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Abstract

In this article we show that the Kullback’s statistic for testing equality
of several correlation matrices may be considered a modified likelihood ratio
statistic when sampling from multivariate normal populations. We derive
the asymptotic null distribution of L∗ in series involving independent chi-
square variables by expanding L∗ in terms of other random variables and
then inverting the expansion term by term. An example is also given to
exhibit the procedure to be used when testing the equality of correlation
matrices using the statistic L∗.

Key words: Asymptotic null distribution, Correlation matrix, Covariance
matrix, Cumulants, Likelihood ratio test.

Resumen

En este artículo se muestra que el estadístico L∗ de Kullback, para probar
la igualdad de varias matrices de correlación, puede ser considerado como un
estadístico modificado del test de razón de verosimilitud cuando se muestrean
poblaciones normales multivariadas. Derivamos la distribución asintótica
nula de L∗ en series que involucran variables independientes chi-cuadrado,
mediante la expansión de L∗ en términos de otras variables aleatorias y
luego invertir la expansión término a término. Se da también un ejemplo
para mostrar el procedimiento a ser usado cuando se prueba igualdad de
matrices de correlación mediante el estadístico L∗.
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1. Introduction

The correlation matrix is one of the foundations of factor analysis and has
found its way into such diverse areas as economics, medicine, physical science
and political science. There is a fair amount of literature on testing properties
of correlation matrices. Tests for certain structures in a correlation matrix have
been proposed and studied by several authors, e.g, see Aitkin, Nelson, and Rein-
furt (1968), Gleser (1968), Aitkin (1969), Modarres (1993), Kullback (1997) and
Schott (2007). In a series of papers, Konishi (1978, 1979a, 1979b) has developed
asymptotic expansions of correlation matrix and applied them to various problems
of multivariate analysis. The exact distribution of the correlation matrix, when
sampling from a multivariate Gaussian population, is derived in Ali, Fraser and
Lee (1970) and Gupta and Nagar (2000).

If the covariance matrix of α-th population is given by Σα and ∆α is a diagonal
matrix of standard deviations for the population α, then Pα = ∆−1α Σα∆−1α is the
correlation matrix for the population α. The null hypothesis that all k populations
have the same correlation matrices may be stated as H : P1 = · · · = Pk.

Let the vectors xα1,xα2, . . . ,xαNα be a random sample of size Nα = nα + 1
for α = 1, 2, . . . , k from k multivariate populations of dimensionality p. Further,
we assume the independence of these k samples. Let xα =

∑Nα
i=1 xαi/Nα, Aα =∑Nα

i=1(xαi−xα)(xαi−xα)′ and Sα = Aα/Nα. Further, letDα be a diagonal matrix
of the square roots of the diagonal elements of Sα. The sample correlation matrix
Rα is then defined by Rα = D−1α SαD

−1
α . Let n =

∑k
α=1 nα and R =

∑k
α=1 nαRα.

Kullback (1967) derived the statistic L∗ =
∑k
α=1 nα ln{det(R)/ det(Rα)} for

testing the equality of k correlation matrices based on samples from multivariate
populations. This statistic was later examined by Jennrich (1970) who observed
that the statistic proposed by Kullback failed to have chi-square distribution as-
cribed to it. For further results on this topic the reader is referred to Browne (1978)
and Modarres and Jernigan (1992).

Although the Kullback’s statistic L∗ is not equal to the modified likelihood ratio
criterion, we here show that it may be considered an approximation of the modified
likelihood ratio statistic when sampling from multivariate normal populations.

In Section 2, we show that Kullback’s statistic can be viewed as an approxima-
tion of the modified likelihood ratio statistic based on samples from multivariate
normal populations. Section 3 deals with some preliminary results and definitions
which are used in subsequent sections. In sections 4 and 5, we obtain asymptotic
null distribution of L∗ by expanding L∗ in terms of other random variables and
then inverting the expansion term by term. Finally, in Section 6, an example
is given to demonstrate the procedure to be used when testing the equality of
correlation matrices using the statistic L∗. Some results on matrix algebra and
distribution theory are given in the Appendix.
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2. The Test Statistic

In this section, we give an approximation of the likelihood ratio test statistic
λ for testing equality of correlation matrices of several multivariate Gaussian pop-
ulations. The test statistic λ was derived and studied by Cole (1968a, 1968b)
in two unpublished technical reports (see Browne 1978, Modarres and Jerni-
gan 1992, 1993). However, these reports are scarcely available, and therefore the
sake of completeness and for a better understanding it seems appropriate to first
give a concise step-by-step derivation of the test statistic λ.

If the underlying populations follow multivariate normal distributions, then
the likelihood function based on the k independent samples, when all parameters
are unrestricted, is given by

L(µ1, . . . ,µk,Σ1, . . . ,Σk)

=

k∏
α=1

[
(2π)pNα/2 det(Σα)Nα/2

]−1
× exp

[
−1

2

k∑
α=1

tr
(
Σ−1α Aα

)
− 1

2

k∑
α=1

tr
{

Σ−1α (x̄α − µα)(x̄α − µα)′
}]

where for α = 1, . . . , k we have µα ∈ Rp and Σα > 0. It is well known that for any
fixed value of Σα the likelihood function is maximized with respect to the µα’s
when µ̂α = xα.

Let ∆α be a diagonal matrix of standard deviations for the population α.
Further, let Pα = ∆−1α Σα∆−1α be the population correlation matrix for the pop-
ulation α. The natural logarithm of the likelihood function, after evaluation at
µ̂α = xα, may then be written as

ln[L(x̄1, . . . , x̄k,∆1P1∆1, . . . ,∆kPk∆k)]

= −1

2
Np ln(2π)− 1

2

k∑
α=1

Nα ln[det(Pα∆2
α)]− 1

2

k∑
α=1

tr(NαP
−1
α GαRαGα)

where N =
∑k
α=1Nα and Gα = ∆−1α Dα. Further, when the parameters are

unrestricted, the likelihood function L(x1, . . . ,xk,∆1P1∆1, . . . ,∆kPk∆k) is max-
imized when − ln[det(Pα∆2

α)] − tr
(
P−1α GαRαGα

)
is maximized for each α. This

is true when

ln[det(Pα∆2
α)] + tr

(
P−1α GαRαGα

)
= ln[det(∆αPα∆α)] + tr

(
∆−1α P−1α ∆−1α DαRαDα

)
is minimized for each α. This is achieved when ∆αPα∆α = DαRαDα. From this
it follows that the maximum value of L(x1, . . . ,xk,∆1P1∆1, . . . ,∆kPk∆k), when
the parameters are unrestricted, is given by
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ln[L(x̄1, . . . , x̄k, D1R1D1, . . . , DkRkDk)]

= −1

2
Np[ln(2π) + 1]− 1

2

k∑
α=1

Nα ln[det(RαD
2
α)]. (1)

Let P be the common value of the population correlation matrices under the null
hypothesis of equality of correlation matrices. The reduced parameter space for
the covariance matrices is the set of all covariance matrices that may be written
as ∆αP where P is a correlation matrix and ∆α is a diagonal matrix with positive
elements on the diagonal. The restricted log likelihood function is written as

ln[L(x̄1, . . . , x̄k,∆1P, . . . ,∆kP )]

= −1

2
Np ln(2π)− 1

2

k∑
α=1

Nα ln[det(P∆2
α)]− 1

2

k∑
α=1

Nα tr
(
P−1GαRαGα

)
.

Let P−1 = (ρij). Since ∆α is a diagonal matrix,

ln[det(∆α)2] = 2 ln[det(∆α)] = 2 ln

[
p∏
i=1

σαii

]
= 2

p∑
i=1

ln(σαii)

Also, since Gα = ∆−1α Dα is a diagonal matrix, we have

tr
(
P−1GαRαGα

)
=

p∑
i=1

p∑
j=1

ρijgαjrαijgαi

Thus,

ln[L(x̄1, . . . , x̄k,∆1P, . . . ,∆kP )]

= −1

2
Np ln(2π)− 1

2

k∑
α=1

Nα

p∑
i=1

ln(σαii)−
1

2

k∑
α=1

Nα ln[det(P )]

− 1

2

k∑
α=1

Nα

p∑
i=1

p∑
j=1

ρijgαjrαijgαi

Since, gαi = sαii/σαii, differentiation of ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] with re-
spect to σαii yields

∂

∂σαii
ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] = − Nα

2σαii
+

Nα
2σαii

p∑
j=1

gαigαjρ
ijrαij

Further, setting this equal to zero gives
∑p
j=1 gαigαjρ

ijrαij−1 = 0. Differentiating
ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] with respect to the matrix P using Lemma 6, we
obtain

∂

∂P
ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )] = −1

2
NP−1 +

1

2

k∑
α=1

NαP
−1GαRαGαP

−1
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Setting this equal to zero, multiplying by 2, pre and post multiplying by P and
dividing by N gives P =

∑k
α=1NαGαRαGα/N so that

∑k
α=1Nαg

2
αi/N = 1.

The likelihood ratio test statistic λ for testing H : P1 = · · · = Pk is now derived
as

λ =

k∏
α=1

det(RαD
2
α)Nα/2

det(P̂ ∆̂2
α)Nα/2

where P̂ and ∆̂2
α are solutions of P̂ =

∑k
α=1Nα∆̂−1α Sα∆̂−1α /N and

∑p
j=1 ρ

ijsαij−
1 = 0, i = 1, . . . , p, respectively.

To obtain an approximation of the likelihood ratio statistic we replace σαii
by its consistent estimator σ̂αii. Then, it follows that ĝαii = sαii/σ̂αii and
Ĝα = diag(ĝα1, . . . , ĝαp), and the estimator of P is given by P̂ =

∑k
α=1NαĜαRα

Ĝα/N . Thus, an approximation of the maximum of ln[L(x1, . . . ,xk,∆1P, . . . ,∆kP )]
is given as

− 1

2
Np[ln(2π) + 1]− 1

2

k∑
α=1

Nα ln[det(∆̂α)2]− 1

2
N ln[det(P̂ )] (2)

As the sample size goes to infinity, sαii/σ̂αii converges in probability to 1 so that
Ĝα converges in probability to Ip. This suggest further approximation of (2) as

− 1

2
Np[ln(2π) + 1]− 1

2

k∑
α=1

Nα ln[det(Dα)2]− 1

2
N ln

[
det

(
k∑

α=1

Nα
N
Rα

)]
(3)

Now, using (1) and (3), the likelihood ratio statistic is approximated as

λ̃ =

∏k
α=1 det(Rα)Nα/2

det(
∑k
α=1NαRα/N)N/2

(4)

Further, replacing Nα by nα above, an approximated modified likelihood ratio
statistic is derived as

M =

∏k
α=1 det(Rα)nα/2

det(
∑k
α=1 nαRα/n)n/2

=

∏k
α=1 det(Rα)nα/2

det(R)n/2
(5)

Since −2 lnM =
∑k
α=1 nα ln{det(R)/ det(Rα)} = L∗, the statistic proposed by

Kullback may be thought of as an approximated modified likelihood ratio statistic.

3. Preliminaries

Let the vectors xα1, . . . ,xαNα be a random sample of size nα for α = 1, . . . , k
from k multivariate populations of dimensionality p and finite fourth moments.
The characteristic function for the population α is given by φ∗α(t) = E[exp(ι t′x)]
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where ι =
√
−1 and t = (t1, . . . , tp)

′. The log characteristic function for population
α may be written as

ln[φ∗α(t)] =

∞∑
r1+···+rp=1

κ∗α(r1, . . . , rp)

p∏
j=1

(ιtj)
rj

rj !
, rj ∈ I+ (6)

where I+ is the set of non-negative integers. The cumulants of the distribution are
the coefficients κ∗α(r1, . . . , rp). If r1 + · · ·+ rp = m, then the associated cumulant
is of order m. The relationship between the cumulants of a distribution and the
characteristic function provide a convenient method for deriving the asymptotic
distribution of statistic whose asymptotic expectations can be derived.

The cumulants of order m are functions of the moments of order m or lower.
Thus if the mth order moment is finite, so is the mth order cumulant. Let µi =
E(Xi), µij = E(XiXj), µijk = E(XiXjXk), and µijk` = E(XiXjXkX`) and κi,
κij , κijk, and κijk` be the corresponding cumulants. Then, Kaplan (1952) gives
the following relationship:

κi = µi,

κij = µij − µiµj ,
κijk = µijk − (µiµjk + µjµik + µkµij) + 2µiµjµk,

κijk` = µijk` −
4∑
µiµjk` −

3∑
µijµk` + 2

6∑
µiµjµk` − 6µiµjµkµ`

where the summations are over the possible ways of grouping the subscripts, and
the number of terms resulting is written over the summation sign.

Define the random matrix Vα as

Vα =
√
nα

(
1

nα
∆−1α Aα∆−1α − Pα

)
(7)

Then, the random matrices V (0)
α , V (1)

α and V (2)
α are defined as

V (0)
α = diag(vα11, vα22, . . . , vαpp) (8)

V (1)
α = Vα −

1

2
V (0)
α Pα −

1

2
PαV

(0)
α (9)

and

V (2)
α =

1

4
V (0)
α PαV

(0)
α − 1

2
VαV

(0)
α − 1

2
V (0)
α Vα +

3

8
(V (0)
α )2Pα +

3

8
Pα(V (0)

α )2 (10)

Konishi (1979a, 1979b) has shown that

Rα = Pα +
1
√
nα
V (1)
α +

1

nα
V (2)
α +Op(n

−3/2
α )

The pooled estimate of the common correlation matrix is

R =

k∑
α=1

ωαRα
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so that
R = P +

1√
n
V

(1)
+

1

n
V

(2)
+Op(n

−3/2)

where ωα = nα/n, P =
∑k
α=1 ωαPα, V

(1)
=

∑k
α=1

√
ωα V

(1)
α and

V
(2)

=
∑k
α=1 V

(2)
α . The limiting distribution of Vα =

√
nα
(
∆−1α Aα∆−1α /nα − Pα

)
is normal with means 0 and covariances that depend on the fourth order cumulants
of the parent population (Anderson 2003, p. 88).

Since ∆α is a diagonal matrix of population standard deviations, ∆−1α xα1, . . . ,
∆−1α xαNα may be thought of as Nα observations from a population with finite
fourth order cumulants and characteristic function given by

ln[φα(t)] =

∞∑
r1+···+rp=1

κα(r1, . . . , rp)

p∏
j=1

(ιtj)
rj

rj !
, rj ∈ I+ (11)

where the standardized cumulants, κα(r1, r2, . . . , rp), are derived from the expres-
sion (6) as

κα(r1, r2, . . . , rp) =
κ∗α(r1, r2, . . . , rp)

σα11χr1σα22χr2 · · ·σαppχrp

with χrj = 1 if rj = 0, χrj = 1/σ(α)jj if rj 6= 0 and Σ−1α = (σ(α)jj).
K-statistics are unbiased estimates of the cumulants of a distribution, and

may be used to derive the moments of the statistics which are symmetric func-
tions of the observations (Kendall and Stuart 1969). Kaplan (1952) gives a series
of tensor formulaes for computing the expectations of various functions of the
k-statistics associated with a sample of size N from a multivariate population.
For the definition of the k-statistics, let N (r) = N(N − 1) · · · (N − r + 1).

If si1i2···i` denotes the product Xi1Xi2 · · ·Xi` summed over the sample, the
tensor formulae for the k-statistics may be shown to be as follows:

ki =
si
N
, kij =

Nsij − sisj
N (2)

, kijk =
N2sijk −N

3∑
sisjk + 2sisjsk

N (3)

kijk` =
N(N + 1)(Nsijk` −

4∑
sisjk`)−N (2)

3∑
sijsk` + 2N

6∑
sisjsk` − 6sisjsks`

N (4)

κ(ab, ij) = E[(kab − κab)(kij − κij)]

=
κabij
N

+
κaiκbj + κajκbi

N − 1

κ(ab, ij, pq) = E[(kab − κab)(kij − κij)(kpq − κpq)]

=
κabijpq
N2

+

12∑ κabipκjq
N(N − 1)

+

4∑ (N − 2)κaipκbjq
N(N − 1)2

+

8∑ κaiκbpκjq
(N − 1)2
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The summations are over the possible ways of grouping the subscripts, and the
number of terms resulting is written over the summation sign.

The matrix Vα is constructed from observations from the standardized distri-
bution so that vαij =

√
nα(kαij − ραij) where kαij is the related k-statistic for

standardized population α. Kaplan’s formulae may be applied to derive the fol-
lowing expressions for the expectations of elements of the matrices Vα (note that
καij = ραij). We obtain

E(vαij) = 0

E(vαijvαk`) = καijk` + ραikραj` + ραi`ραjk +O(n−1α )

and

E(vαijvαk`vαab) =
1
√
nα

[
καijk`ab +

12∑
καijkaρα`b +

4∑
καikaκαj`b

+

8∑
ραikραjaρα`b

]
+O(n−3/2α )

The random matrices V (0)
α , V (1)

α and V (2)
α are defined in (8), (9), and (10), respec-

tively. The expectations associated with these random matrices are given as

E(v
(1)
αij) = 0

E(v
(2)
αij) =

1

4
ραijκαiijj −

1

2
(καiiij + καijjj) +

3

8
ραij(καiiii + καjjjj)

+
1

2
(ρ3αij − ραij) +O(n−1α )

E(v
(1)
αijv

(1)
αk`) = καijk` −

1

2
(ραijκαiik` + ραijκαjjk` + ραk`καijkk + ραk`καij``)

+
1

4
ραijραk`(καiikk + καii`` + καjjkk + καjj``)

− (ραk`ραikραjk + ραk`ραi`ραj` + ραijραikραi` + ραijραjkραj`)

+
1

2
ραijραk`(ρ

2
αik + ρ2αi` + ρ2αjk + ρ2αi`)

+ (ραikραj` + ραi`ραjk) +O(n−1α ) (12)

and

E(v
(1)
αijv

(1)
αk`v

(1)
αab) =

1
√
nα

(
tα1 −

1

2
tα2 +

1

4
tα3 −

1

8
tα4

)
+O(n−3/2α )

where

tα1 = καijk`ab +

12∑
καijkaκα`b +

4∑
καikaκαi`b +

8∑
ραikραjaρα`b
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tα2 =

3∑
ραij

[
καiik`ab + καjjk`a +

12∑
(καiika + καjjka)

+

3∑
(καikaκαi`b + καjkaκαj`b) +

8∑
(ραikραiaρα`b + ραjkραjaρα`b)

]

tα3 =

3∑
ραijραk`

[
καiikkab + καii``ab + καjjkkab + καjj``ab

+

12∑
(καiikaραkb + καii`aρα`b + καjjkaραkb + καjj`aρα`b)

+

3∑
(καikaκαikb + καi`aκαi`b + καjkaκαjkb + καj`aκαj`b)

+

8∑
(ραikραiaραbk + ραi`ραiaρα`b + ραjkραjaραbk + ραj`ραjaρα`b)

]
and

tα4 = ραijραk`ραab

8∑[
καiikkaa +

12∑
(καiikaραka) +

3∑
(καikaκαikb)

+

8∑
(ραikραiaραka)

]
Lemma 1. The diagonal elements of V (1)

α are zero.

Proof . Using (9) and the fact that V (0)
α is a diagonal matrix, we have

v
(1)
αij = vαij −

1

2
ραij(vαii + vαjj)

The result follows by taking j = i above and noting that diagonal elements of Pα
are 1.

Lemma 2. The diagonal elements of V (2)
α are zero.

Proof . Using (10) and the fact that V (0)
α is a diagonal matrix, we get

v
(2)
αij =

1

4
v
(0)
αiiραijv

(0)
αjj −

1

2
vαij(vαjj + vαii) +

3

8
ραij(v

2
αii + v2αjj)

The result follows by substituting j = i above and observing that ραii = 1.

4. Asymptotic Expansion of L∗

In order to derive the asymptotic distribution for L∗ the statistic is first ex-
panded in terms of other random variables (see Konishi and Sugiyama 1981).
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The statistic L∗ may be written as L∗ = ng(R1 . . . , Rk) where g(R1, . . . , Rk) =

ln[det(R)]−
∑k
α=1 ωα ln[det(Rα)]. Let

Bα =
1
√
nα
P−1α V (1)

α +
1

nα
P−1α V (2)

α

Since, Pα, V
(1)
α and V (2)

α are all positive definite, so is Bα. This insures that the
eigenvalues of Bα exist and are positive. Also, as nα becomes large, the elements
in Bα become small so that the characteristic roots may be assumed to be less
than one. Using Lemma 5,

ln[det(Rα)] = ln[det(Pα + PαBα)] +Op(n
−3/2
α )

= ln[det(Pα)] + tr(Bα)− 1

2
tr(BαBα) +Op(n

−3/2
α )

Now, BαBα = n−1α P−1α V
(1)
α P−1α V

(1)
α +Op(n

−3/2
α ) so that

ln[det(Rα)] = ln[det(Pα)] +
1
√
nα

tr(P−1α V (1)
α ) +

1

nα
tr(P−1α V (2)

α )

− 1

2nα
tr
(
P−1α V (1)

α P−1α V (1)
α

)
+Op(n

−3/2
α )

A similar expansion for ln[det(R)] may be obtained by defining B by

B =
1√
n

k∑
α=1

√
ωαP

−1
V (1)
α +

1

n

k∑
α=1

P
−1
V (2)
α

Then

ln[det(R)] = ln[det(P + PB)] +Op(n
−3/2)

= ln[det(P )] + tr(B)− 1

2
tr(BB) +Op(n

−3/2)

Since BB = n−1
∑k
α=1

∑k
β=1

√
ωαωβP

−1
V

(1)
α P

−1
V

(1)
β +Op(n

−3/2),

ln[det(R)] = ln[det(P )] +
1√
n

k∑
α=1

√
ωα tr(P

−1
V (1)
α ) +

1

n

k∑
α=1

tr(P
−1
V (2)
α )

− 1

2n

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β ) +Op(n

−3/2)

Combining these expressions yields

g(R1, . . . , Rk) = ln[det(P )]−
k∑

α=1

ωα ln[det(Pα)] +
1√
n

k∑
α=1

√
ωα tr(HαV

(1)
α )

+
1

n

k∑
α=1

tr(HαV
(2)
α ) +

1

2

k∑
α=1

ωα
nα

tr(P−1α V (1)
α P−1α V (1)

α )
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− 1

2n

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β ) +Op(n

−3/2)

where Hα = (hαij) = (P
−1−P−1α ) = H ′α. Let G(R1, . . . , Rk) =

√
n[g(R1, . . . , Rk)

−g(P1, . . . , Pk)]. Then, since
√
n(ωα/nα) = (

√
n)−1, we obtain

G(R1, . . . , Rk) =

k∑
α=1

√
ωα tr(HαV

(1)
α ) +

1√
n

k∑
α=1

tr(HαV
(2)
α )

+
1

2
√
n

k∑
α=1

tr(P−1α V (1)
α P−1α V (1)

α )

− 1

2
√
n

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β ) +Op(n

−1) (13)

Theorem 1. The expression G(R1, . . . , Rk) may be written as

G(R1, . . . , Rk) =

k∑
α=1

∑
i<j

√
ωα h̄αijv

(1)
αij +

1√
n

k∑
α=1

∑
i<j

h̄αijv
(2)
αij

+
1√
n

k∑
α=1

∑
i<j

∑
k<`

qα(ij, k`)v
(1)
αijv

(1)
αk`

− 1√
n

k∑
α=1

k∑
β=1

∑
i<j

∑
k<`

√
ωαωβ q(ij, k`)v

(1)
αijv

(1)
βk` +Op(n

−1)

where P−1α = (ρijα ), P
−1

= (ρij), hαij = 2(ρij − ρijα ), qα(ij, k`) = ρi`αρ
jk
α +

ρikα ρ
j`
α and q(ij, k`) = ρi`ρjk + ρikρj`.

Proof . Using results on matrix algebra, we have

k∑
α=1

√
ωα tr(HαV

(1)
α ) =

k∑
α=1

√
ωα

p∑
i=1

p∑
j=1

hαjiv
(1)
αij

and since Hα is symmetric, application of Lemma 3 yields

k∑
α=1

√
ωα tr(HαV

(1)
α ) =

k∑
α=1

√
ωα
∑
i<j

(hαji + hαij)v
(1)
αij =

k∑
α=1

√
ωα
∑
i<j

hαijv
(1)
αij

In an entirely similar manner,

k∑
α=1

tr(HαV
(2)
α ) =

k∑
α=1

∑
i<j

hαijv
(2)
αij

Revista Colombiana de Estadística 36 (2013) 237–258



248 Arjun K. Gupta, Bruce E. Johnson & Daya K. Nagar

Using Lemma 4, results on matrix algebra and the symmetry of V (1)
α , we have

1

2

k∑
α=1

tr(P−1α V (1)
α P−1α V (1)

α )

=
1

2

k∑
α=1

p∑
i=1

p∑
j=1

p∑
k=1

p∑
`=1

ρi`αρ
jk
α v

(1)
αijv

(1)
αk`

=
1

2

k∑
α=1

∑
i<j

∑
k<`

(ρi`αρ
jk
α + ρj`α ρ

ik
α + ρikα ρ

j`
α + ρi`αρ

jk
α )v

(1)
αijv

(1)
αk`

=

k∑
α=1

∑
i<j

∑
k<`

qα(ij, k`)v
(1)
αijv

(1)
αk`

In a similar manner,

1

2

k∑
α=1

k∑
β=1

√
ωαωβ tr(P

−1
V (1)
α P

−1
V

(1)
β )

=

k∑
α=1

k∑
β=1

∑
i<j

∑
k<`

√
ωαωβ q(ij, k`)v

(1)
αijv

(1)
βk`

Combining these expansions in (13) completes the proof.

Corollary 1. In the special case p = 2, G(R1, . . . , Rk) may be written as

G(R1, . . . , Rk) = 2

k∑
α=1

√
ωα

(
ρα

1− ρ2α
− ρ

1− ρ2

)
v
(1)
α12

+
2√
n

k∑
α=1

(
ρα

1− ρ2α
− ρ

1− ρ2

)
v
(2)
α12 +

1√
n

k∑
α=1

1 + ρ2α
(1− ρ2α)2

(v
(1)
α12)2

− 1√
n

k∑
α=1

k∑
β=1

1 + ρ2

(1− ρ2)2
v
(1)
α12v

(1)
β12 +Op(n

−1).

Proof . For p = 2,
∑
i<j consists of single term corresponding to i = 1, j = 2.

Also, Pα =
( 1 ρα
ρα 1

)
so that P−1α = (1 − ρ2α)−1

( 1 −ρα
−ρα 1

)
. Similarly, P

−1
=

(1 − ρ2)−1
(

1 −ρ
−ρ 1

)
. Thus, the off diagonal element of Hα is given by ρα(1 −

ρ2α)−1 − ρ(1 − ρ2)−1. Further, qα(12, 12) = ρ12α ρ
21
α + ρ11α ρ

22
α = (1 + ρ2α)/(1 − ρ2α)2

and q(12, 12) = (1 + ρ2)/(1− ρ2)2. The result follows by using these values in the
theorem.

5. Asymptotic Null Distribution of L∗

In this section we derive asymptotic distribution of the statistic L∗ when the
null hypothesis is true.
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Define the k × k matrix W as W = (wij) where wii = 1 − ωi and for i 6= j,
wij = −√ωiωj = wji, 1 ≤ i, j,≤ k. The matrix W has rank k − 1 and each of its
non-zero eigenvalues is equal to 1.

Theorem 2. Let the k correlation matrices R1, . . . , Rk be based on independent
samples of sizes N1, . . . , Nk, respectively, with finite fourth order cumulants. De-
fine the kp(p− 1)/2× 1 vector v(1) by

v(1) =(v
(1)
1,1,2,v

(1)
1,1,3,. . .,v

(1)
1,p−1,p,v

(1)
2,1,2,v

(1)
2,1,3,. . .,v

(1)
2,p−1,p,. . .,v

(1)
k,1,2,v

(1)
k,1,3,. . .,v

(1)
k,p−1,p)

′

where V (1)
α is as defined in (9). Let Q = (q(ij, k`)) be the p(p− 1)/2× p(p− 1)/2

matrix of coefficients defined in Theorem 1.

Let Tα be the asymptotic dispersion matrix of V (1)
α with entry (ij, k`) equal to

E(v
(1)
αijv

(1)
αk`) given in (12). Then, the asymptotic dispersion matrix of v(1) is

T ∗ =


T1 0 · · · 0

0 T2 · · · 0
...

...
0 0 · · · Tk


Under the null hypothesis

L∗ =

p(p−1)(k−1)/2∑
i=1

λiyi +Op(n
−1/2)

where y1, . . . , yp(p−1)(k−1)/2 are independent, yi ∼ χ2
1, 1 ≤ i ≤ p(p−1)(k−1)/2 and

λ1, . . . , λp(p−1)(k−1)/2 are the eigenvalues of T ∗(Q⊗W ). If the standardized fourth
order cumulants of the populations are all equal, then Tα = T for α = 1, . . . , k and

L∗ =

p(p−1)/2∑
i=1

θiui +Op(n
−1/2),

where u1, . . . , up(p−1)/2 are independent, ui ∼ χ2
k−1 and θ1, . . . , θp(p−1)/2 are the

eigenvalues of TQ.

Proof . Under the null hypothesis we have Pα = P for α = 1, . . . , k so that
g(P1, . . . , Pk) = 0, hαij = 0 and qα(ij, k`) = q(ij, k`) = ρi`ρjk + ρikρj` for all α.
Since g(R1, . . . , Rk) = ln[det(R)] −

∑k
α=1 ωα ln[det(Rα)] = n−1L∗, using Theo-

rem 1, one obtains

L∗ = ng(R1, . . . , Rk) = n[g(R1, . . . , Rk)− g(P1, . . . , Pk)]

=

k∑
α=1

∑
i<j

∑
k<`

q(ij, k`)v
(1)
αijv

(1)
αk`

−
k∑

α=1

k∑
β=1

∑
i<j

∑
k<`

√
ωαωβ q(ij, k`)v

(1)
αijv

(1)
βk` +Op(n

−1/2)
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=

k∑
α=1

k∑
β=1

wαβ
∑
i<j

∑
k<`

q(ij, k`)v
(1)
αijv

(1)
βk` +Op(n

−1/2)

= (v(1))′(Q⊗W )v(1) +Op(n
−1/2)

Since Q is of rank p(p − 1)/2 and W is of rank k − 1, the matrix Q ⊗W is of
rank p(p − 1)(k − 1)/2. From (8) and (9) it is clear that elements of V (1)

α are
linear functions of elements of Vα and the limiting distribution of Vα is normal
with means 0 and covariances that depend on the fourth order cumulants of the
parent population. Therefore, v(1) is asymptotically normal with means zero and
dispersion matrix T ∗. Thus, L∗ =

∑p(p−1)(k−1)/2
i=1 λiyi +Op(n

−1/2).
If the standardized fourth order cumulants are the same for each underlying

population, then T ∗ = T ⊗ I. Further, (T ⊗ I)(Q ⊗W ) = TQ ⊗W has as its
eigenvalues θiεj , i = 1, . . . , p(p − 1)/2, j = 1, . . . , k where θi are the eigenvalues
of TQ and εj are the eigenvalues of W . Since there are p(p − 1)/2 non-zero
eigenvalues of (T ⊗ I)(Q ⊗W ) each occurring with multiplicity k − 1, we have
L∗ =

∑p(p−1)/2
i=1 θiui +Op(n

−1/2).

Corollary 2. Let the k sample correlation coefficients r1, r2, . . . , rk be based on
independent samples of sizes N1, N2, . . . , Nk from bivariate populations with finite
fourth order cumulants. Let ρ be the hypothesized common correlation coefficient.
Define the k × 1 vector v(1) by

v(1) = (v
(1)
1 , . . . , v

(1)
k )′

where v(1)α = vα12 − ρ(vα11 + vα22) as defined in (9). Let

tα = (1− ρ2)2 +
1

4
ρ2(κα1111 + κα2222) +

(
1 +

1

2
ρ2
)
κα1122 − ρ(κα1113 + κα1222)

and define T ∗ = diag(t1, . . . , tk).Under the null hypothesis the statistic L∗ is
asymptotically expanded as

L∗ =
1 + ρ2

(1− ρ2)2

k−1∑
i=1

λiyi +Op(n
−1/2)

where y1, . . . , yk−1 are independent, yi ∼ χ2
1 and λ1, . . . , λ,k−1 are the eigenvalues

of T ∗W . If the standardized fourth order cumulants are equal, then

tα = (1− ρ2)2 +
1

4
ρ2(κ1111 + κ2222) +

(
1 +

1

2
ρ2
)
κ1122 − ρ(κ1113 + κ1222)

for α = 1, 2, . . . , k and

L∗ =

[
(1− ρ2)2 +

1

4
ρ2(κ1111 + κ2222) +

(
1 +

1

2
ρ2
)
κ1122

− ρ(κ1113 + κ1222)

]
1 + ρ2

(1− ρ2)2
χ2
k−1 +Op(n

−1/2)
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Proof . As shown in Corollary 1, when p = 2, Q is a scalar. If ρ is the common
correlation coefficient, then Q = (1 + ρ2)/(1 − ρ2)2. The asymptotic variance of
v
(1)
α12 is given in (12). Upon simplification,

E(v
(1)
α12v

(1)
α12) = tα = (1− ρ2)2 +

1

4
ρ2(κα1111 + κα2222) +

(
1 +

1

2
ρ2
)
κα1122

− ρ(κα1113 + κα1222) +Op(n
−1/2) (14)

so that T ∗ is the asymptotic covariance matrix of v(1). Further, T ∗(Q ⊗W ) =

[(1 + ρ2)/(1− ρ2)2]T ∗W . Thus L∗ = [(1 + ρ2)/(1− ρ2)2]
∑k−1
i=1 λiyi +Op(n

−1/2),
where λi are the eigenvalues of T ∗W . If the standardized fourth order cumulants
are identical, T = tI, so that there is one eigenvalue of TQ with multiplicity k.
This eigenvalue is merely t(1 + ρ2)/(1 − ρ2)2 and the result follows immediately
from Theorem 2.

Corollary 3. Let the k sample correlation coefficients r1, r2, . . . , rk be based on
independent samples of sizes N1, N2, . . . , Nk from bivariate populations which are
elliptically contoured with a common curtosis of 3κ and common correlation coef-
ficient ρ. Then

L∗ =
[
(1− ρ2)2 + (1 + 2ρ2)κ

] 1 + ρ2

(1− ρ2)2
χ2
k−1 +Op(n

−1/2)

Proof . For elliptically contoured distributions (Muirhead 1982, Anderson 2003,
Gupta and Varga 1993) the fourth order cumulants are such that κiiii = 3κiijj =
3κ for i 6= j and all other cumulants are zero (Waternaux 1984). Substituting this
into the expression for t in Corollary 2 yields t = (1−ρ2)2 +(1+2ρ2)κ. The result
then follows from Corollary 2.

Corollary 4. Let the k sample correlation coefficients r1, . . . , rk be based on in-
dependent samples of sizes N1, . . . , Nk from bivariate normal populations with a
common correlation coefficient ρ. Then

L∗ = (1 + ρ2)χ2
k−1 +Op(n

−1/2)

Proof . Normal distributions are special case of elliptically contoured distribu-
tions. The fourth order cumulants are all zero (Anderson 2003). The result follows
by setting κ = 0 in Corollary 3.

6. An Example

This example is included to demonstrate the procedure to be used when testing
the equality of correlation matrices by using the statistic L∗. The data represent
random samples from three trivariate populations each with identical correlation
matrix P given by

P =

1.0 0.3 0.2

0.3 1.0 −0.3

0.2 −0.3 1.0
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Since the statistic L∗ is an approximation of the modified likelihood ratio statistic
for samples from multivariate normal populations, it is particularly suited to pop-
ulations that are near normal. The contaminated normal model has been chosen
to represent such a distribution.

Samples of size 25 from contaminated normal populations with mixing param-
eter ε = 0.1 and σ = 2 were generated using the SAS system. These data are
tabulated in Gupta, Johnson and Nagar (2012). The density of a contaminated
normal model is given by

φε(x, σ,Σ) = (1− ε)φ(x,Σ) + εφ(x, σΣ), σ > 0, 0 < ε < 1

where φ(x,Σ) is the density of a multivariate normal distribution with zero mean
vector and covariance matrix Σ.

If the data were known to be from three normal populations all that would
be required at this point would be the sample sizes and the matrix of corrected
sums of squares and cross products. A key element, however, of the modified
likelihood ratio procedure is that this assumption need not be made, but the
fourth order cumulant must be estimated. To do this the k-statistics are calculated
using Kaplan’s formulae summarized in Section 3. The computations are made
considerably easier by standardizing the data so that all of the first order sums
are zero.

The computation using original (or standardized) data yields the following
estimates of the individual correlation matrices:

R1 =

 1.0000 0.5105 0.3193

0.5105 1.0000 −0.3485

0.3193 −0.3485 1.0000

 , det(R1) = 0.4024

R2 =

 1.0000 0.1758 0.2714

0.1758 1.0000 −0.2688

0.2714 −0.2688 1.0000

 , det(R2) = 0.7975

R3 =

 1.0000 0.2457 0.3176

0.2457 1.0000 −0.0331

0.3176 −0.0331 1.0000

 , det(R3) = 0.8325

Since each sample is of size 25, ωi = 1/3 for i = 1, 2, 3 and the pooled correlation
matrix is merely the average of these three matrices:

R =

 1.0000 0.3107 0.3028

0.3107 1.0000 −0.2168

0.3028 −0.2168 1.0000

 , det(R) = 0.7240

The value of the test statistic is now easily calculated as

L∗ = 72 ln(0.7240)− 24[ln(0.4024) + ln(00.7975) + ln(0.8325)]

= 8.7473
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The null hypothesis is to be rejected if the value of the test statistic is too large.
The next step of the procedure is to estimate the coefficients in the linear combi-
nation of chi-square variables that make up the actual distribution under the null
hypothesis. The most arduous part is the computation of the estimates of fourth
order cumulants.

Since the data are standardized, the formula for the k-statistic for the four way
product xi × xj × xk × x` simplifies to

kijk` =
1

N (4)
[N2(N + 1)sijk` −N(N − 1)(sijsk` + siksj` + si`sjk)]

where N (4) = N(N − 1)(N − 2)(N − 3). Using this to estimate the cumulant
corresponding to x21x22 yields k1122 = 0.6670. The computation for other fourth
order cumulant are performed similarly. The resulting estimates are then pooled
across population to yield an estimate of the common fourth order cumulants
used in building the tau matrix (it is possible, of course, to drop the assumption
of common fourth order cumulants and use the nine by nine matrix that would
result if each separate tau matrix were joined in a block diagonal matrix). The
estimates of the fourth order cumulants are summarized in the Table 1.

The pooled correlation matrix and these estimates are now used to build the
estimated covariance matrix V (1). The entry corresponding to v(1)ij v

(1)
k` is given by

kijk` −
1

2
(rijkiik` + rijkjjk` + rk`kijkk + rk`kij``)

+
1

4
rijrk`(kiikk + kii`` + kjjkk + kjj``)

− (rk`rikrjk + rk`ri`rj` + rijrikri` + rijrjkrj`)

+
1

2
rijrk`(r

2
ik + r2i` + r2jk + r2j`) + rikrj` + ri`rjk

where rij is the pooled estimate of the correlation value and kijk` is the correspond-
ing pooled fourth order cumulant. The entry corresponding to 12, 13 is given by
t12,13 = −0.3065. Similar calculations yield the following covariance matrix corre-
sponding to (v

(1)
α12, v

(1)
α13, v

(1)
α23)′,

T =

 1.0150 −0.3065 0.1800

−0.3065 0.7242 0.3974

0.1800 0.3974 0.8179


To complete the example, the inverse of the pooled correlation matrix is used

to estimate the matrix Q. The entry corresponding to the element ij, k` is given
by rikrj` + ri`rjk where R−1 = (rij). These matrices are as follows:

R
−1

=

 1.3163 −0.5198 −0.5113

−0.5198 1.2546 0.4294

−0.5113 0.4294 1.2479
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Table 1: Estimated fourth order cumulants
Variables Population 1 Population 2 Population 3 Pooled

1111 0.9077 0.1181 0.9355 0.6538
1112 0.7765 -0.0387 -0.0565 0.2271
1113 -0.3015 0.7008 0.0677 0.1105
1122 0.6670 0.3595 -0.3663 0.2201
1123 -0.3917 0.3519 -0.1333 -0.0574
1133 -0.1848 0.6608 -0.7475 -0.0905
1222 0.4896 -0.7128 -0.0178 -0.0803
1223 -0.3005 0.1637 -0.2243 -0.1204
1233 -0.0980 0.6343 -0.1394 0.1323
1333 -0.3430 0.3973 -0.0773 -0.0077
2222 -0.0787 -0.9989 0.8134 -0.0881
2223 -0.2543 0.0750 0.1887 0.0032
2233 0.3800 -0.1764 -0.5454 -0.1139
2333 -0.8386 0.8496 0.2869 0.0993
3333 0.9130 -0.9196 1.3068 0.4334

Q =

 1.9217 0.8310 −0.8647

0.8310 1.9041 −0.8682

−0.8647 0.8682 1.7500


Most eigenvalues extraction routines require that the matrix being analyzed be
symmetric. Let A be the Cholesky decomposition of Q, that is Q = A′A where
A is an upper triangular matrix. Then the eigenvalues of TQ are the same as the
eigenvalues of ATA′ which is clearly symmetric. In this case

A =

 1.3863 0.5995 −0.6237

0 1.2429 −0.3977

0 0 1.0967



ATA′ =

 1.4111 −0.2877 −0.0246

−0.2877 0.8552 0.1849

−0.0246 0.1849 0.9837


and the eigenvalue of this matrix are 1.55, 1.0473 and 0.6527. Using Theorem 2,
the distribution of the statistic is estimated to be that of Y = (1.55)χ2

2+(1.0473)χ2
2

+(0.6527)χ2
2 where each of the chi-square variate is independent. Using Lemma 7

the cumulative probability value associated with 8.7473 is obtained as 0.7665 so
that the observed significance level is 0.2335. Thus, if the test is performed at
the α = 0.1 level of significance the conclusion reached is that there is insufficient
evidence to reject the null hypothesis that the samples are from populations with
identical correlation matrices.
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Appendix

Lemma 3. Let V = (vij) be a p× p symmetric matrix with zero on the diagonal
and let C = (cij) be a p× p symmetric matrix. Then

tr(CV ) =

p∑
i=1

p∑
j=1

cijvij = 2
∑
i<j

cijvij

Proof . The proof is obtained by noting that vjj = 0 and cij = cji.

Lemma 4. Let Vα = (vαij) and Vβ = (vβij) be p × p symmetric matrices with
zero on the diagonal. Then

p∑
i=1

p∑
j=1

p∑
k=1

p∑
`=1

cijk`vαijvβk` =
∑
i<j

∑
k<`

(cijk` + cij`k + cjik` + cji`k)vαijvβk`.

Proof . Using Lemma 3, the sum may be written as

p∑
i=1

p∑
j=1

∑
k<`

(cijk` + cij`k)vαijvβk`

The proof is obtained by applying Lemma 3 second time.

Lemma 5. Let A be a real symmetric matrix with eigenvalues that are less than
one in absolute value, then

− ln[det(I −A)] = tr(A) +
1

2
tr(A2) +

1

3
tr(A3) + · · ·

Proof . See Siotani, Hayakawa and Fujikoshi (1985).

Lemma 6. Let R be a correlation of dimension p. Then

∂

∂P
ln[detR] = R−1

and

∂

∂P
tr(R−1B) = R−1BR−1

where B is a symmetric non-singular matrix of order p.

Proof . See Siotani, Hayakawa and Fujikoshi (1985).

Revista Colombiana de Estadística 36 (2013) 237–258



258 Arjun K. Gupta, Bruce E. Johnson & Daya K. Nagar

Lemma 7. Let Y1, Y2 and Y3 be independent random variables, Yi ∼ χ2
2, i = 1, 2, 3.

Define Y = α1Y1 + α2Y2 + α3Y3 where α1, α2 and α3 are constants, α1 > α2 >
α3 > 0. Then, the cumulative distribution function FY (y) of Y is given by

FY (y) =

3∑
i=1

Ci

[
1− exp

(
− y

2αi

)]
, y > 0,

where C1 = α2
1/(α1 − α3)(α1 − α2), C2 = −α2

2/(α2 − α3)(α1 − α2) and
C3 = α2

3/(α2 − α3)(α1 − α3)

Proof . We get the desired result by inverting the moment generating function
MY (t) =

∑3
i=1 Ci(1− 2αit)

−1, 2α1t < 1.
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