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Abstract

This paper concerns to the problem of making inferences about the vul-
nerability θ = P (X>v) and the mixing proportion p parameters, when the
random variable X is distributed as a mixture of two Gumbel distributions
and v is a known fixed value. A profile likelihood approach is proposed for
the estimation of these parameters. This approach is a powerful though sim-
ple method for separately estimating a parameter of interest in the presence
of unknown nuisance parameters. Inferences about θ, p or (θ, p) are given in
terms of profile likelihood regions and can be easily obtained on a computer.
This methodology is illustrated through a real problem where the main pur-
pose is to model the size of non-metallic inclusions in steel.

Key words: Invariance principle, Likelihood approach, Likelihood region,
Mixture of distributions.

Resumen

En este artículo consideramos el problema de hacer inferencias sobre
el parámetro de vulnerabilidad θ = P (X>v) y la proporción de mezcla p
cuando X es una variable aleatoria cuya distribución es una mezcla de dos
distribuciones Gumbel y v es un valor fijo y conocido. Se propone el enfoque
de verosimilitud perfil para estimar estos parámetros, el cual es un método
simple, pero poderoso, para estimar por separado un parámetro de interés
en presencia de parámetros de estorbo desconocidos. Las inferencias sobre
θ, p o (θ, p) se presentan por medio de regiones de verosimilitud perfil y se
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pueden obtener fácilmente en una computadora. Esta metodología se ilustra
mediante un problema real donde se modela el tamaño de inclusiones no
metálicas en el acero.

Palabras clave: enfoque de verosimilitud, mezcla de distribuciones, princi-
pio de invarianza, región de verosimilitud.

1. Introduction

Facilities such a electric power, water supplies, communications and trans-
portation are a part of what is named society infrastructure, although in a broad
definition this also includes some basic societal functions like education, national
defense and financial and health systems. On the other hand, the term critical
infrastructure is often used to denote the collection of all large technical systems
characterized as public, like electric power, water supply systems, transportation,
communications and health systems. All these services are considered a part of
a nation critical infrastructure and they are essential for the quality of everyday
life. Natural disasters, adverse weather conditions, technical failures, human er-
rors, labor conflicts, sabotage, terrorism and many other situations can disturb
the appropriate flow of these services and a severe strain on the society could
occur. Hence, national security is directly linked to the vulnerability of critical
infrastructure, and problems related with human error or technical failures should
be prevented. In particular, it is known that steel inclusions formed during the
steel production process degrade the mechanical properties of the steel. Special
interest is focused on the control of non-metallic inclusions due to their harmful
effect, because their size, amount and chemical composition have a great influence
on steel properties and are linked to its vulnerability. Actually, big inclusions
can turn out to be dangerous, leading to the failure of the finished steel product.
The steel industry fixes some critical limits for these inclusions and those limits
depend on the purpose of the steel products. The increasing demand for cleaner
steels has led to the continuous improvement of steelmaking practices and model-
ing the type and distribution of these inclusions has become significant concern in
the steel industry.

Murray & Grubesic (2007) define vulnerability of an infrastructure system as
the probability that at least one disturbance with negative societal consequence
X, could be larger than some (critical) value v, during a given period of time T .
Hence, they argued that a simple measure for the vulnerability of an infrastructure
system can be formulated as

P (X > v) = 1− F (v)

where F (x) denotes the probability distribution function of the random variableX.
Skewed distributions such as the exponential, lognormal, log-logistic, and power
law distributions have been considered by many authors in a number of different
real life situations, like Rosas-Casals, Valverde & Solé (2007) and also by Murray &
Grubesic (2007). However, mixture models would be preferable when the random
variable X is generated from k distinct random processes. To our knowledge, only
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few authors like Zheng (2007) and Barrera-Núñez, Meléndez-Frigola & Herraiz-
Jaramillo (2008) have used mixture models to explain vulnerability analysis.

In statistics, a mixture model is a probabilistic model adequate for representing
the presence of subpopulations within an overall population, and it is not required
for the observed data-set to identify the sub-population to which an individual
observation belongs. Formally, given a finite set of probability density functions
f1(x), . . . , fk(x) and weights p1, . . . , pk where pi ≥ 0 and

∑
pi = 1, the density

associated with a mixture distribution can be written as f(x) =
∑
pifi(x). Mix-

ture distributions arise in a natural way in many areas such as engineering science,
medicine, biology, hidrology, geology, as shown in Titterington, Smith & Makov
(1985) as well as in Lindsay (1995).

The Gumbel distribution occurs as the limit of maxima of most standard dis-
tributions, particularly for the normal distribution. Kotz & Nadarajah (2000)
describe in detail this distribution. Actually, the Gumbel distribution has been
one of the models used for quantifying the risk associated with extreme rainfalls;
it has been also used to model flood levels, the magnitude of earthquakes and even
sport records. Some recent applications belong to the engineering area, such as
in risk-based engineering, software reliability and structural engineering. Mixture
models for Gumbel distributions are of special importance. For example, Cheng
& Iles (1990) have used a Gumbel mixture model to estimate the seismic risk of
the Chinese mainland. Beretta & Murakami (2001) found that a Gumbel mixture
model is useful for modeling two types of steel inclusions.

Maximum likelihood estimation for the shape and scale parameters can be
found in Evans, Hastings & Peacock (1993) and Johnson, Kotz & Balakrishnan
(1994), and parameter estimation for the mixture of two Gumbel distributions
is included by Raynal & Guevara (1997), Tartaglia, Caporali, Cavigli & Moro
(2005) and Ahmad, Jaheen & Modhesh (2010). However, inferences about the
vulnerability parameter θ = P (X > v) for the Gumbel mixture case has not been
carefully studied, despite the actual importance of this kind of analysis. In many
applications, inferences about the parameters θ and p, where p is the mixture
proportion, can be more relevant than inferences concerning some other model
parameters. This will be illustrated with a real data set related to the size of non-
metallic inclusions in steel. This data set has two kinds of inclusions, classified as
Type 1 and Type 2 inclusions, where p denotes the proportion for the first type of
inclusion.

Let the distribution of X be a mixture of two independent Gumbels:

f(x;µ1, σ1, µ2, σ2, p) = pf1(x;µ1, σ1) + (1− p)f2(x;µ2, σ2) (1)

where

fi(x;µi, σi) =
1

σi
exp

[
−
(
x− µi
σi

)]
exp

{
− exp

[
−
(
x− µi
σi

)]}
−∞ < µi < ∞, σi > 0, i = 1, 2, −∞ < x < ∞, and 0 < p < 1. A fundamen-
tal statistical problem is concerned with making inferences on the vulnerability
parameter
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θ = P (X > v;µ1, σ1, µ2, σ2, p) = 1−
∫ v

−∞
f(x;µ1, σ1, µ2, σ2, p) dx (2)

and the mixing proportion p, based on a sample x1, . . . , xn from X. In this paper,
we analyze this problem considering σ1 > 0, σ2 > 0, 0 < p < 1, −∞ < µ1 < µ2 <
v, and v a known fixed value. Our purpose is to estimate these parameters using the
profile likelihood function. The profile likelihood approach can be useful in many
situations and it is a powerful though simple method for separately estimating a
parameter of interest in the presence of unknown nuisance parameters. Inferences
about θ, p or (θ, p) can be given in terms of profile likelihood regions which are
easily obtained with a computer. This methodology will be illustrated with a real
data set concerning the size distribution of non-metallic inclusions in steel.

2. Profile Likelihood Approach

In this section we describe the estimation procedure that will be used to make
inferences about the parameters of interest. This approach is based in Sprott
(1980), Kalbfleisch (1985), and Sprott (2000). Let xo = (x1, . . . , xn) be an ob-
served sample from a distribution with likelihood function L(ψ,λ;xo), where
ψ = (ψ1, . . . , ψdψ ) represents the parameter of interest and λ = (λ1, . . . , λdλ)
is a nuisance parameter. The profile likelihood function of ψ is

LP (ψ;xo) = L
[
ψ, λ̂(ψ);xo

]
(3)

The quantity λ̂(ψ) that maximizes L(ψ,λ;xo) for a specified value of ψ, is called
the restricted maximum likelihood estimate of the nuisance parameter λ.

Usually λ̂(ψ) exists and is unique for each value of ψ, so the definition (3)
applies. Formally, LP (ψ;xo) can be defined as

LP (ψ;xo) = sup
λ

L (ψ,λ;xo) (4)

Since L (ψ,λ;xo) is proportional to the probability of the observed sample as a
function of the parameters of the model, then the supremum exists and it is finite.
The profile likelihood function can be used to rank parameter values according
to their plausibilities. Now, the relative profile likelihood function of ψ is a stan-
dardized version of (4), and takes a value of one at the maximum of the profile
likelihood function of ψ,

RP (ψ;xo) =
LP (ψ;xo)

sup
ψ

LP (ψ;xo)

Hence, the relative profile likelihood varies between 0 and 1. Values of ψ that are
supported by the observed sample xo will result in values of RP (ψ;xo) close to
one. In contrast, values of ψ with RP (ψ;xo) close to zero become implausible,
given the sample xo. Morever, if the the maximum likelihood estimate (mle) of
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(ψ,λ) exists and is unique, then the relative profile likelihood function of ψ can
be defined as

RP (ψ;xo) =
LP (ψ;xo)

L(ψ̂, λ̂;xo)
=
L
[
ψ, λ̂(ψ);xo

]
L(ψ̂, λ̂;xo)

where ψ̂ is the mle of ψ. Note that λ̂ = λ̂
(
ψ̂
)
is the ordinary mle of λ. The

relative profile likelihood function is the maximum relative likelihood that ψ can
attain when λ is unknown and free to vary arbitrarily. Thus, RP (ψ;xo) ranks all
possible values of ψ according to their maximum plausibilities and supported by
the observed data.

A level c profile likelihood region for ψ is given by

RP (c) = {ψ : RP (ψ;xo) ≥ c} (5)

where 0 ≤ c ≤ 1. When ψ is a scalar this region will be an interval if RP is
unimodal and the union of disjoint intervals when RP is multimodal. Each spe-
cific value of ψ within this region has an associated relative profile likelihood
RP (ψ;xo) ≥ c, and values outside this region will have a relative profile likelihood
RP (ψ;xo) < c. At level c, this region separates plausible values of ψ from the
implausible ones. When varying c from 0 to 1, a complete set of nested likelihood
regions is obtained and these converges to the mle ψ̂ as c → 1. Computer algo-
rithms are usually used to find the mle or the borders of a profile likelihood regions
given in (5).

In most of the cases, a profile likelihood region RP (c) is an approximate con-
fidence region for ψ, so it is called a likelihood-confidence region, or a likelihood-
confidence interval when ψ is a scalar. Under the null hypothesis H0 : ψ = ψ0

the likelihood ratio statistic −2 ln [RP (ψ0;x)] usually converge, in distribution,
to a chi-squared distribution with dψ degrees of freedom (Serfling 1980). When
this is true, the set RP (c) becomes a 100 (1− α) % confidence region for ψ, where
c = exp(−χ2

dψ,1−α/2) and χ2
dψ,1−α represents the quantile of probability 1− α of

a chi-squared distribution with dψ degrees of freedom. For example, if dψ = 1, ψ
is a scalar parameter, then the profile likelihood region at level c = 0.15 becomes
a confidence region for ψ, with an approximate 95% confidence level. In a similar
way, if dψ = 2, the level c = 0.05 profile likelihood region for ψ will be a confidence
region with an approximate 95% confidence level.

Some authors like Montoya, Díaz-Francés & Sprott (2009) and Figueroa (2012)
suggest to include the precision of the measuring instrument to avoid unbounded
likelihoods, which usually occurs when the continuous approximation to the likeli-
hood function is used and regularity conditions are not satisfied. The unbounded-
ness and also the flatness of a profile likelihood function have been used to propose
alternative approaches to estimate nuisance parameters, like in Smith & Naylor
(1987) and Green, Roesch, Smith & Strawderman (1994), who criticized the pro-
file likelihood function for being flat and uninformative, overlooking that it can be
indicative that a simpler (limiting) model might be a good alternative to explain
the data (Cheng & Iles 1990). Although here there is no problem of unbounded
likelihoods and to our knowledge, a flat profile likelihood can also be obtained even
when including the precision of the measuring instrument, there are some others
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circumstances where incorporating this information is reasonable; for example,
when the instrument measures with different precision or when it produces many
repeated observations, like in the example included in Section 4.

3. Inferences about θ and p Using the Profile
Likelihood in the Gumbel Mixture Model

Let X be a random variable from a two-component Gumbel mixture model
with density function f(x;µ1, σ1, µ2, σ2, p) given in (1), where σ1 > 0, σ2 > 0,
0 < p < 1, −∞ < µ1 < µ2 < v and v is a known fixed value. In this case, the
parameters of interest are the vulnerability parameter θ = P (X > v) and the
mixing proportion p. Although the parametrization of the Gumbel mixture model
involves the five unknown parameters µ1, σ1, µ2, σ2, and p, the parameter θ has
been left out. In order to make profile likelihood inferences about θ and p, it is
convenient to use a one to one reparametrization in such a way that θ becomes
one of the new parameters and p is included as well. Hence, the vulnerability
parameter θ can be written, explicitly, as a function of µ1, σ1, µ2, σ2 and p,

θ = P (X > v;µ1, σ1, µ2, σ2, p)

= 1− P (X ≤ v;µ1, σ1, µ2, σ2, p)

= 1− [pΦG (δ1) + (1− p) ΦG (δ2)]

where ΦG (·) is the standard Gumbel distribution and δi = (v − µi) /σi, i = 1, 2.
Here, δi is introduced for algebraic and computational simplicity. Note that δi > 0
when σi > 0 and −∞ < µ1 < µ2 < v.

3.1. Reparametrizations

Let σi = (v − µi) /δi, i = 1, 2. This produces the one to one parametrization
(µ1, σ1, µ2, σ2, p)↔ (µ1, δ1, µ2, δ2, p) with a Jacobian

J1 =
(v − µ1) (v − µ2)

σ2
1σ

2
2

> 0

The Gumbel mixture model can be reparametrized in terms of (µ1, δ1, µ2, δ2, p)
when substituting σi = (v − µi) /δi, i = 1, 2,

f∗(x;µ1, δ1, µ2, δ2, p) = pf∗1 (x;µ1, δ1) + (1− p)f∗2 (x;µ2, δ2) (6)

where

f∗i (x;µi, δi) =
δi

v − µi
exp

[
−δi

(
x− µi
v − µi

)]
exp

{
− exp

[
−δi

(
x− µi
v − µi

)]}
with −∞ < µ1 < µ2 < v, 0 < p < 1 and δi > 0, i = 1, 2.
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The parameter δ1 can now be written as

δ1 = δ1 (θ, p, δ2) = Φ−1G

[(
1− θ
p

)
−
(

1− p
p

)
ΦG (δ2)

]
(7)

where Φ−1G (·) denotes the inverse of the standard Gumbel distribution. Again,
this produces the one to one parametrization (µ1, δ1, µ2, δ2, p) ↔ (µ1, θ, µ2, δ2, p)
with a Jacobian given by

J2 = p exp (−δ1) ΦG (δ1) > 0

Thus, the Gumbel mixture model (6) can be reparametrized in terms of (θ, p, µ1, µ2,
δ2) by substituting in (6) the expression δ1 (θ, p, δ2) given in (7). Here, θ and p
are the parameters of interest and the remaining ones are nuisance parameters.

3.2. Likelihood

In this section a likelihood function for the parameters of the reparametrized
mixture model in terms of the parameters of interest θ and p, and the vector of
nuisance parameters λ = (µ1, µ2, δ2) is presented. This likelihood includes the pre-
cision of the measuring instrument because it could provide valuable information
that should be included into the analysis. As Lindsey (1999) explains to include
the precision of the measuring instrument into the analysis requires no additional
computational effort nowadays.

Let X1, . . . , Xn be independent and identically distributed random variables
with density function given in (6) and xo = (x1, . . . , xn) its observed sample.
Since all measuring instruments have finite precision, that is, data can only be
recorded to a finite number of decimals, then xo must always be discrete. Thus
the observation Xi = xi can be interpreted as xi − h/2 ≤ Xi ≤ xi + h/2, where h
is the precision of the measuring instrument, and so is a fixed positive number, as
is described in Sprott (2000, p. 10), Montoya et al. (2009) and Figueroa (2012).
Therefore, for xo = (x1, . . . , xn), the resulting likelihood function of (θ, p,λ) is
proportional to the probability of the observed sample,

L(θ, p,λ;xo) ∝
n∏
i=1

∫ xi+h/2

xi−h/2
f∗ [xi;µ1, δ1 (θ, p, δ2) , µ2, δ2, p]

=

n∏
i=1

{
p

[
F1

(
xi +

h

2
; θ, p, µ1, δ2

)
− F1

(
xi −

h

2
; θ, p, µ1, δ2

)]
+

(1− p)
[
F2

(
xi +

h

2
;µ2, δ2

)
− F2

(
xi −

h

2
;µ2, δ2

)]}
where

F1(z; θ, p, µ1, δ2) = exp

{
− exp

[
−δ1 (θ, p, δ2)

(
z − µ1

v − µ1

)]}
= ΦG

{
Φ−1G

[(
1− θ
p

)
−
(

1− p
p

)
ΦG (δ2)

](
z − µ1

v − µ1

)}

Revista Colombiana de Estadística 36 (2013) 193–208



200 José A. Montoya, Gudelia Figueroa & Nuša Pukšič

and

F2(z;µ2, δ2) = exp

{
− exp

[
−δ2

(
z − µ2

v − µ2

)]}
= ΦG

[
δ2

(
z − µ2

v − µ2

)]
with 0 < θ < 1, 0 < p < 1, δ2 > 0, 0 ≤ [(1− θ) /p] − [(1− p) /p] ΦG (δ2) ≤ 1,
−∞ < µ1 < µ2 < v and v is a known fixed value.

Since the mle (θ̂, p̂, λ̂) cannot be obtained analytically, it must be calculated
numerically. For computational convenience, maximization of the log-likelihood
function of the original parametrization can be used to obtain (µ̂1, σ̂1, µ̂2, σ̂2, p̂)
the maximum likelihood estimators of (µ1, σ1, µ2, σ2, p), and by the invariance
property of the likelihood function, the mle of θ is

θ̂ = 1−
[
p̂ΦG(δ̂1) + (1− p̂)ΦG(δ̂2)

]
where δ̂i = (v − µ̂i)/σ̂i.

3.3. Profile likelihood

Profile likelihood inference about the vector (θ, p) in the presence of the vector
of nuisance parameters λ = (µ1, µ2, δ2) is based on the relative profile likelihood
function of (θ, p). The profile likelihood function of (θ, p) is

LP (θ, p;xo) = sup
λ

L (θ, p,λ;xo)

and its associated relative profile likelihood function is

RP (θ, p;xo) =
LP (θ, p;xo)

sup
θ,p

LP (θ, p;xo)
=

LP (θ, p;xo)

L(θ̂, p̂, λ̂;xo)
(8)

where (θ̂, p̂, λ̂) is the mle of (θ, p, λ). Note that RP (θ, p;xo) will be a surface
sitting above the parameter space (0, 1) × (0, 1) and its maximum value 1 occurs
at (θ, p) = (θ̂, p̂). A convenient way to visualize RP (θ, p;xo) in two dimensions is
by plotting contours of level c, obtained by solving RP (θ, p;xo) = c. The regions
obtained from this contour plot are likelihood-based confidence regions for (θ, p).
For instance, if c = 0.05 the region delimited by the contour plot is a likelihood-
based confidence region for (θ, p), with an approximate 95% confidence level.

On the other hand, profile likelihood inferences about the scalar parameter θ
are based on the relative profile likelihood function of θ. In this case the profile
likelihood and relative profile likelihood functions are

LP (θ;xo) = sup
p,λ

L (θ, p,λ;xo) = sup
p
LP (θ, p;xo)

RP (θ;xo) =
LP (θ;xo)

sup
θ
LP (θ;xo)

=

sup
p
LP (θ, p;xo)

sup
θ,p

LP (θ, p;xo)
(9)
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Similarly, the profile likelihood and the relative profile likelihood for parameter p
are given by

LP (p;xo) = sup
θ,λ

L (θ, p, λ;xo) = sup
θ
L (θ, p;xo)

RP (p;xo) =
LP (p;xo)

sup
p
LP (p;xo)

=

sup
θ
L (θ, p;xo)

sup
θ,p

LP (θ, p;xo)
(10)

3.4. Computational implementation

Relative profile likelihoods given in (8), (9) and (10) can be obtained through
the computation of LP (θ, p;xo), which can be easily implemented using the R
‘stats’ package function constrOptim, for each specified value of (θ, p). A feasible
region is defined for AB − C ≥ 0, where

A =


1 0 0

1 −1 0

−1 1 0

0 0 1

0 0 −1

 , B =

 µ1

µ2

δ2

 , and C =



0

−v
0

Φ−1G

(
1− θ − p

1− p

)
−K


K is an upper bound for user-defined δ2, serving as a tuning value. Based on that,
the following algorithm is used to display contour lines and profiles of LP (θ, p;xo).

1. Create a full grid from two monotonically increasing grid vectors: θ ∈ S1 ⊂
(0, 1) and p ∈ S2 ⊂ (0, 1).

2. Map these points to the function LP (θ, p;xo) and store the values in a matrix
M [θ, p].

3. Calculate the matrixR [θ, p] = M [θ, p] /L∗, the vectorR [θ] = max
p

M [θ, p] /L∗

and the vector R [p] = max
θ

M [θ, p] /L∗, where L∗ = max
θ,p

M [θ, p].

4. Contour plots can be created from θ, p, R [θ, p] coordinates using the con-
tour function included in the R ‘graphics’ package. The profile plot can be
obtained by plotting θ versus R [θ] (or p versus R [p]).

Note that R [θ] and R [p] can be used to obtain profile likelihood intervals for θ
and p, respectively.

4. Illustrative Example

Quality of steel is strongly influenced by the presence of non-metallic inclu-
sions. Although inferences about the size of large inclusions have largely been
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based on the assumption that inclusions are all of a single type and methods of
classic extreme value statistics are appropriate, as shown in Murakami (1994), the
need to analyze for the presence of multiple inclusions has been noticed by Lund,
Johansson & Olund (1998) through experiments in the bearing industry. In par-
ticular, Beretta & Murakami (2001) have found that a Gumbel mixture model can
be appropriate when studying only two types of inclusions.

The methodology proposed in this paper is implemented in a set of data ob-
tained from an experiment conducted at the Institute of Metals and Technology,
Ljubljana, Slovenia and concerns modeling the size distribution of non-metallic
inclusions in steel, where mainly two types of inclusions are investigated: (a) Type
1, these are soft elongated inclusions composed mainly of manganese sulfide and
(b) Type 2, hard round inclusions comprising mainly aluminum oxides. These
two types of inclusions can be distinguished by their shape when seen under a
microscope, and their composition has been confirmed by spectroscopic analyses.
Round inclusions are much more harmful and sometimes can lead to premature
failure of the steel piece.

As a part of this experiment, a standard inspection area S0 of 0.27 mm2 is
defined. The area of the maximum inclusion in S0, defined as Amax, is measured
in n = 544 sample areas, from a single steel slab. All the inclusions were measured
using automatic image analysis and only those with a cross-section area larger than
3 µm2 were considered real inclusions in this analysis. Cross-section areas smaller
than 3 µm2 are not clearly visible by light microscopy at 100x magnification; it is
not only the matter of sufficient resolution, but it is difficult to verify what may
be inclusions and what could be artifacts from image contrast adjustments. It is
worthwhile to mention that none of the Amax measurements was smaller than 3
µm2.

The square root of the measured area x =
√
Amax is taken; this is called the

inclusion size and these are the measurements used in the statistical analysis. The
minimum observation is x(1) = 1.9339, the maximum x(544) = 20.8835, the sample
mean x̄ = 7.3184, the sample standard deviation sx = 2.2158, and quantiles
25, 50 and 75 are Q25 = 5.8583, Q50 = 7.1091, Q0.75 = 8.5621, respectively.
The data set formed with these 544 inclusion sizes has many repeated values.
This suggests that the precision of the measuring instrument should be included
into the analysis. Actually, this set has only 185 different values, some of them
repeated even eight times. Now, since the size of each inclusion is not directly
measured by the instrument, the precision associated with each of these values
must be computed through error propagation techniques. This implies that each
measurement has an associated precision hi, that should be considered in the
analysis.

A Gumbel mixture model is proposed to study the size of non-metallic inclu-
sions in steel and the adequacy of this model can be seen in Figures 1 and 2.
Although an observation in Figure 2 is apparently an outlier, it turns out to be
a possible observation, when the cloud formed by the Q-Q plots of many simu-
lated samples with the estimated model includes the points of the Q-Q plot of the
observed sample; this cloud can be seen in Figure 3. The parameter estimates
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for the Gumbel mixture model given in (1) were obtained by maximum likelihood
estimation and are shown in Table 1.
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Figure 1: Histogram and estimated density for non-metallic inclusion sizes.

µ̂1 = 3.1943 σ̂1 = 0.7195 µ̂2 = 6.6251 σ̂2 = 1.6229 p̂ = 0.0597

Table 1: Parameter estimates
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Figure 2: Q-Q plot: Theoretical versus Empirical quantiles.

The likelihood approach described in Section 3.2 was used to estimate the
probability that the maximum size of a non-metallic inclusion could be greater
than a maximum allowed inclusion size v. The problem about fixing a critical
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Figure 3: Q-Q plot simulation.

size v is that it may differ for different kind of steels, depending on their use or
purpose. Here, we fixed v = 15 µm, just to show how to model vulnerability.
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Figure 4: Relative profile likelihood of parameter θ.

The profile likelihood function of parameter θ = P (X > 15 µm) is plotted in
Figure 4, and is almost symmetric around its mle θ̂ = 0.005380 which is marked
with a dark circle; the 15% profile likelihood interval for θ is (0.003364, 0.008182).
It is worthwhile to mention that this information can be used for quality control,
because better steel grades can be obtained by reducing its inclusion content.
For example, for a plausible value of θ, like θ̂ = 0.005380, a non-metallic inclusion
larger than 15, a value merely illustrative, could be associated with a return period
of approximately 200 sample areas. This could be low or high depending of the steel
and its use. Actually, the information contained in the profile likelihood function
of parameter θ is very useful when comparing candidates for the improved steel
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grade, since the amount and size of non-metallic inclusions in steel are directly
linked with many of its properties.

Besides the importance of having information about parameter θ, it is very
informative to characterize parameter p. We are considering two types of non-
metallic inclusions and knowledge about the proportion of each of these types is
crucial. Here, p denotes the proportion of Type 1 inclusions within the mixture
model. Figure 5(a) shows the relative profile likelihood of parameter p, where
p̂ = 0.0597 is marked with a dark circle and the 15% profile likelihood interval for
p results (0.0294, 0.3422). This interval is wide with respect to 1, the length of
its parameter space and it does not contain the value p = 0. The proportion of
Type 1 inclusions can be considered small or large depending on the application of
the steel. By the invariance property of the likelihood function, point and interval
estimates for Type 2 inclusions can be easily obtained and these are 1− p̂ = 0.9403
and (0.6578, 0.9706), respectively. The relative profile likelihood for parameter
1 − p is shown in Figure 5(b). Plots in Figure 5 show that these likelihoods are
strongly asymmetric around their maximum. It is important to mention that
Type 2 inclusions are much more harmful since they do not work when the steel
is deformed, so they serve as a crack nucleation sites and can lead to premature
failure of the steel piece.
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Figure 5: Relative profile likelihood of parameter (a) p and (b) 1− p.

Inferences about parameters θ and p can be obtained by constructing a like-
lihood contour plot for these parameters. Figure 6(a) shows the likelihood confi-
dence regions for parameters θ and p at different levels of c. Using the invariance
property of the likelihood function, a contour plot for θ and 1−p is easily obtained;
this is shown in Figure 6(b). This kind of plot allows us to make simultaneous
inferences about the proportion of Type 1 or Type 2 inclusions and the probabil-
ity of exceeding the maximum allowed inclusion size v. These plots can play an
important role in the improvement of the steelmaking practices, for example, they
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can be used to compare candidates for the improved steel grade through the anal-
ysis of parameters θ and p. We consider that the approach used in this statistical
analysis adds another dimension to the overall characterization of the steel grade.
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Figure 6: Contour plot for parameters (a) θ and p, (b) θ and 1− p.

All the parameter inferences were obtained through computational techniques
using the R software and the R source code for this example is available upon
request.

5. Conclusions

The precision of a measuring instrument turns out to be an important aspect
in some applications, like the one included here, where the lack of precision of
the measuring instrument caused many repeated observations. The likelihood
function allows to include, in a natural way, the precision associated with each
of the observations. The profile likelihood function is a simple method devised to
handle the estimation of parameters of interest in the presence of unknown nuisance
parameters, and it inherits all the information contained in the likelihood function.
Estimation statements about parameters θ = P (X > v), p or (θ, p) in the Gumbel
mixture case can be given in terms of profile likelihood confidence regions that were
easily obtained through computational techniques. This approach was particularly
useful when analyzing the vulnerability of steel.

[
Recibido: junio de 2011 — Aceptado: junio de 2013

]
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