters that help to interpret goodness of
fit, quality of the representation and variability and relationships between
variables. However, such parameters are estimated as point values by the
biplot, thus no information on the accuracy of the corresponding estimators
is obtained. We propose a graphical methodology, that may be considered as
an inferential version of a biplot, based on bootstrap confidence intervals for
the mentioned parameters. We implement our methodology in an R package
and validate it with simulated and real-world data.

Key words: Bootstrap Confidence Interval, Graphical Methods, Multivari-
ate Data, Quantiles, Software.

Resumen

Un biplot es una representación gráfica de datos multivariantes de dos
vías basada en marcadores para filas y columnas proporcionada usualmente
en un espacio bidimensional. Estos marcadores definen parámetros que ayu-
dan a interpretar bondad de ajuste, calidad de representación y variabilidad
y relaciones entre variables. Sin embargo, tales parámetros son estimados
puntualmente en el biplot, sin proporcionar información acerca de la pre-
cisión de los estimadores. Se propone una metodología gráfica, que puede
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ser considerada como una versión inferencial de un biplot, basada en interva-
los de confianza bootstrap para los parámetros mencionados. La metodología
es implementada en un paquete R y validada con datos simulados y reales.

Palabras clave: cuantiles, datos multivariantes, intervalos de confianza
bootstrap, métodos gráficos, software.

1. Introduction and Bibliographical Review

Analyses of high dimension data matrices for individuals and variables can be
performed using multivariate techniques, which reduce this dimensionality pro-
jecting the data onto an optimal subspace, conserving the patterns of similarity
between individuals and of covariation between variables. Differences among these
techniques depend on the type of variables and metrics used into the respective
subspaces. The biplot methods (biplots in short) proposed by Gabriel (1971) are
part of such techniques, but biplots did not diffuse at the same speed as other mul-
tivariate techniques, due to the absence of software. Biplots are a graphical display
in the context of principal component analysis (PCA in short, and PC for princi-
pal components), jointly representing a multivariate data matrix by markers for
its rows (individuals) and columns (variables), permitting interrelations between
them to be captured visually in a low-dimensional space. Biplots allow us to make
description and also modeling and diagnostics (Bradu & Gabriel 1978) and are a
powerful data visualization tool that can be considered as a multivariate version
of the scatterplot, because biplots are usually performed in the two-dimensional
space. This is the classical biplot of Gabriel, which has two parts. First, it ap-
proximates the data matrix by a singular value decomposition (SVD). Then, this
matrix is factorized to obtain a low dimension Euclidean map through row and
column markers represented by points/vectors, similarly to the case of the facto-
rial correspondence analysis (CA). However, in biplots, the interpretation is based
on the geometric properties of the scalar product between the rows and columns,
allowing an approximation of the data matrix elements to be obtained.

Gower & Harding (1988), Gower (1992) and Gower & Hand (1996) provided
a different focus of the classical biplot, ordering the individuals by scaling and
then superimposing the variables so that a joint graphical interpretation is pos-
sible, as usual in biplots. The two most used biplots are known as GH and JK.
Galindo (1986) proved that, with a suitable choice of the markers, it is possible
to represent the rows and columns simultaneously on the same Euclidean space
with an optimal quality, which is called the HJ biplot. Its coordinates for columns
are the column markers in the GH biplot and the coordinates for rows are the
row markers in the JK biplot. HJ biplot of Galindo has been applied in several
fields. Orfao, González, San-Miguel, Ríos, Caballero, Sanz, Calmuntia, Galindo
& López-Borrasca (1988) applied this biplot to histopathology; Rivas-Gonzalo,
Gutiérrez, Polanco, Hebrero, Vicente-Villardón, Galindo & Santos-Buelga (1993)
to enology; Mendes, Fernández-Gómez, Galindo, Morgado, Maranhão, Azeiteiro
& Bacelar-Nicolau (2009) to limnology; Viloria, Gil, Durango & García (2012) to
biotechnology; Díaz-Faes, González-Albo, Galindo & Bordons (2013) to bibliome-
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try; García-Sánchez, Frías-Aceituno & Rodríguez-Domínguez (2013) to sociology;
and Gallego-Álvarez, Galindo & Rodríguez-Rosa (2014) to sustainability. An-
other biplot is known as GGE which displays the genotype main effect (G) and
the genotype by environment interaction (GE) in two-way (two-mode) data. The
GGE biplot originates from data graphical analysis of multi-environment variety
trials. Technical details of the GH, HJ and JK biplots are provided in Section 2
and of the GGE biplot in Frutos, Galindo & Leiva (2014).

Ter-Braak (1986) used biplots fitted with linear models in the context of direct
gradient analysis, which allows a set of species to be ordered according to its rela-
tionship with a set of environmental variables. Gauch (1988) employed the biplots
for validating and selecting models when the interaction between genotype and
environment is studied. Ter-Braak (1990) and Ter-Braak & Looman (1994) took
advantage of the relationship between biplot and regression methods to introduce
the biplot of the regression coefficient matrix and to propose a biplot based on
reduced rank regression. Cárdenas & Galindo (2003) investigated the inferential
aspects of biplots using the generalized bilinear models, extending their fitting
with external information for variables related to the exponential family.

Vairinhos (2003) showed that the biplots are an ideal basis for the development
of a data mining system, because most of the data analysis techniques can be ex-
pressed as particular cases of biplots. Amaro, Vicente-Villardón & Galindo (2004)
studied the properties of MANOVA biplots within the context of the multivari-
ate general linear model, developing methods for their interpretation. Hernández
(2005) studied the performance of biplots in the presence of outliers and Ramírez,
Vásquez, Camardiel, Pérez & Galindo (2005) proposed biplots to detect multi-
collinearity. As an alternative to the multiple CA for the case of presence/absence
variables associated with the binomial distribution, Vicente-Villardón, Galindo &
Blázquez (2006) considered the prediction biplots and applied it to biplots fitted by
generalized linear regression, proposing logistic biplots, later extended by Demey,
Vicente-Villardón, Galindo & Zambrano (2008).

Bradu & Gabriel (1974) and Bradu & Gabriel (1978) studied the fitting of
bilinear models in two-way tables, analyzing collinearity between rows and columns
on the biplots. Gabriel & Zamir (1979) also worked on the fitting of these bilinear
models, but they proposed iterative techniques to obtain approximations at low
rank using weighted least squares. Denis (1991), Falguerolles (1995), Choulakian
(1996) and Gabriel (1998) used biplots to study interactions in two-and-three-
way tables. Gabriel (1998) developed diagnostics in models based on contingency
tables. Sepúlveda, Vicente-Villardón & Galindo (2008) used biplots as a diagnostic
tool of local dependence in latent class models.

Methods for three-way data analysis have shown to be variants of the PCA
of the two-way supermatrix, being the two most common ones: (i) TUCKER3
(Tucker 1966) and (ii) STATIS (L’Hermier des Plantes 1976). In (i), the data
are summarized by three-mode components, and for their entities (individuals,
sampling sites, etc.), component loadings are yielded. In (ii), data are compared on
several occasions (time instants) by a PCA linked into column vectors (variables),
belonging to different occasions. Based on TUCKER3, Carlier & Kroonenberg
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(1996) generalized the SVD to a three-mode table proposing interactive and joint
biplots to capture the information from the data. The difference between these two
biplots is how the initial data matrix is treated, because in the interactive biplot
two modes are combined, whereas the joint biplot is conditioned to one of the
modes. Martín-Rodríguez, Galindo & Vicente-Villardón (2002) proposed meta-
biplots following the meta-PC and procrustes methods, allowing biplots to be
compared for studying individuals with variables, alternatively to the interactive
and joint biplots.

Vallejo-Arboleda, Vicente-Villardón & Galindo (2006) and Vallejo-Arboleda,
Vicente-Villardón, Galindo, Fernández, Fernández & Bécares (2008) proposed the
canonical STATIS, a biplot for multi-table data. Frequently, multivariate data
taken over multiple occasions are found to produce a multi-table experiment. Nei-
ther the separate analysis of each occasion, using MANOVA or canonical analysis,
nor the joint analysis using STATIS for multiple tables, are adequate to capture
the real structure of the data matrices. This is because the former one accounts for
group structure, but for not time evolution, whereas the last one confuses between
and within group variabilities. Canonical STATIS permits a data group struc-
ture to be accounted, as well as time evolution on various occasions, by obtaining
common or stable canonical variables across multiple occasions or data sets.

We focus on the classical biplot of Gabriel (1971); see Cárdenas, Galindo &
Vicente-Villardón (2007) for a review and the books by Gower & Hand (1996),
Greenacre (2010) and Gower, Gardner-Lubbe & Le-Roux (2011) for more details.

The bootstrap method was proposed by Efron (1979, 1987, 1993) and is used
for facilitating calculations from statistical inference, which need the modern com-
puter power since they are intensive. Bootstrapping corresponds to a resampling
method useful for estimating the standard error (SE) of an estimator and then
bootstrap confidence intervals (CIs) can be constructed. Because it is difficult to
obtain closed expressions for sampling distributions of statistics associated with
biplots (or with the SVD components), bootstrapping seems to be sound and ade-
quate for approximating these distributions. Marcenko & Pastur (1967), Wachter
(1978), Stewart (1980), McKay (1981), Edelman (1988), Lambert, Wildt & Du-
rand (1990), Milan & Whittaker (1995), Díaz-García, Leiva & Galea (2002), Díaz-
García, Galea & Leiva (2003), Díaz-García & Leiva (2003), Caro-Lopera, Leiva
& Balakrishnan (2012) and Sánchez, Leiva, Caro-Lopera & Cysneiros (2015) dis-
cussed sampling distributions of SVDs and other decompositions and random ma-
trices. Chatterjee (1984), Daudin, Duby & Trécourt (1988), Holmes (1989) and
Linting, Meulman, Groenen & Van der Kooij (2007) combined bootstrapping with
several multivariate techniques to provide more accurate results. Meulman (1982),
Greenacre (1984), Gifi (1990), Timmerman, Kiers, Smilde & Stouten (2009), Kiers
(2004) and Van Ginkel (2011) used bootstrapping in the context of multi-mode
data.

The main objective of our work is to introduce a new methodology for biplots
based on bootstrapping. We implement it in a graphical user interface (GUI)
package developed in the statistical software R (www.r-project.org), named
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biplotbootGUI. R is an integrated suite of software facilities for data manipu-
lation, calculation and graphical display; see R-Team (2013).

The paper is organized as follows. In Section 2, we provide the technical
background of this work. In Section 3, we propose a biplot methodology with
bootstrapping and the state-of-art of the software developed for biplots. In ad-
dition, in this section, we detail the features of the biplotbootGUI package. In
Section 4, we perform the numerical application of the proposed computational
implementation by using simulated and real-world data sets. Finally, in Section
5, we sketch some discussions, conclusions and future works.

2. Background and Technical Preliminaries

In this section, we provide some technical preliminaries useful for facilitating
the understanding of the results proposed in this paper.

2.1. Biplot Representations

Any I × J two-way data matrix X can be expressed as the product of two
matrices: A with I rows and S columns and B with S rows and J columns. If S
is equal to two, then each row in A and each column in B have two values defining
a point in a two-dimensional plot. When both of I rows of A and J columns of B
are displayed in a single graphical representation, this is called a biplot. Thus, a
biplot is a graph of a matrix XI×J with row and column markers a1, . . . ,aI and
b1, . . . , bJ , respectively, chosen in such a way that the inner product a>i bj is the
element xij of X. The rows and columns of this marker matrix are the coordinate
points in an Euclidean space related to the same orthogonal axes. A property of a
biplot is that each of the I×J values can be recovered by viewing its I+J points,
which is a display of a matrix of rank equal to two (rank-two). Decomposition of
a matrix X into its component A and B is called a SVD, obtaining as result S
PCs. A two-way data matrix rarely has rank-two, so that approximating X by a
rank-two matrix means that only the first two PCs are used for representing it.
If these explain an important proportion of the total variability of X, then it is
sufficiently approximated by a rank-two matrix and can be displayed in a biplot.

Let X be a data matrix composed by I individuals measured on J variables.
The SVD of X is defined as X = UΛV >, where U is a matrix whose col-
umn vectors are orthonormal and correspond to the eigenvectors of XX>, V
is a matrix whose column vectors are also orthonormal and correspond to the
eigenvectors of X>X, and Λ is a diagonal matrix containing the singular values
arranged in decreasing order. An element of X may be written generically as
xij =

∑min(I,J)
s=1 λsuisvjs. The first S elements of us and of vs combined with

the singular values λs in different ways are used as the coordinates for a graphical
display of the data. The most common types of biplots are shown in Figure 1.
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Figure 1: Types of biplots.

In a biplot, the column markers bj are shown as arrows and the row markers
a>i as points; see Figure 1. The biplot representation makes the projection of the
row markers onto the column markers easier. The relationships between individ-
uals and variables are studied through the projection of the points representing
individuals onto the vectors representing variables, that is, xij ≈ a>i bj implies
xij ≈ ||proj ai/bj || sign bj ||bj ||, where ||proj ai/bj || is the length of the segment
from the origin to the point ai (length of the projection from ai to bj), sign bj is
the sign of bj and ||bj || is the module of bj (length of the segment from the origin
to bj). This means that xij is approximately the module of the projection of ai
onto bj multiplied by the length of bj , with its corresponding sign. The direction
of the vector bj shows the increasing direction of the corresponding variable values.
The projections of the points ai onto a column vector approximate the jth column
of X and provide an ordination of the individuals respect to the corresponding
variable. Once a way of representation is defined, it can be interpreted. Thus:

• The distance between points are dissimilarities between the corresponding
individuals, specially if they are well represented. Individuals that are far
away from each other have a larger Euclidean distance (ED) and vice versa.
In Figure 2, the largest ED is observed between individuals a1 and a8 and
the smallest ED is obtained between a5 and a6.

• In the JK biplot, the line length approximates the variance of the variable.
Hence, the longest line is the largest variance. From Figure 2, the variable
b3 has the largest variance among the variables, while the variable b2 has the
smallest variance. The cosine of the angle between the vectors approximates
the correlation between the variables they represent. Thus, as this angle
goes to 90 (or 270) degrees, the corresponding correlation decreases. An
angle of 0 or 180 degrees reflects a correlation of 1 or −1, respectively. The
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biplot in Figure 2 shows a strong relationship between the variables b4 and
b5, and a weak relationship between the variables b2 and b3, and between
b1 and b3. The correlation between the variables b3 and b6 is negative. The
variables with the same direction involve multicollinearity, such as observed
in Figure 2 for variables b1 and b2. Also, biplots show multivariate outliers
that can be used to detect clusters, such as the group formed by individuals
a1, a2, a7 and a9.

Figure 2: Biplot representation of a matrix with 6 variables and 9 individuals.

• The relationships between individuals and variables can be interpreted in
terms of scalar products, that is, through the projections of the points onto
the arrows. It permits us to know what variables differentiate among groups
of individuals. If the projection falls on the origin, the value of the obser-
vation is approximately the average of the respective variable. Thus, as the
projection of an individual goes increasing onto the direction of a vector rep-
resenting a variable, this individual goes moving away from the average of
that variable, whereas the opposite occurs when the projection goes increas-
ing onto reverse direction. Therefore, in Figure 2, individual a2 stands out
with the largest value of the variable b4, followed by a1, a7 and a9.

• In the HJ biplot, the search for the variables that differentiate individuals is
made by the interpretation of the factorial axes, that is, the new variables
that are a linear combination of the original variables and the relationships
of new variables with the observed variables.

• The measure of the relationship between the axes of biplots and each of
the observed variables is called relative contribution (RC) of the factor to
the element, which represents the variability proportion of each variable
explained by the factor. This measure is interpreted such as the coefficient
of determination in regression. In fact, if the data are centered, this is
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the coefficient of determination in the regression of each variable on the
corresponding axis. The RC permits us to know what variables are more
related to each axis (Axis 1 and Axis 2) and, therefore, allow us to know the
variables involved in the order of the individuals on the projections in each
axis. Because the axes are built to be independent, the RCs of each axis to
each of the variables are independent and then it is possible to calculate the
RC of a plane adding the RCs of the axes that form the plane.

Properties of the markers in the JK biplot. In this biplot, we use the
metric B>B = I, such that:

• The scalar products of the individuals of X with the identity metric are the
scalar products of row markers included in A for the full space XX> =
AA>.

• The ED between two individuals of X and the ED between row markers in
the full space are the same, that is, (xi−xj)>(xi−xj) = (ai−aj)>(ai−aj).

• The row markers and the individual coordinates are equal in the PC space,
that is, if Ψ is a matrix containing the individual coordinates in the PC
space, then Ψ = (UDV >)V = UD = A.

• The column coordinates of X are the projection of the original axes onto the
PC space, that is, the projection of each row marker onto column markers
is an approximation of individual values on corresponding variables.

• The quality of representation of the rows is better than the columns.

Properties of the markers in the GH biplot. In this biplot, we use the
metric A>A = I, such that:

• The scalar products of the columns of X are the scalar products of the
column markers X>X = BB>.

• If X has been centered by columns, the squared length of the vectors rep-
resenting column markers approximate the covariance of the corresponding
variables and as consequence the three following properties arise:

- The squared length of the column vector approximates the variance
of the corresponding variable, whereas the length of the vector ap-
proximates the standard deviation (SD) of these variables, that is,
||bj || = ||xj || =

√
Var(xj).

- The cosine of the angle formed by two column markers approximates the
correlation between the corresponding variables, that is, cos(bi, bj) =
Cor(xi,xj).

- The ED between two variables is the ED between the corresponding
column markers, that is, d2(xi,xj) = (xi − xj)

>(xi − xj) = ||xi||2 +
||xj ||2 − 2(x>i xj) = ||bi||2 + ||bj ||2 − 2(b>i bj) = d2(bi, bj).
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- The coordinates in B are the importance of the variables on the prin-
cipal axes.

• The Mahalanobis distance between two individuals can be approximated
by the ED between row markers, that is, by (xi − xj)

>Σ̂−1(xi − xj) =

(ai − aj)
>(ai − aj), where Σ̂ is an estimate of the corresponding variance-

covariance matrix.

• If X is centered by columns, the row marker coordinates are the individual
coordinates in the PC space and then A contains the scores on the standard-
ized PCs.

• The scalar products of the row markers are the scalar products of the rows of
X with the metric (X>X)−1 in the column space, that is,X(X>X)−1X> =
AA>.

• The quality of representation of columns is better than that for the rows.

Properties of the markers in the HJ biplot. In this biplot, the properties
of row markers are the same as in the JK biplot, whereas the column markers
are the same as in the GH biplot. The rules for interpreting the HJ biplot are
a combination of the rules used in classical biplots, CA, factor analysis (FA) and
multidimensional scaling. Specifically, we have that:

• The distances between row markers are interpreted as inverse similarities, in
such a way that closer individuals are more similar, which allows the clusters
of individuals with similar profiles to be identified.

• The lengths of the column vectors approximate the SD of the variables.

• The cosines of the angles between the column vectors approximate the cor-
relations between variables. Hence, small acute angles are associated with
highly positive correlated variables; obtuse angles near to the straight angle
are associated with highly negative correlated variables; and right angles are
associated with non-correlated variables; analogously the cosines of the an-
gles between the variable markers and the PCs approximate the correlations
between them, whereas for standardized data they approximate the factor
loadings in FA.

• The location in the plot of the orthogonal projections of the row markers onto
a column marker allows us to approximate the ranking of the row elements in
that column. Thus, as the projection of a point (individual) away from the
center of gravity (average coordinate point), the value that this individual
takes on the variable is farther from its mean.

• Row and column markers can be shown in the same Cartesian system with
optimal quality of representation. In the CA context, Greenacre (1984) and
Lebart, Morineau & Piron (1995) proved that the clouds of row and column
points have the same eigenvalues and barycentric relationships between them
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exist. The relationships proposed by Galindo (1986) are similar, that is,
the relations between the eigenvectors U and V are U = XV D−1 and
V = X>UD−1. Hence, the markers can be written as

A = V D = X>UD−1D = X>U = X>XV D−1 = X>BD−1 and

B = UD = XV D−1D = XV = XX>UD−1 = XAD−1

Therefore, the row coordinates are weighted means of the columns where the
weights are the values of X and the same applies for columns.

2.2. Goodness of Fit

To assess goodness of fit in S dimensions, we need to know the variability pro-
portion of X explained by the approximated matrix X̃, that is, the proportion of
total variability = ||X||2 =

∑I
i=1

∑J
j=1 x

2
ij . Because of the least-square properties

of the SVD and the orthogonormality of U and V , this total variability can be
split into an explained variability and a residual variability expressed in terms of
the squared singular values as

∑
S̃
s=1 λ

2
s =

∑
S

s=1 λ
2
s +

∑
S̃

s=S+1 λ
2
s, where S̃ is the

rank of X. This expression shows that the sum of the first S squared singular
values divided by the total sum of squared singular values is a way to assess the
amount of total variability explained by the first S vectors. If the explained total
variability is large, it means that the graph represented by the first S singular
vectors has a good representation of the initial matrix. If only a small proportion
of such a variability is explained by the first singular vectors, the rest of variabil-
ity can be explained by vectors of higher dimensions. If the data are centered
by columns, individuals located near the origin may have measures close to the
variable means, or their variability is explained by higher dimensions. In the same
way, variables located near the origin may have small variability or may be not
well represented in these dimensions. The estimates of row and column markers
for each biplot and their quality of representation are shown in Table 1.

Table 1: Markers and their quality of representation.

Rows Columns
Coordinate Quality Coordinate Quality

GH biplot U S/S̃ V D
∑S
s=1 λ

4
s/
∑S̃
s=1 λ

4
s

JK biplot UD
∑S
s=1 λ

4
s/
∑S̃
s=1 λ

4
s V S/S̃

HJ biplot UD
∑S
s=1 λ

4
s/
∑S̃
s=1 λ

4
s V D

∑S
s=1 λ

4
s/
∑S̃
s=1 λ

4
s

2.3. Contributions

The quality of representation detailed in Subsection 2.2 is a way to globally
measure the fit of an approximation. However, it is also possible to individually
measure its fit related to units and variables, which is important to interpret
the results from the biplot. These measures are based on the concepts of RC or
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absolute contribution (AC) proposed in Galindo (1986) and Jambu (1991). The
total inertia is the sum of the eigenvalues of a matrix, that is, the trace of the
matrix, used as a measure of the total variability in a data matrix. It is directly
related to the physical concept of inertia, which is the tendency of an object in
motion to stay in motion, and the tendency of an object at rest to stay at rest. Note
that the total variability of the individual cloud is equal to the total variability
of the variable cloud, given by trace(XX>) = trace(X>X) =

∑S
s=1 λ

2
s, where∑S

s=1 λ
2
s =

∑J
j=1 d

2(bj ,0) =
∑S
s=1

∑J
j=1 b

2
js =

∑I
i=1 d

2(ai,0) =
∑S
s=1

∑I
i=1 a

2
is.

The ACs of the individual i and of the variable j to the variability of the axis s are
ACis = a2is and ACjs = b2js, respectively. The total inertia of the factor s taking
into account the ACs of the individual i and of the variable j are

∑I
i=1 a

2
is = λ2s

and
∑J
j=1 b

2
js = λ2s, respectively. The RCs of the elements i and j to the factor

s are RCis = ACis/λs and RCjs = ACjs/λs, respectively, whereas the RCs of
the factor s to the elements i and j are RCsi = a2isd

2(ai,0) = cos2(ai) and
RCsj = a2js/d

2(bj ,0) = cos2(bj), respectively. The RC of the element to the factor
measures how this factor can be explained by such an individual or variable.

3. A Biplot Methodology with Bootstrapping

In this section, we provide some aspects related to bootstrapping, propose a
biplot methodology based on bootstrapping, discuss the state-of-art of the software
developed for biplots and detail the features of the biplotbootGUI package.

3.1. Bootstrapping

Statistical theory attempts to answer three basic questions. (i) How should the
data be collected? (ii) How should the collected data be analyzed and summarized?
(iii) How accurate is this data summary? The third question constitutes part of
the process known as statistical inference. Bootstrapping can help to answer this
question when a sampling distribution is not available. Suppose a random sample
X = (X1, . . . , Xn)

> is obtained from a population with unknown distribution.
Let x = (x1, . . . , xn)

> be an observation of X, from which we can obtain the
estimate θ̂ = s(x) of a parameter of interest θ, corresponding to an observed value
of the estimator θ̂ = s(X) for which we want to know its accuracy. A bootstrap
sample x∗ = (x∗1, . . . , x

∗
n)
> is defined to be a sample of size n with replacement

from the observed sample x. A bootstrap replication of θ̂ results from applying
the same function s(·) to B bootstrap samples. To calculate the accuracy of the
estimator θ̂, the bootstrap estimate of the corresponding SE, SE[s(X)] say, can be
used. Its bias can be empirically calculated from B[s(X)] = s(x∗)− θ. Algorithm
1 summarizes the bootstrap method to calculate the mentioned SE, which is often
used for constructing a CI for a parameter.
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Algorithm 1 Bootstrapping
1: Select B bootstrap samples x∗

1, . . . ,x
∗
B each consisting of n data drawn with replacement

from x.
2: Calculate the estimate θ̂∗b = sb(x

∗) from the bth sample corresponding to a bootstrap repli-
cation of θ̂ for b = 1, . . . , B.

3: Estimate the SE of θ̂ = s(X) with the sample SD of the B bootstrap replications, that is,
by ŜE[s(X)] = ((1/B)

∑B
b=1(sb(x

∗)− s(x∗))2)1/2, where s(x∗) =
∑B
b=1 sb(x

∗)/B.

Normal and t distributions-based CIs. Assume the estimator θ̂ is normally
distributed (at least approximately) with unknown expectation θ and SE known
given by (Var[θ̂])1/2 = SE[θ̂], that is, θ̂ ∼ N(θ,Var[θ̂]). Then, Z = (θ̂ − θ)/SE[θ̂] ∼
N(0, 1). Note that P(|Z| ≤ z1−α/2) = 1− α is equivalent to

P
(
θ ∈ [θ̂ − z1−α/2SE[θ̂], θ̂ + z1−α/2SE[θ̂]]

)
= 1− α

Denote θ̂L = θ̂ − z1−α/2SE[θ̂] and θ̂U = θ̂ + z1−α/2SE[θ̂]. Hence, the random
interval [θ̂L, θ̂U] has probability 1 − α of containing the true value of θ. Thus, a
100 × (1 − α)% CI for θ is [θ̂ ± z1−α/2ŜE[s(X)]]. These results are meaningful
for large enough sample sizes, for example, for n ≥ 25. However, if we have
small samples (n < 25), these results still can be correct (Bickel & Krieger 1989),
but inappropriate for n ≤ 5 (Chernick 1999). In addition, if SE[θ̂] is unknown,
we can estimate it with the expression given in Step 3 of Algorithm 1, ŜE[s(X)]

say, but in this case Z = (θ̂ − θ)/ŜE[s(X)] still follows, in an approximate way, for
large enough sample sizes, a standard normal distribution. Otherwise (smaller size
samples), we have Z = (θ̂ − θ)/ŜE[s(X)] ∼ t(n − 1), that is, now Z is Student-t
with n− 1 degrees of freedom distributed, but we need additionally the normality
assumption for the population X. Thus, in this case, an 100× (1− α)% CI for θ
with small sample sizes is [θ̂±t1−α/2(n−1) ŜE[s(X)]], where t1−α/2(n−1) denotes
the (1− α/2)× 100th quantile of the t(n− 1) distribution.

Bootstrap normal and t distributions-based CIs. The normal and t distri-
butions do not adjust the CI for θ to account for skewness and/or other aspects
that can result when θ̂ is not the sample mean. The bootstrap normal and t CIs
are procedures that adjust these aspects. Thus, by using the bootstrap method,
we can obtain accurate CIs without having to make the normality assumption.
This procedure approaches the population distribution directly from the data and
builds CIs in the same way that we have explained in the cases of normal and t
distributions. Algorithm 2 summarizes this procedure.

Bootstrap quantile-based CI. An alternative way to the bootstrap t dis-
tribution-based method (boot-t) for constructing bootstrap CIs is the quantile
method (boot-q). The boot-t and boot-q methods are based on a simple structure.
However, several data analyses involve more complex structures such as analysis
of variance, regression models or time series. Boot-t and boot-q methods used
for a more complex parameter than the mean were recently proposed by Leiva,
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Algorithm 2 Bootstrap normal and t CIs
1: Follow Steps 1-3 of Algorithm 1 and obtain ŜE[s(X)].
2: Calculate the value z∗b = (θ̂∗b − θ̂)/ ˆSE∗

b from the bth sample corresponding to a bootstrap
replication of z = (θ̂ − θ)/ŜE[θ̂], where θ̂∗b and ˆSE∗

b are the estimates of θ and of SE[θ̂] for
the bth bootstrap sample, x∗

b say, with b = 1, . . . , B.
3: Determine the (1− α/2)× 100th quantile of z∗b as follows:

3.1 If n ≥ 25, use the value ẑ1−α/2 such that #{z∗b ≤ ẑ1−α/2}/B = α/2;
3.2 If n < 25, use t̂1−α/2(n− 1) such that #{z∗b ≤ t̂1−α/2(n− 1)}/B = α/2.

4: Compute the bootstrap CI for θ as follows:
4.1 If n ≥ 25, [θ̂ ± ẑ1−α/2 ŜE[s(X)]];
4.2 If n < 25, [θ̂ ± t̂1−α/2(n − 1) ŜE[s(X)]]. If Bα/2 is not an integer, assume α/2 ≤

0.5 and compute k as the largest integer less or equal than (B + 1)α/2 and define the
(1− α/2)× 100th quantile by the (B + 1− k)th largest value of z∗b .

Marchant, Saulo, Aslam & Rojas (2014) and can be adapted to data structures still
more complex, as occurs with biplots; see Subsection 3.2. Algorithm 3 summarizes
the boot-q method.

Algorithm 3 Bootstrap quantile CIs
1: Follow Steps 1 and 2 of Algorithm 1 obtaining the bootstrap replications θ̂∗1 , . . . , θ̂

∗
B .

2: Order θ̂∗1 , . . . , θ̂
∗
B obtained in Step 1 of Algorithm 3 as θ̂∗

(1)
< · · · < θ̂∗

(B)
.

3: Determine the (Bα/2) × 100th and B(1 − α/2) × 100th quantiles of the distribution of θ̂∗,
denoted by θ̂Bα/2 and θ̂B(1−α/2), respectively.

4: Construct the boot-q CI as [θ̂Bα/2, θ̂B(1−α/2)].

3.2. Biplots Based on Bootstrapping

We adapt Algorithms 2 and 3 to measure the accuracy of the following biplot
parameters: (B1) goodness of fit; (B2) quality of the approximation for columns;
(B3) eigenvalues; (B4) angles between variables; (B5) angles between variables
and axes; (B6) RC to the total variability of the jth column element; (B7) RC of
the column element j to the qth factor; and (B8) RC of the qth factor to the jth
column element. Adaptation of Algorithms 2 and 3 is given in Algorithm 4.

Algorithm 4 Adaptation of Algorithms 2 and 3
1: Follow Steps 1 and 2 of Algorithm 1 obtaining the bootstrap replications θ̂∗1 , . . . , θ̂

∗
B .

2: Calculate the empirical mean, SE and bias of the estimator θ̂ with the bootstrap samples
by using the expressions Ê[s(X)] =

∑B
b=1 sb(x

∗)/B, ŜE[s(X)] = ((1/B)
∑B
b=1(sb(x

∗) −
s(x∗))2)1/2 and B̂[s(X)] = s(x∗)− s(x), respectively.

3: Establish boot-t CIs for the parameters (B1)-(B8) with Step 4 of Algorithm 2.
4: Determine boot-q CIs for the parameters (B1)-(B8) with Step 4 of Algorithm 3.
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3.3. Software for Biplots

Macros for biplots have been implemented in main commercial and non-commer-
cial statistical software packages. Currently, most commercial statistical software
packages include a procedure or macro for generating biplots; see details in Frutos
et al. (2014). Specifically, the GGEbiplot software, dedicated to the GGE biplot
(www.ggebiplot.com), can also generate the classical biplot. The GGEbiplot pro-
gram is a commercial software and is widely used by agronomists, crop scientists
and geneticists; see Yan & Kang (2003) and Frutos et al. (2014) and references
therein. Vicente-Villardón (2010) implemented in the commercial software Mat-
Lab (www.mathworks.com/products/matlab) a program to perform biplots called
multbiplot. It contains classical, HJ and logistic biplots, among other biplots, as
well as simple and multiple CA for contingency tables.

Most of the software available for biplots is developed for specific applications,
or as part inside general purpose packages. Consequently, they are not very flexible
and produce static pictures that limit the interpretation of their results. Tables 2
and 3 contain the main packages in R, which have implemented biplot decom-
positions and/or representations. In these tables, the name of the package, the
approach on which it is based, that is, Gabriel (1971), Galindo (1986) or Gower
(1992), the main references, the creation date and last update of the corresponding
package are presented and its main contents and functionalities are discussed.

In Table 4, we provide a review of the R packages mentioning the word “biplot”,
although it refers to the joint representation of coordinates calculated with other
methods instead of using the biplot decomposition.

3.4. The BiplotbootGUI Package

Because all of the packages (commercial and non-commercial) discussed in
Subsection 3.3 are not suitable for constructing bootstrap CIs for biplot parameters
(B1) through (B8), we developed a new package in the R language that combines
the biplots described by Gabriel (1971) and Galindo (1986) and the bootstrap
method to display results of these biplots and their statistical accuracy measures.

As mentioned, a GUI is a type of user interface which allows practitioners to
interact with electronic devices such as computers. It is characterized by the use
of icons and visual indicators, as opposed to text-based interfaces, typed command
labels or text navigation, to fully represent the information and actions available to
the user. The actions are often linked through direct manipulation of the graphical
elements. Below, we discuss the features of a GUI in R language of the methodology
for biplots based on bootstrapping proposed in the article and implemented in the
biplotbootGUI package.
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Table 2: Biplots in R

Package References Content Date
Method Update

calibrate
Gower (Graffelman 2013)

It draws calibrated scales with tick
marks on non-orthogonal variable vec-
tors in biplots.

21-01-06
20-03-12

BiplotGUI
Gower

(La Grange, Le-Roux
& Gardner-Lubbe
2009, La Grange,
Le-Roux, Rousseeuw,
Ruts & Tukey 2013)

It provides a GUI to construct and in-
teract with biplots and displays the vari-
ables as calibrated axes. Then, it is not
possible to interpret the variable lengths.
It allows us to change the title, show la-
bels and points or hide them, change the
type, color and size of lines and font,
the color and orientation of labels and
tick marks, draw convex-hulls and alpha
bags. It also performs non-linear and
MDS biplots and allows us to choose the
distance and way to calculate the coordi-
nates. It shows the variable correlations
and provides interactive 3D graphs.

13-08-08
19-03-13

bpca
Gabriel,
Galindo

(Faria &
Demetrio 2012)

It shows biplots in 2D-and-3D and pro-
vides variable lengths, angles between
variables, correlations, coordinates to
individuals and variables, eigenvalues,
eigenvectors and quality of representa-
tion. It displays a graph with the cor-
relations and their approximations and
the 3D graph is interactive.

17-08-08
21-02-12

GGEbiplotGUI
Gabriel
Galindo
Yang

(Yan, Hunt, Sheng &
Szlavnics 2000, Yan &
Kang 2003, Frutos &
Galindo 2013)

It is a GUI to construct and interact
with GGE biplots. It provides eigen-
values, % of variability explained by
each of them, coordinates of individu-
als and variables, contributions of fac-
tors to elements. Also, this GUI allows
us to change the background color, geno-
type labels, environments labels and ti-
tle, font, graph title, in addition to show-
ing genotypes and environments, as well
as to hide title, axes and symbols. Fur-
thermore, with this GUI it is possible to
move the labels by the mouse button and
change the color and text of labels.

29-08-11
22-06-13

multibiplotGUI
Gabriel,
Galindo

(Nieto, Baccalá,
Vicente-Galindo &
Galindo 2012)

It provides a GUI to construct and in-
teract with multibiplots. It allows us to
obtain the quality of representation, con-
tributions, goodness of fit, eigenvalues
and possibility of selecting the number
of axes. It shows 2D-and-3D graphs (2D
graph moves or removes labels, changes
color, size and symbol of the points and
selects the axes shown in the graph; 3D
graph rotates and makes zoom).

29-10-12
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Table 3: (continued) biplots in R.

Package References Content Date
Method Update

nominallogisticbiplot
Gabriel, Galindo

(Hernández
& Vicente-
Villardón 2013a)

It produces a matrix analysis of
polytomous items using nomi-
nal logistic biplots, extending
the binary logistic biplot to
polytomous nominal data.

17-09-13

biplot{stats}
Gabriel (R-Team 2013)

It is part of the basics of R and
produces a biplot from the out-
put of princomp or prcomp.

25-09-13

ordinallogisticbiplot
Gabriel, Galindo

(Hernández
& Vicente-
Villardón 2013b)

It produces a matrix analysis
of polytomous items using or-
dinal logistic biplots, extend-
ing the binary logistic biplot to
polytomous ordinal data.

30-10-13
26-11-13

dynbiplotGUI
Gabriel, Galindo (Egido 2014)

It is a GUI to solve dynamic,
classic and HJ biplots and tries
with 2-and-3 way data matri-
ces.

04-11-13
08-01-14

Table 4: R packages which mention biplots.
Package References Content Dates

vegan

(Oksanen, Blanchet,
Kindt, Legendre,
Minchin, O’Hara,
Simpson, Soly-
mos, Stevens &
Wagner 2013)

It provides tools for describing com-
munity ecology. This package has the
basic functions of diversity, community
ordination and dissimilarity analyses.
In addition, it shows biplots from re-
sults of redundance, canonical correla-
tion and canonical correspondence anal-
yses, which can be used for other types
of data as well.

06-09-01
19-03-13

ade4

(Chessel, Dufour &
Thioulouse 2004, Dray
& Dufour 2007, Dray,
Dufour &
Chessel 2007, Chessel,
Dufour, Dray, Jom-
bart, Lobry, Ollier &
Thioulouse 2013)

It is characterized by the implementa-
tion of graphical and statistical func-
tions, availability of numerical data and
writing of technical and thematic docu-
mentation. It includes bibliographic ref-
erences and has functions to show biplots
from results of the implemented analysis.

10-12-02
11-04-13

ade4TkGUI
(Thioulouse &
Dray 2007, Thioulouse
& Dray 2012)

It is a Tcl/Tk GUI for some basic func-
tions of the ade4 package.

29-09-06
13-11-12

ca
(Nenadic & Greenacre
2007, Greenacre &
Nenadic 2012)

It computes and visualizes simple, multi-
ple and joint CA and shows biplots from
the results of the previous analysis.

28-07-07
12-06-12

caGUI (Markos 2012) It is a Tcl/Tk GUI for functions of the
ca package

04-10-09
29-10-12

ThreeWay (Del Ferraro, Kiers &
Giordani 2013)

It allows us to do component analysis
for 3-way data arrays by means of Can-
decomp/Parafac, Tucker1, Tucker2 and
Tucker3 models and shows joint biplots
from Tucker3 models.

29-10-12
11-06-13
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After the R software has been downloaded from cran.r-project.org and in-
stalled, the user must download and install the biplotbootGUI package and its
dependencies, which are the rgl, tcltk, tcltk2, tkrplot and vegan packages;
see Adler & Murdoch (2012), Grosjean (2012), Tierney (2012) and Oksanen et al.
(2013). Then, to load the biplotbootGUI package into the R software, the com-
mand library(biplotbootGUI) must be entered at the R prompt. Once all these
instructions have been followed, the data must be loaded. Hence, one starts the
GUI by entering the command biplotboot(data) in the R console, where data
to be analyzed must be in a data frame; see details and examples in Section 4
of applications. Once the GUI has been initialized, a window entitled “bootstrap
on classical biplots” emerges; see Figure 3. This window allows us to enter the
number of replications and the confidence level to calculate the CIs. Also, it is
possible to choose the parameters to be considered by the user.

Figure 3: Main window.

After entering and selecting the parameters, one must click on the OK button
and a window titled “Options” appears; see Figure 4. In this window the following
options are available:

• Select the type of biplot to be executed (HJ, GH or JK).

• Select the transformation to be performed on the data considering:

- Subtract the global mean.
- Center by columns.
- Standardize by columns.
- Center by rows.
- Standardize by rows.
- Raw data.

• Change the color, size, label and symbol representing individuals in the
graph.

• Change the color, size and label representing variables in the graph.

• Show the axes in the graph.
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Figure 4: Window of options.

Given that not all the data are well represented by the first two axes, a window
after clicking the button “graph” emerges with the option to choose the number
of axes to be retained, according to the variability explained by each axis. After
choosing the number of axes to be retained and clicking the button “choose”, a
window showing the resulting graph in 2D appears; see Figure 5. This window
displays the labels for the two axes indicating the percentage of variability ex-
plained by each of them (72.96 by axis 1 and 22.85% by axis 2). The user can
select the axes to be displayed in the graph. At the top of the window, two menus
with options to save the graph and show the biplot in 3D are displayed, whereas
three text boxes where the user can change the axes displayed in the graph are at
the bottom. Also, the user can move or remove the label of a specific element by
clicking the left-mouse button and change the graphical displays of such an element
by clicking the right-mouse button. This window contains two dropdown menus.
In the first one, options to copy, save the graph in different file formats (PDF,
postscript, BMP, PNG, JPG/JPEG) or exit are available, whereas the second one
provides a 3D-graph made by the rgl package; see Adler & Murdoch (2012).

The user can rotate or make zoom in this graph by clicking the left-mouse or
right-mouse button. Together with this window, a graph showing the coordinates
for variables computed for all of the replications is shown. The GUI provides two
text files. In the first one, the parameters of the biplot analysis (see B1-B8) are
saved, whereas in the second one, tables with the values for the mean, SE, bias
and lower and upper limits of the bootstrap CIs are provided. These two text files
are automatically saved together with all the graphs containing the histogram and
quantile versus quantile (QQ) plot of the estimates calculated by bootstrapping of
the selected parameters in the first window. In the histogram, the solid line repre-
sents the estimate of the biplot parameter obtained from bootstrapping, whereas
the dashed line is its value obtained from the biplot. In the x-axis of the QQ plot
are the theoretical quantiles and in the y-axis the empirical quantiles.
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Figure 5: Window with a biplot representation in two dimensions.

4. Numerical Applications

In this section, we evaluate the performance and potentiality of our methodol-
ogy by means of the biplotbootGUI package using both simulated and real-world
data.

4.1. Simulated Data

To evaluate the performance of the biplotbootGUI package, an HJ biplot with
the transformation “centering by columns” has been performed. We simulate data
of 100 individuals on 5 variables (V1, . . . , V5) normally distributed, generated to
have correlations Cor(V1, V2) = 0.50, Cor(V2, V3) = 0.80 and Cor(V4, V5) = 0.90.
The number of bootstrap replications is 1,000 and the confidence level 95%. The
time involved in a bootstrap replication is usually small. For example, the time
spent in the calculations of a 1,000×5 matrix is less than four minutes for 1,000
replications. First, we explain the main results of the classical biplot. In Table 5,
we observe the variability explained by each axis (Axis 1, Axis 2 and Axis 3). Note
that the first eigenvalue explains more than 50% and the first three axes explain
more than 94.27% of the total variability. Table 6 shows the RCs of the factor to
the column elements in the first three axes. Note that all the variables are well
represented by the first two axes, except the variable V1, which is in the third axis.
The biplot representation using the first two axes (Axis 1 and Axis 2) is shown
in Figure 7(left). The covariation structure shows a very high correlation between
the variables V4 and V5, and V2 and V3, represented by acute angles. Variables
V2 and V3 have a high correlation with V1, however they present no correlation
with V4 and V5, since they are almost orthogonal; see Table 7. Second, we explain
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the results of applying the bootstrap method. Goodness of fit and eigenvalues are
explained next. Figure 8 shows the histogram and QQ plot representing the values
of the quality of approximation of 1,000 bootstrap replications.

Table 5: Eigenvalues and variability % explained by each of them with simulated data.

No. Eigenvalue Variability Accumulated variability
1 16.06 53.47 53.47
2 12.15 30.59 84.06
3 7.01 10.21 94.27

Table 6: RCs of the factors to the column elements for simulated data.
Variable Axis 1 Axis 2 Axis 3
V1 226.48 16.48 737.49
V2 282.43 118.64 201.18
V3 281.58 89.64 46.09
V4 112.91 421.49 9.12
V5 96.60 353.75 6.12

Table 7: Angles between variables for simulated data.

Variable V1 V2 V3 V4 V5
V1 0.00 14.59 11.58 67.15 66.89
V2 14.59 0.00 3.00 81.73 81.48
V3 11.58 3.00 0.00 78.73 78.47
V4 67.15 81.73 78.73 0.00 0.26
V5 66.89 81.48 78.47 0.26 0.00

We denote by “lower-t” and “upper-t” the lower and upper limits of the CIs
based on the boot-t method, respectively, whereas these limits are denoted by
“lower-q” and “upper-q” for the boot-q method. Table 11 provides the observed
values for the mean, SE, bias and these limits. Notice that the observed value and
its approximation are very close. These same results for eigenvalues are provided
in Table 8. Figure 6 shows the histogram and QQ plot for the first eigenvalue (a
similar behavior is observed for the other four eigenvalues, whose plots are omitted
here, but are available under request for interested users). Note that the observed
and estimated values practically do not differ and a similar conclusion is reached
for the CIs. Each of the five eigenvalues resulting from the SVD of the simulated
data shows the values calculated by 1,000 bootstrap replications.

Table 8: Results for the eigenvalues with simulated data.

No. Eigenvalue Mean SE Bias lower-t upper-t lower-q upper-q
1 16.06 16.09 1.13 0.03 13.85 18.33 13.87 18.24
2 12.15 11.92 0.78 -0.22 10.37 13.47 10.27 13.33
3 7.01 6.9 0.63 -0.12 5.64 8.15 5.74 8.13
4 4.51 4.39 0.31 -0.12 3.78 5.00 3.82 5.05
5 2.69 2.61 0.17 -0.08 2.28 2.94 2.28 2.93
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Figure 6: Histogram (left) and QQ plot (right) for the first eigenvalue of the simulated
data SVD.

4.2. Real-World Data

To illustrate the potentiality of the biplotbootGUI package, we use real-world
data collected by Anderson (1935) and contained in the R software, which can be
loaded once the user installs it. The data set corresponds to the measurements in
cm of the variables: sepal length (Y1) and width (Y2) and petal length (Y3) and
width (Y4), for 50 flowers from each of three species of iris. The species are iris
setosa, versicolor and virginica. An HJ biplot with the transformation “standardize
by columns” is performed. Once again the number of replications entered is 1,000
and the confidence level 95%. First, we show the main results of the HJ biplot.
Table 9 presents the percentage (%) of variability explained by each axis, from
where the first eigenvalue explains more than 70% and the first three axes explain
almost the 100% of the total variability.

Table 9: Eigenvalues and variability % explained by each of them for iris data.

No. Eigenvalue Variability Accumulated variability
1 20.85 72.96 72.96
2 11.67 22.85 95.81
3 4.68 3.67 99.48

Table 10 provides the RCs of the factor to the column elements in the first three
axes. Notice that all the variables are well represented by the first axis, except the
variable Y4, which is well represented by the second axis. The biplot representation
using the first two axes is shown in Figure 7(right). The covariation structure
shows a very high correlation between Y3 and Y4 represented by an acute angle.
Both variables have a high correlation with the variable Y1. However, there is no
relation with Y2 due to a right angle is obtained. Table 10 also explains the angles
between variables in the plane representing the first two axes. Figure 8 shows the
histogram and QQ plot representing the values of the quality of approximation of
the 1,000 bootstrap replications.
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Table 10: RCs of the factors to the columns and angles between variables for iris data.

Variable Axis 1 Axis 2 Axis 3 Y1 Y2 Y3 Y4
Y1 793.52 130.38 76.09 0.00 95.47 20.71 18.27
Y2 211.80 779.43 8.77 95.47 0.00 116.18 113.74
Y3 996.44 0.56 3.00 20.71 116.18 0.00 2.44
Y4 936.50 4.12 59.38 18.27 113.74 2.44 0.00

Table 11 provides the observed values for the mean, SE, bias, lower-t, upper-
t, lower-q and upper-q for simulated and real-world (iris) data. Note that there
is no difference between the observed value and its approximation, whereas the
endpoints of both intervals are similar. Table 12 provides the RCs to the total
variability of the variables based on 1,000 bootstrap replications. Note that there
are no differences between observed values and their estimates, whereas the width
of the CIs is small suggesting a high accuracy of our methodology. Figure 8 shows
the histogram and QQ plot for the RCs to total variability of the variable Y1. A
similar behavior is observed for the other three variables, whose plots are omitted
here, but are available under request for interested users.

Table 11: Results of the approximation quality for the indicated data set.

Data set Value Mean SE Bias lower-t upper-t lower-q upper-q
Simulated 94.27 94.46 0.75 0.19 92.98 95.95 92.9 95.80
Iris 99.48 99.49 0.08 0.01 99.34 99.64 99.33 99.62

Table 12: Results of the contributions to the total variability for iris data.

Variable Value Mean SE Bias lower-t upper-t lower-q upper-q
Y1 250.95 250.93 0.16 -0.01 250.62 251.24 250.65 251.27
Y2 251.22 251.20 0.17 -0.02 250.86 251.55 250.90 251.57
Y3 247.96 247.99 0.31 0.03 247.39 248.59 247.36 248.53
Y4 249.87 249.87 0.13 0.00 249.63 250.12 249.63 250.10

−8 −6 −4 −2 0 2 4

−
4

−
2

0
2

4
6

8

Axis 1 : 53.47 %

A
xi

s 
2 

: 3
0.

59
 %

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
++ +

+

+

+

+

+ +
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+
+

+
+

+

+
++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
++ +

+

+

+
+

+

+ +
+

+ +

+

+ +

+

+

+
+

+

+
+

1

2

3

4

5

6

7

8

9

10

11
12

13
14

15

16

17

18

19
2021 22

23

24

25

26

27 28
29

30

31

32

33

34

35

36

37

38

39

40

41
42

43

44

45

46
47

48
49

50
51

52
53

54

55
5657

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73
74

75

76

77
7879 80

81

82

83
84

85

86 87
88

8990

91

92 93

94

95

96
97

98

99
100

v1

v2

v3

v4

v5

v4

v5

v1

v3

v2

−5 0 5 10

−
10

−
8

−
6

−
4

−
2

0
2

Axis 1 : 72.96 %

A
xi

s 
2 

: 2
2.

85
 %

+

+
+
+

+

+

++

+

+

+

+

++

+

+

+

+

+
+

+
+

+
++

+

+
++

++

+

+
+

+
+

++

+

++

+

+

+

+

+

+

+

+

+

+
+ +

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

+
+
+

+
+

+

+
++

+ +
+

+
+

+

+

++

+

+

+

+

++ +

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+
+

+

+
+

+

++
+

++

+
+

+++

+

++

+

+

+

+

+
1

2
3
4

5

6

78

9

10

11

12

1314

15

16

17

18

19
20

21
22

23
2425

26

27
2829

3031

32

33
34

35
36

3738

39

4041

42

43

44

45

46

47

48

49

50

51
5253

54

55
56

57

58

59

60

61

62

63

64
65

66

67

68

69
70

71

72
73

74
75
76

77
78

79

80
8182

83 84
85

86
87

88

89

9091

92

93

94

95

969798

99

100

101

102

103

104
105

106

107

108

109

110

111

112

113

114

115

116
117

118

119

120

121

122

123

124

125126

127
128

129

130
131

132

133134
135

136137

138
139

140141142

143

144145

146

147

148

149

150

Sepal.Length

Sepal.Width

Petal.Length

Petal.Width

Petal.Length

Petal.Width

Sepal.Length

Sepal.Width

Figure 7: Biplots of simulated (left) and iris (right) data sets.
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5. Discussion and Conclusions

Factorial analysis techniques only provide to researchers point estimates for
their results. In this work, we have proposed a methodology that combines boot-
strap and biplots methods to calculate confidence intervals for the results from
biplots in order to provide measures of their accuracy. This idea has been applied
in several multivariate techniques that incorporate a singular value decomposition.
Despite there are some packages in the R software to perform biplots, such as de-
tailed in this paper, these packages only provide estimated results as point values
and no information about their accuracy is available. For such a reason, we have
developed a new package in this software to implement our methodology.

Specifically, in this paper, we have proposed a graphical methodology based
on confidence intervals for the main parameters of biplots based in bootstrapping.
These parameters help to interpret the contribution from the elements and axes
of the biplot and correspond to goodness of fit, quality of the representation, and
variability and relationships among variables. The proposed methodology may be
considered as an inferential version of classical biplots and has been implemented in
the new biplotbootGUI R package. We have detailed the features of this package
and validated our methodology with numerical applications based on simulated
and real-world data. The numerical results have shown the good performance
and potentiality of our methodology, as well as the simple and easy manner to
work with the biplotbootGUI package. As a supplement to our work, we have
also provided a review on the key theoretical contributions and the computational
implementations for biplot methods, covering the period from 1971 to the present.

Other ways to calculate measures of accuracy, such as jackknife, Markov chain
Monte Carlo and permutation methods, are proposed in the literature, as well
as ways to calculate confidence intervals other than the intervals proposed in this
paper. In future works, some of these methods may be considered by us to provide
different measures of accuracy for the results obtained by biplots methods.
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