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Abstract

The classic theory of optimal experimental designs assumes that the e-
rrors of the model are independent and have a normal distribution with cons-
tant variance. However, the assumption of homogeneity of variance is not
always satisfied. For example when the variability of the response is a func-
tion of the mean, it is probably that a heterogeneity model be more adequate
than a homogeneous one. To solve this problem there are two methods: The
first one consists of incorporating a function which models the error variance
in the model, the second one is to apply some of the Box-Cox transformations
to both sides on the nonlinear regression model to achieve a homoscedastic
model (Carroll & Ruppert 1988, Chapter 4). In both cases it is possible to
find the optimal design but the problem becomes more complex because it
is necessary to find an expression for the Fisher information matrix of the
model. In this paper we present the two mentioned methodologies for the
D-optimality criteria and we show a result which is useful to find D-optimal
designs for heteroscedastic models when the variance of the response is a
function of the mean. Then we apply both methods with an example, where
the model is nonlinear and the variance is not constant. Finally we find
the D-optimal designs with each methodology, calculate the efficiencies and
evaluate the goodness of fit of the obtained designs via simulations.
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Resumen

La teoría clásica de los diseños experimentales óptimos supone que los
errores del modelo son independientes y tienen una distribución normal con
varianza constante. Sin embargo, el supuesto de homogeneidad de varianza
no siempre se satisface. Por ejemplo, cuando la variabilidad de la respuesta
es una función de la media, es probable que un modelo heterocedástico sea
más adecuado que uno homogéneo. Para solucionar este problema hay dos
métodos: el primero consiste en incorporar una función que modele la va-
rianza del error en el modelo; el segundo consiste en aplicar alguna de las
transformaciones de Box-Cox en el modelo de regresión no lineal (Carroll
& Ruppert 1988, Capítulo 4). En ambos casos es posible hallar el diseño
óptimo, pero el problema se vuelve más complejo porque es necesario encon-
trar una expresión de la matriz de información de Fisher del modelo. En
este artículo se presentan las dos metodologías mencionadas para el criterio
D-optimalidad y se muestra un resultado que es útil para encontrar diseños
D-óptimos para modelos heterocedásticos cuando la varianza de la respuesta
es una función de la media. Luego, se aplican ambos métodos en un ejemplo
donde el modelo es no lineal y la varianza no constante. Finalmente se en-
cuentra el diseño D-óptimo con cada metodología, se calculan las eficiencias
y se evalúa la bondad del ajuste de los diseños obtenidos a través de simu-
laciones.

Palabras clave: D-eficiencia, DiseñosD-óptimos, heterocedasticidad, trans-
formación de Box-Cox.

1. Introduction

The optimal experimental designs are a tool that allows the researcher to know
which factor levels should be experimented in order to obtain a best estimate of the
parameters of the model with certain statistical criterion. One of the most popular
criteria is the D-optimality which involves finding the design that minimizes the
generalized variance of the parameter vector. The design depends on a regression
model (1) that relates the response variable Y with the independent variable x

Y = η(x,β) + ε (1)

with η(x,β) a linear or nonlinear function of the parameter vector β and x.
Besides, if the researcher has the possibility to run N observations of the model

(1), then there are the following assumptions:

1. the error components εi, for i = 1, 2, . . . , N , are independent and

2. have a normal distribution with constant variance σ2.

For more information about the classic theory of optimal designs see Kiefer
(1959), O’Brien & Funk (2003), Atkinson, Donev & Tobias (2007, Chapter 9),
López & Ramos (2007). However, in practice there are cases where the homogene-
ity assumption is not satisfied. For example when the variance of the response
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is a function of the mean, it can increase or decrease depending of the structure
of the variance. The issue of heteroscedasticity in nonlinear regression models is
discussed in detail in Seber & Wild (1989, pp. 68-72). Basically there are two
methodologies to handle this problem. The first one is to apply some of the Box-
Cox transformations to the model (1) with an appropriate λ1 that stabilizes the
variance of the errors. We identify the transformed model like model A:

Y λ1
i = η(xi,β)λ1 + ε∗i (2)

where is assumed that the new errors ε∗i have a normal distribution with constant
variance.

The second model, which we identify as model B, consists of incorporating the
variance structure of the errors in the model as follows:

Yi = η(xi,β) + εi (3)

where the errors εi are independent N(0, σ2(η(xi,β))λ2), with λ2 an adequate
power parameter that models the variance of the errors.

As Seber & Wild (1989) emphasize, the difference between models A and B is
“that model A transforms so that y(λ1) has a different distribution from y as well
as having a homogeneous variance structure, while model B models the variance
heterogeneity but leaves the distribution of y unchanged”. Also, the authors affirm
that model B has often been preferred to model A when the deterministic function
is linear, whereas models like A have been preferred in nonlinear models.

Now, in the context of optimal designs when the model has heteroscedasticity,
the problem to find D-optimal designs is more complicated than in the homoge-
neous case, because the D-optimality criterion maximizes the determinant of the
Fisher information matrix of the model and the expression of this matrix changes
when the variance is not constant. Because the information matrix depends of the
model used, the two methodologies mentioned before for handling of heteroscedas-
ticity are traditionally applied in separate ways. For example, Atkinson & Cook
(1997) apply some of the Box-Cox transformations that makes the transformed
model be linear with a constant variance and then they find local and Bayesian
D-optimal designs to several models. On the other hand, in the case of linear
models, Atkinson & Cook (1995) find local D-optimal designs for heteroscedastic
linear models for various structures of variance, one of them is when the logarithm
of variance is a linear function of the independent variable. Other authors have
worked with nonlinear models, see for example Dette & Wong (1999).

In this paper we compare the methodologies mentioned above, analyze the
structure of the information matrix and we find the D-optimal design for a specific
model. Finally we compare the designs obtained through the D- efficiency. This
paper is divided in four sections. In section 2 we present a brief summary of both
methodologies for the D-optimality criterion and show a result which is useful
to find D-optimal designs for heteroscedastic models when the variance of the
response is a function of the mean (we omit the proof due to length constraints).
In section 3 we illustrate both methods with an example and we compare results
using the D-efficiency of each design. Then, we simulate observations of the model
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for each design and we calculate the relative error and mean square error. Finally,
in section 4 we present some conclusions, discussions and suggestions.

2. Methodologies

Starting with a regression model of the form (1) with the usual assumptions,
the problem of optimal designs consists to find the levels of the x factor where
the researcher should experiment to obtain a best estimate of the parameters
of the model under certain statistical criterion. In this paper we focus on the D-
optimality criterion, which finds the design that minimizes the generalized variance
of the parameter vector (Atkinson et al. 2007, pp. 135). More precisely, a design
ξ is defined as a measure of probability with finite support denoted by:

ξ =

[
x1 x2 · · · xn
w1 w2 · · · wn

]
(4)

where n is the number of support points, x1, x2, . . . , xn are the support points of
the design with associated weights wi ≥ 0 and such that

∑n
i=1 wi = 1 (O’Brien

& Funk 2003). If the weight wi is any number between 0 and 1, the design ξ is
known as a continuous design. However in practice all designs are exact. This
means that the weights wi are associated with the frequency of the support points
(Atkinson et al. 2007, pp. 120).

Now, the main problem of optimal designs is to find a design ξ over a compact
region χ, that maximizes a functional of the information matrix M(ξ). This ma-
trix plays an important role in the theory of optimal experimental designs. The
structure of this matrix depends on the linear nature of the model and on the
assumptions about the errors. When the variance of the errors is constant, this
matrix has a known expression, see for example López & Ramos (2007). However,
in the case of heteroscedastic models this expression is more complex and depends
of the methodology applied. So, in the next two sections we analyze the structure
of the Fisher information matrix with each of the two methodologies mentioned
before.

2.1. Variance Modelling

When the variance of the error is not constant, one way to solve this problem
is to find an adequate function which models the error variance and incorporate
it in the regression model. There are many ways to do this, see for example Huet,
Bouvier, Poursat & Jolivet (2004, pp. 65) and Seber & Wild (1989, pp. 68-72).
One form is when the variance of the response is a power function of the mean:

Yi = η(xi,β) + εi, with var(εi) = σ2(η(xi,β))2τ (5)

where σ2 is the constant variance, τ is an unknown parameter and it should be
estimated. The model (5) with variance structure is known as the power of the
mean variance model (Ritz & Streibig 2008, pp. 74).
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Now, some authors have worked the problem to find D-optimal designs mo-
deling the variance. For example Dette & Wong (1999) find D-optimal designs
for the Michaelis-Menten model when the variance is a function of the mean and
Atkinson & Cook (1995) find D-optimal designs for heteroscedastic linear models.
The following result is taken from Downing, Fedorov & Leonov (2001); they show
the expression of the information matrix for a more general model than the power
of the mean variance model (5):

Y = η(x,θ) + ε, with var(ε) = S(x,θ) (6)

where θ is the parameter vector and it can include the parameters of the deter-
ministic function η and those of the function S(x,θ) as a positive function used
to model the variance of the error. Observe that the power of the mean variance
model (5) is a nested model of the more general model (6). In this case the pa-
rameter vector θ includes all the possible parameters of the model: β, τ and σ2.
So, results about the general model (for instance the next theorem)can be applied
in particular for the power of the mean variance model.

Theorem 1. Information Matrix.
Let Y with normal distribution, with expected mean E[Y |x] = η(x,θ) and vari-

ance V ar[Y |x] = S(x,θ), where S(x,θ) > 0 is a positive function, θq×q is the
parameter vector and χ a compact set. If the N observations {yi, xi}Ni=1 are in-
dependent, then the Fisher information matrix for the approximate design ξ over
the regression design χ is

M(ξ,θ)q×q =

∫
χ

I(x,θ)dξ(x) (7)

where

I(x,θ)q×q =
1

S(x,θ)

∂η(x,θ)

∂θ

∂η(x,θ)

∂θT
+

1

2

1

S(x,θ)2
∂S(x,θ)

∂θ

∂S(x,θ)

∂θT
(8)

This theorem is the main tool of this methodology, because it allows the re-
searcher many ways of modelling the variance and incorporate it in the model.

Corollary 1. For the power of the mean variance model given in (1), where the
errors are independent and have normal distribution with mean zero and variance
var(εi) = σ2(η(xi,β))2τ with β, τ and σ2 parameters, the information matrix is
given by

M(ξ,θ) = UWUT + VWV T (9)

where
U (p+2)×n = (u1,u2, . . . ,un) V (p+2)×n = (v1,v2, . . . ,vn) (10)

W =


w1 0 · · · 0

0 w2

...
. . .

0 wr

 (11)
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and for i = 1, 2, . . . , n:

ui =

(
1

ση(xi,β)τ
∂η(xi,β)

∂βT
, 0.0

)T
(p+2)×1

(12)

vi =

( √
2τ

η(xi,β)

∂η(xi,β)

∂βT
,
√

2 log η(xi, β),
1√
2σ2

)T
(p+2)×1

(13)

This result is the key at the construction of D-optimal designs and can be
implemented computationally to obtain the designs. We will illustrate the use of
this corollary with an application in the next section. But before we need the
following important result which is one of the equivalence theorems. This theorem
allows to verify if the obtained design is in fact the optimal design (Kiefer &
Wolfowitz 1960)

Theorem 2. D-optimality equivalence theorem.
Let M(ξ,θ)q×q the information matrix of the design ξ positive, Ψ(ξ,θ) =

log |M(ξ,θ)| the D-optimality criterion and χ a compact set. Then the design ξ∗

is D-optimal if the directional derivative of φ in ξ∗ on the direction of ξx holds

φ(M(ξ∗,θ),M(ξx,θ)) ≤ 0 ∀x ∈ χ (14)

where φ(M(ξ∗,θ),M(ξx,θ)) = Tr(M(ξx)M−1(ξ∗))− q and ξx is the design that
puts all probability in x. Also, φ(M(ξ∗),M(ξx)) = 0 at the support points of
design ξ∗.

This result is useful to verify the D-optimality of a design ξ∗, because one can
plot the directional derivative φ(M(ξ∗, θ),M(ξx, θ)) over x ∈ χ and to check that
this function at most zero over all experimental region (χ) and also that in the
support points of the design, the equality holds.

2.2. Transformation of the Model

The second methodology consists of applying an adequate transformation on
the model to obtain constant variance. We focus on the Box-Cox transformations,
which are given by Box & Cox (1964).

y(λ) =

{
yλ−1
λ for λ 6= 0

log y for λ = 0
(15)

The value of the parameter λ usually is unknown, but in some cases it can be
assessed depending on the response. For instance, if the response is a volume, the
appropriate transformation can be the cube root (λ = 1/3) and the square root if
the response corresponds to count data (Atkinson & Cook 1997).

Now, Atkinson & Cook (1997) find D-optimal designs when a Box-Cox trans-
formation is applied, the resulting model is linear

Y (λ) = fT (x)β + ε∗ (16)
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and the errors have normal distribution with constant variance ε∗ ∼ N(0, σ2).
However, as illustrated in the example and since the original model is nonlinear,

we must find some appropriate λ such that when we apply the transformation to
both sides of the model, the transformed model is linear in the parameters. It is
important to observe that in our case, the parameter λ will be known, which is an
advantage, because we do not need to estimate this parameter. However, when the
parameter λ is unknown, it is possible to find the design, see for example Atkinson
(2003) for more details.

Then, the authors show that the information matrix over the design region for
the transformed model is (see the details in Atkinson & Cook 1997)

M(ξ, θ) =

∫
χ

I(θ)ξ(dx) (17)

where the symmetric matrix I(θ) is given by

I(θ) = −E
[
∂2 log f(Y i|xi,θ)

∂θ2

]

=

 ffT 0 − fE(Ẏ (λ))
σ2

0 1
2σ4 −E(ε∗Ẏ (λ))

σ4

− fE(Ẏ (λ))
σ2 −E(ε∗Ẏ (λ))

σ4

E(Ẏ (λ))2+E(ε∗Ÿ (λ))
σ2

 (18)

with ε∗ = Y (λ) − fT (x)β, f = f(x) and Ẏ (λ), Ÿ (λ) denote the first and second
derivative respect to λ and are given by:

Ẏ (λ) =
Y λ log Y λ − Y λ + 1

λ2
and (19)

Ÿ (λ) =
Y λ(log Y λ − 1)2 + Y λ − 2

λ3
(20)

However, these expressions have to be approximated using first-order Taylor ap-
proximations, since the expected values can not be calculated exactly. Finally,
once the design is found using the above expressions, is necessary verify the D-
optimality of the design using a similar result of the equivalence theorem 2.

3. Example

In Section 2 we described the two methodologies commonly used to handle the
heteroscedasticity of a model. Now we illustrate these methods with one example.

3.1. PCB Model

The example consists of a study realized in 1972 in Lake Cayuga, New York,
where the concentrations of Polychlorinated biphenyls (PCB) were made in a group
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of 28 trout at several ages in years. “The ages of the fish were accurately known
because the fish are annually stocked as yearlings and distinctly marked as to year
class” (Bates & Watts 1988, pp. 267–268). The data taken from Bates & Watts
(1988), are shown in the table 1 and the scatter plot is shown in figure 1.

Table 1: Lake Cayuga data.
Age 1.00 1.00 1.00 1.00 2.00 2.00 2.00

Concentration 0.60 1.60 0.50 1.20 2.00 1.30 2.50
Age 3.00 3.00 3.00 4.00 4.00 4.00 5.00

Concentration 2.20 2.40 1.20 3.50 4.10 5.10 5.70
Age 6.00 6.00 6.00 7.00 7.00 7.00 8.00

Concentration 3.40 9.70 8.60 4.00 5.50 10.50 17.50
Age 8.00 8.00 9.00 11.00 12.00 12.00 12.00

Concentration 13.40 4.50 30.40 12.40 13.40 26.20 7.40
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Figure 1: Scatter plot of Lake Cayuga data.

The plot of the data shows that the concentration of Polychlorinated biphenyls
(PCB) increases when the age of the trout does. Also, the relationship between
the variables clearly is not linear, so we propose to fit the nonlinear model:

Y = β1e
β2x + ε (21)

with β1, β2 are unknown parameters to be estimated.
Now, we are going to find the D optimal design for this model with the two

methodologies described above. Because our designs are local, we use the data
only with the purpose to have a good local value of the parameter vector.

3.1.1. Variance Modelling

First, we apply the methodology consisting on modelling the variance of the
errors with an appropriate function. In figure 1, we see that the variability of the
concentration increases as a power function of the mean, so we propose to fit the
model (21) with variance structure (5)

Y = β1e
β2x + ε, where ε ∼ N(0, σ2(β1e

β2x)2τ ) (22)
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with τ an unknown parameter to be estimated.
Now, we fit the model (22) in R Development Core Team (2013) and we used

the gnls function for the generalized nonlinear least squares method. The results
of the estimation are showed in table 2.

Table 2: Generalized nonlinear least squares estimation.
Parameter Estimation

β1 0.91
β2 0.31
τ 1.19
σ 0.34

Next, we perform the likelihood ratio test to determine if the model with
variance structure (22) is better than the model with constant variance (21). The
results of the test are showed in table 3 (the model 1 corresponds to the model
with variance structure (22) and the model 2 to the model with constant variance
(21) ).

Table 3: ANOVA for the likelihood ratio test.
Model df AIC BIC logLik Test L.Ratio p-value

(22) 1 4 134.5534 139.8822 -63.27671
(21) 2 3 178.8002 182.7968 -86.40008 1 vs 2 46.24674 <.0001

The conclusion from this test that is the parameter τ 6= 0, e.g. the model with
variance structure (22) is better than the model with constant variance (21) with
a signification level of 1%.

3.1.2. D-Optimal Design

Now, we find the D-optimal design for the model with variance structure (22).
Because we work with local designs, we use the estimation of the parameters
obtained previously like the local value for θ; that is, we use the local value
θ0 = (β1, β2, τ, σ) = (0.91, 0.31, 1.19, 0.34). Then we implement the corollary 1
through an algorithm in R Development Core Team (2013) and minimize
− log(|M(ξ,θ)|). In this optimization problem we use the function nlminb over
the experimental region (χ). The local D-optimal design obtained is shown in
table 4 and is denoted by ξD. The xi are the support points of the design and
the wi the weights. As we can see, even though the model with variance structure
(22) has four parameters to be estimated, the design consists only of two points,
which are the extreme points of the regression range χ = [1, 12]. In this sense, if we
could repeat the experiment and our objective are to estimate the parameters with
minimum variance, then we measure the Polychlorinated biphenyls concentration
in trout with ages of one and twelve and with equal number of replicates.

Then we check that the obtained design ξD is D-optimal. With this in mind,
by the D-optimality equivalence in theorem 2, we must verify that the directional
derivative of Ψ at ξD in the direction of the design that puts all mass at x, ξx,
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Table 4: Local D-optimal design ξD to the model (22).
xi 1.00 12.00
wi 0.50 0.50

satisfies
φ(M(ξD,θ),M(ξx,θ)) = Tr(M(ξx)M−1(ξD))− 4 ≤ 0 (23)

∀x ∈ χ = [1, 12]. As we can see in figure 2, this condition holds and the derivative
equals zero at the support points, so the design ξD is indeed D-optimal.

2 4 6 8 10 12
−2.0

−1.5

−1.0

−0.5

0.0

Age

y

Figure 2: Plot of the directional derivative.

3.1.3. Simulations

We simulate 1,000 times 28 observations of the model with variance structure

Yi = β1e
β2xi + εi, εi ∼ N(0, σ2(β1e

β2xi)2τ ), for i = 1, 2, . . . , 28 (24)

taking the values of xi like the support points of the design ξD. Then we sim-
ulate the errors εi ∼ N(0, σ2(β1e

β2)2τ ) for i = 1, 2, . . . , 28; use the estimations
obtained in table 2 like the values of the parameters and with the model (24),
we calculate the response y′is. Then, with these simulated data, we obtain the
estimated parameter θ̂ and calculate the relative and mean square error (RE and
MSE respectively). We repeat this process 1,000 times and summarize it in table
5, showing the descriptive measures for both errors. This table shows the mean,
median, range and standard deviation for the MSE of each parameter of the model
(24) and the relative error in percentage RE(θ)×100%. For the parameter vector θ
we propose an overall discrepancy measure, ODM, defined as ODM(θ̂) = ||θ− θ̂||2.
From this table, we see that the central tendency measures for the MSE are small
as the variability between the simulations. Also, the mean and median for the
RE are very close to 10%. In general, all these measures indicate that the local
design ξD provides good parameter estimates, even though the design only has
two experimental points and the model four parameters.
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Table 5: Simulations with variance modelling (Std denotes the Standard deviation).
MSE(β1) MSE(β2) MSE(τ) MSE(σ) ODM(θ) RE(θ)%

Mean 9.08e-03 3.13e-04 1.08e-02 5.97e-03 2.61e-02 9.31
Median 4.28e-03 1.50e-04 5.40e-03 2.68e-03 1.86e-02 8.71
Range 9.60e-02 5.78e-03 1.15e-01 1.09e-01 2.01e-01 27.60

Std 1.28e-02 4.61e-04 1.45e-02 8.84e-03 2.56e-02 4.45

3.1.4. Efficiencies

Finally, we show the robustness of the design ξD with respect to the choice of
the local value θ0, through the D-efficiency of any design ξ:

Deff =

(
|M(ξ)|
|M(ξD)|

)1/p

(25)

where p is the number of parameters of the model andM(ξ) denotes the informa-
tion matrix of the design, where ξ is another design obtained with another local
values of parameter vector. With this in mind, we perturb each one of the four
parameters of the model (22) in a percentage ∆:

θi ±∆× θi (26)

Since the model has four parameters and each one can be perturbed at left,
at right or not be perturbed; it is clear that the total number of perturbations
is 34 = 81. Then each one of these perturbations will give us a design ξ and
with (25) we calculate how far we are of the local D-optimal design. Then for
a fixed ∆ = 0.6 (we could used another), we obtain 81 designs and for each one
we calculate the respective D-efficiency. However, because most of these designs
were equal to the two point design ξD, we only show in table 9 (see the appendix)
the support points, the weights and the D-efficiency of the 36 designs that were
different to the optimal. Figure 3 summarizes the results of the efficiencies and
shows that the design ξD is robust respect the choice of the local value θ0, because
the D-efficiencies are high (at least 0.80).

3.2. Transformation of the Model

Previously we apply the first methodology of variance modelling and find the
local D-optimal design. Now we use the second methodology, that consists on
applying an adequate transformation on the model. As we described in section
2.2, this transformation should be such that the transformed model is linear and
homoscedastic. In this case as the model (1) is exponential, the appropriate Box-
Cox transformation consists on applying logarithm to both sides:

log Y = log β1 + β2x+ ε∗ (27)

or equivalently in the form:

Y ∗ = β∗1 + β2x+ ε∗ (28)
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Figure 3: D-efficiencies perturbing θ in 60%.

where Y ∗ = log Y , β∗1 = log β1 and the new errors ε∗ are normal with constant
variance. Then we fitted the linear model (28) and we obtained the estimations
β̂∗ = (0.03, 0.26)T , σ̂ = 0.57, and then β̂ = (e0.03, 0.26)T = (1.03, 0.26)T . Finally,
we implemented an algorithm in R Development Core Team (2013) to find the in-
formation matrix with λ = 0 and to obtain the design that minimizes− logM(ξ,θ)
over χ = [1, 12]. The resulting design in table 6, shows that in this case the de-
sign is the same obtained with first methodology. However, we have to point out
that despite that the resulting design is the same with both methodologies, it is
attributed to the fact that with each method we used the best local value for the
parameter θ and as we saw when we calculate the D-efficiencies, the design can
have three support points depending on the local value used.

Table 6: D-optimal design to the model (27).
i 1 2

xi 1.00 12.00
wi 0.50 0.50

3.2.1. Simulations

Analogously to the first methodology, we simulated 28 observations of the
model (28). The results of the 1, 000 simulations are summarized in table 7. This
is similar to the table 5 and shows the mean, median, range and standard deviation
for the MSE of each parameter of the model (27) and relative error in percentage
RE(θ) × 100%. For the parameter vector θ we propose a measure defined as
ODM(θ̂) = ||θ − θ̂||2, which is a kind of square distance between the estimated
parameter and the original. The conclusions from these results are similar as the
obtained with the first methodology, although when we compare the measures for
the relative error (RE), is noteworthy that all the descriptive measures are almost
three times the correspondent to the first methodology. But in general, all these
measures indicate that the local design ξD fits well the model.
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Table 7: Simulations for the logarithmic transformation model (Std denotes the Stan-
dard deviation).

MSE(β1) MSE(β2) MSE(σ) ODM(θ) RE(θ)%

Mean 1.80e-01 9.57e-04 1.27e-02 1.93e-01 34.0
Median 1.39e-01 6.48e-04 8.43e-03 1.53e-01 32.4
Range 1.18e+00 8.65e-03 9.34e-02 1.18e+00 84.0

Std 1.55e-01 1.00e-03 1.36e-02 1.53e-01 13.1

3.2.2. Efficiencies

Finally, we obtain the D-efficiencies following the same procedure described in
section 3.1.4. In this case because we perturb three parameters: β1, β2 and σ,
we only have 33 = 27 combinations (the parameter λ = 0). But again most of
all these designs were equal to the D-optimal design, so we only show in table 8
the six designs that correspond to a perturbation ∆ = 60% and were different to
the optimal. In this table we use the symbols −, + or 0 to indicate the specific
combinations of the parameters.

For instance, the first design is obtained when we disturb 60% to the left (−)
the parameters β1 and σ and we do not perturb (0) the parameter β2. Then the
support points for this design are 1, 6.5 and 12 and the D-efficiency of the design is
0.93. It indicates that if we use this design instead of the unperturbed D-optimal
design, we would need around 7% more observations to obtain the same efficiency
that the D-optimal. Even more, it is remarkable that all six designs have exactly
3 support points: The extremes of the interval [1, 12] and the middle point 6.5.
The only difference between these designs is the weight (in parentheses with two
decimal places) and the D-efficiency, that can be 0.89 or 0.93, but in both cases
it is high, so we can conclude that the D-optimal design is robust respect to the
choice of the local value θ0.

Table 8: Support points, weights and D-efficiencies perturbing 60% to left (−), right
(+) or not (0).

Design β1 β2 σ x1 x2 x3 Deff

1 − 0 − 1(0.40) 6.5(0.20) 12(0.40) 0.93
2 0 0 − 1(0.40) 6.5(0.20) 12(0.40) 0.93
3 + 0 − 1(0.40) 6.5(0.20) 12(0.40) 0.93
4 − + − 1(0.36) 6.5(0.28) 12(0.36) 0.89
5 0 + − 1(0.36) 6.5(0.28) 12(0.36) 0.89
6 + + − 1(0.36) 6.5(0.28) 12(0.36) 0.89

4. Conclusions

We have presented a brief summary of two methodologies that can be im-
plemented to find D-optimal designs when the model under study presents hete-
roscedasticity. In both cases the main problem is to find an expression for the
Fisher information matrix of the model. We have illustrated both methods with
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Lake Cayuga data from which clearly do not have constant variance. However,
there is an important difference between the methods that applied: The variance
modelling methodology has the assumption that the errors of the original model
has a normal distribution. However, the second methodology only requires a nor-
mal distribution for the transformed model, not the original. This can be an
advantage of this methodology compared with variance modelling.

Under both methods, we find the same D-optimal design with two support
points and with equal weights. But this fact is attributed only to the local values
used in an independent way, that in this case were the estimations of the param-
eter vector using the data. Because the optimal design is local, we determine the
robustness of this design with each methodology by disturbing the parameters of
the corresponding model and calculating the D-efficiency of the obtained designs.
In both cases, the efficiencies were high indicating that the D-optimal design is a
robust design respect the choice of the local value θ0. Also, with each methodol-
ogy we simulate 1, 000 observations of the model and calculate some descriptive
measures for the relative and mean square errors. The results were similar. The
only important difference is that measures for the relative errors of the second
methodology were almost three times the correspondent to the first methodology.
We cannot conclude which methodology is better because each one has its pros
and shortcoming, with the example we obtained similar results.

Finally, we want to point out that we have not study two potential problems:
First, the problem of heteroscedasticity for G optimality criterion and second, the
problem of nonnormality (for D-optimality or not). Respect to the former, further
work includes finding optimal designs for heteroscedastic models with another
optimality criteria different to D-optimality. For instance, Wong & Cook (1993)
have worked with G-optimal designs with linear models when the variance of the
errors is incorporated in the model. With non normality, we did not find too many
published papers, so this can be an interesting problem to work. Finally we have
found local designs, but other option is to use the Bayesian approach.
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Table 9: D-efficiencies, support points and weights with a 60% of perturbation of the
parameter vector: disturb to left (−), to right (+) or do not (0).

ξi β1 β2 τ σ x1 x2 x3 w1 w2 w3 Deff

1 − 0 − − 1 5.6 12 0.48 0.02 0.5 0.9883
2 0 0 − − 1 5.6 12 0.48 0.02 0.5 0.9883
3 + 0 − − 1 5.6 12 0.48 0.02 0.5 0.9883
4 − + − − 1 8.26 12 0.27 0.28 0.45 0.8337
5 0 + − − 1 8.26 12 0.27 0.28 0.45 0.8337
6 + + − − 1 8.26 12 0.27 0.28 0.45 0.8337
7 − 0 + − 1 4.45 12 0.44 0.3 0.26 0.8194
8 0 0 + − 1 4.45 12 0.44 0.3 0.26 0.8194
9 + 0 + − 1 4.45 12 0.44 0.3 0.26 0.8194

10 − + + − 1 3.12 12 0.42 0.34 0.24 0.7987
11 0 + + − 1 3.12 12 0.42 0.34 0.24 0.7987
12 + + + − 1 3.12 12 0.42 0.34 0.24 0.7987
13 − 0 − 0 1 5.6 12 0.48 0.02 0.5 0.9883
14 0 0 − 0 1 5.6 12 0.48 0.02 0.5 0.9883
15 + 0 − 0 1 5.6 12 0.48 0.02 0.5 0.9883
16 − + − 0 1 8.26 12 0.27 0.28 0.45 0.8337
17 0 + − 0 1 8.26 12 0.27 0.28 0.45 0.8337
18 + + − 0 1 8.26 12 0.27 0.28 0.45 0.8337
19 − 0 + 0 1 4.45 12 0.44 0.3 0.26 0.8194
20 0 0 + 0 1 4.45 12 0.44 0.3 0.26 0.8194
21 + 0 + 0 1 4.45 12 0.44 0.3 0.26 0.8194
22 − + + 0 1 3.12 12 0.42 0.34 0.24 0.7987
23 0 + + 0 1 3.12 12 0.42 0.34 0.24 0.7987
24 + + + 0 1 3.12 12 0.42 0.34 0.24 0.7987
25 − 0 − + 1 5.6 12 0.48 0.02 0.5 0.9883
26 0 0 − + 1 5.6 12 0.48 0.02 0.5 0.9883
27 + 0 − + 1 5.6 12 0.48 0.02 0.5 0.9883
28 − + − + 1 8.26 12 0.27 0.28 0.45 0.8337
29 0 + − + 1 8.26 12 0.27 0.28 0.45 0.8337
30 + + − + 1 8.26 12 0.27 0.28 0.45 0.8337
31 − 0 + + 1 4.45 12 0.44 0.3 0.26 0.8194
32 0 0 + + 1 4.45 12 0.44 0.3 0.26 0.8194
33 + 0 + + 1 4.45 12 0.44 0.3 0.26 0.8194
34 − + + + 1 3.12 12 0.42 0.34 0.24 0.7987
35 0 + + + 1 3.12 12 0.42 0.34 0.24 0.7987
36 + + + + 1 3.12 12 0.42 0.34 0.24 0.7987

[
Recibido: mayo de 2013 — Aceptado: enero de 2014

]
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