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Resumen

Recently there has been an increased interest in the analysis of different
types of manifold-valued data, which include data from symmetric positive-
definite matrices. In many studies of medical cerebral image analysis, a
major concern is establishing the association among a set of covariates and
the manifold-valued data, which are considered as responses for characteriz-
ing the shapes of certain subcortical structures and the differences between
them.

The manifold-valued data do not form a vector space, and thus, it is not
adequate to apply classical statistical techniques directly, as certain opera-
tions on vector spaces are not defined in a general Riemannian manifold. In
this article, an application of the partial least squares regression methodol-
ogy is performed for a setting with a large number of covariates in a euclidean
space and one or more responses in a curved manifold, called a Riemannian
symmetric space. To apply such a technique, the Riemannian exponential
map and the Riemannian logarithmic map are used on a set of symmetric
positive-definite matrices, by which the data are transformed into a vector
space, where classic statistical techniques can be applied. The methodology
is evaluated using a set of simulated data, and the behavior of the technique
is analyzed with respect to the principal component regression.
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manifold.
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Abstract
Recientemente ha habido un aumento en el interés de analizar diferentes

tipos de datos variedad-valuados, dentro de los cuáles aparecen los datos de
matrices simétricas definidas positivas. En muchos estudios de análisis de
imágenes médicas cerebrales, es de interés principal establecer la asociación
entre un conjunto de covariables y los datos variedad-valuados que son con-
siderados como respuesta, con el fin de caracterizar las diferencias y formas
en ciertas estructuras sub-corticales.

Debido a que los datos variedad-valuados no forman un espacio vecto-
rial, no es adecuado aplicar directamente las técnicas estadísticas clásicas,
ya que ciertas operaciones sobre espacio vectoriales no están definidas en
una variedad riemanniana general. En este artículo se realiza una aplicación
de la metodología de regresión de mínimos cuadrados parciales, para el en-
torno de un número grande de covariables en un espacio euclídeo y una o
varias respuestas que viven una variedad curvada llamada espacio simétrico
Riemanniano. Para poder llevar a cabo la aplicación de dicha técnica se
utilizan el mapa exponencial Riemanniano y el mapa log Riemanniano so-
bre el conjunto de matrices simétricas positivas definida, mediante los cuales
se transforman los datos a un espacio vectorial en donde se pueden aplicar
técnicas estadísticas clásicas. La metodología es evaluada por medio de un
conjunto de datos simulados en donde se analiza el comportamiento de la
técnica con respecto a la regresión por componentes principales.

Key words: multicolinealidad, regresión, teoría de matrices, variedad
Riemanniana.

1. Introduction

In studies of diffusion tensor magnetic resonance imaging (TD-MRI), a diffusion
tensor (DT) is calculated in each voxel of an imaging space, which describes the
local diffusion of water molecules in various directions over this region of the brain.
A sequence of images is used to measure this diffusion. The sequence includes a
noise that produces uncertainty in the tensor estimation and in the estimation of
certain quantities inherent to water molecules, such as eigenvalues, eigenvectors,
the anisotropic fraction rate (FA) and the fiber trajectories, which are constructed
based on these last parameters. The diffusion-tensor imaging (DTI) is a powerful
tool to quantitatively evaluate the integrity of the anatomic connectivity in the
white matter of clinical populations. The methods used for the analysis of DTI
at a group level include the statistical analysis of certain invariant measures, such
as eigenvalues, eigenvectors or principal directions, the anisotropic fraction, and
the average diffusivity, among others. However, these invariant measures do not
capture all of the information about the complete DTs, which leads to a decrease in
the statistical power of the DTI to detect subtle changes in white matter. Hence,
new statistical methods are being developed to fully analyze the DTs as responses
and to establish their association with a set of covariates (Li, Zhu, Chen, Ibrahim,
An, Lin, Hall & Shen 2009, Zhu, Chen, Ibrahim, Li & Lin 2009, Yuan, Zhu,
Lin & Marron 2012). In some of these development the log-euclidean metric has
been used with the transformation of the DTs from a non-linear space into their
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logarithmic matrices on a Euclidean space. Semi-parametrical models have been
proposed to study the relationship between the set of covariates and the DTs as
responses. Estimation processes and hypotheses test based on test statistics and re-
sampling methods have been developed to simultaneously evaluate the statistical
significance of linear hypotheses throughout large regions of interest (ROI).

An appropriate statistical analysis of DTs is important to understand the nor-
mal development of the brain, the neurological bases of neuropsychiatric disorders
and the joined effects of environmental and genetic factors on the brain struc-
ture and function. In addition, any statistical method for complete diffusion ten-
sors can be directly applied to positive-definitive tension matrices in computa-
tional anatomy to understand the variations in shapes of brain-structure imaging
(Grenander & Miller 1998, Lepore, Brun, Chou, Chiang, Dutton, Hayashi, Luders,
Lopez, Aizenstein, Toga, Becker & Thompson 2008).

Symmetric positive-definite (SPD) matrix-valued data occur in a wide variety
of applications, such as DTI for example, where a SPD 3x3 DT, which tracks the
effective diffusion of the water molecules in certain brain regions, is estimated at
each voxel of an imaging space. Another application of SPD matrix-valued data
can be seen in studies on functional magnetic resonance imaging (fMRI), where
an SPD covariance matrix is calculated to delineate the functional connectivity
between different neuronal assembles involved in the execution of certain complex
cognitive tasks or in perception processes (Fingelkurts & Kahkonen 2005). De-
spite the popularity of SPD matrix-valued data, there are few statistical methods
to analyze SPD matrices as response variables in a Riemannian manifold. Data
considered as responses with a small number of covariates of interest in a Euclid-
ian space can be found from the following studies in the literature for statistical
analysis using regression models of SPD matrices: Batchelor, Moakher, Atkinson,
Calamante & Connelly (2005), Pennec, Fillard & Ayache (2006), Schwartzman
(2006), Fletcher & Joshi (2007), Barmpoutis, Vemuri, Shepherd & Forder (2007),
Zhu et al. (2009) and Kim & Richards (2010). However, because the SPD matrix
data do not form a vector space, classical multivariate regression techniques can-
not be applied directly to establish the relationship between these types of data
and a set of covariates of interest.

In a setting with a large number of covariates with a high multicollinearity pres-
ence and few available observations, no regression methods have been previously
proposed to study the relationship between such covariates and the response vari-
ables of SPD matrices living in non-Euclidian spaces. In this article, partial least
squares (PLS) regression is proposed using a strategy of exponential and Rieman-
nian logarithmic maps to transform data into Euclidian spaces. The development
of the technique is similar to the scheme for the analysis of SPD matrices data
as responses in a classical regression model and in a local polynomial regression
model, as proposed in Zhu et al. (2009) and Yuan et al. (2012). The PLS regression
model is initially evaluated using a set of simulated data and statistical validation
techniques which currently exist, such as cross validation techniques. The behavior
of the PLS regression technique is analyzed by comparing it to that of the classic
dimension-reduction technique, called principal component (PC) regression.
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The article is structured as follows: In Section 2, a brief revision of the existing
theory for PC and the PLS regression classical model is outlined. In Section 3, some
properties of the Riemannian geometric structure of SPD matrices are reviewed.
An outline of the regression models, as well as the estimation methods of their
regression coefficients are also presented. In Section 4, our PLS regression model
is presented, along with the estimation process used and their application and
evaluation on a simulated-data set. In Section 5, conclusions and recommendations
for future work are given.

2. Regression Methods

2.1. Classical Regression

We will examine the following data set {(xi, yi) : i = 1, 2, . . . , n}, composed
of a response yi and a k × 1 covariate vector xi = (xi1, xi2, . . . , xik)T , where the
response can be continuous, discrete, or qualitative observations, and the covariates
can be qualitative or quantitative. A regression model often includes two key
elements: A link function µi(β) = E[y|xi] = g(xi,β) and a residual εi = yi−µi(β),
where βq×1 is a regression-coefficients vector and g(. , .): from Rk × Rq → R,
(xi,β) → g(xi,β) with q = k + 1, can be known or unknown according to the
type of model: Parametric, not-parametric or semi-parametric. The parametric
regression model can be defined as: yi = g(xi,β) + εi, with g(xi,β): Known and
E[εi|xi] = 0,∀i = 1, 2, . . . , n, where the expectation is taken with respect to the
conditional distribution of ε given x. The non-parametric model can be defined as
yi = g(xi) + εi, with g(xi): Unknown and E[εi|xi] = 0.

For inference on β in the parametric case (or on g(.), in the non-parametric
case), at least three statistical procedurals are needed. First, an estimation method
needs to be developed to calculate the estimate of the coefficients of vector β,
denoted by β̂. Second, it needs to be proven that β̂ is a consistent estimator of
β and that it has certain asymptotic properties. Third, test statistics need to be
developed for testing hypotheses with the form:

H0 : Hβ = b0 v.s Ha : Hβ 6= b0

where normally Hr×s, βs×1 and b0r×1 are a constant matrix, a regression-coefficients
vector and a constant vector respectively.

2.2. Regression in Sub-Spaces of Variables

In many practical situations, the number of variates is much greater than the
quantity of available observations in the data set for a regression model, caus-
ing the problem of multicollinearity between the predictors. Among the available
options for handling this problem are techniques based in explicit or implicit sub-
spaces and the Bayesian approach, which includes additional information about
the parameters of the model. In the case of the sub-spaces, the regression is
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realized within a feasible space of a lesser dimension. The sub-space may be con-
structed explicitly with a geometric-type motivation derived from the use of latent
variables, or implicitly using regularization techniques to avoid the problem of
multicollinearity. A latent variable is a non-observable variable that is inferred
from other variables by being directly observed and measured. The introduction
of latent variables allows to capture more relevant information about the covari-
ates matrix, denoted by X, or information about the structure of the interaction
between X and the response variables matrix, denoted by Y.

In this approach, latent, non-correlated variables are introduced, denoted by
t1, t2, . . . , ta and u1,u2, . . . ,ua, where a is the number of componets retained. The
use of latent variables allows for the factorization of low ranges of the predictor
and/or the response matrix, which allows for the adjustment of a linear regression
model by least squares upon this set of latent variables.

The vectors loadings pk and qk, with k = 1, 2, . . . , a, generate a-dimensional
spaces, where the coefficients tk n×1 and uk n×1 are considered as latent variables.
Among the approaches based on latent variables are PCR and PLS regression,
which are briefly described below.

In PC regression, which was introduced in Massy (1965), latent variates called
principal components are obtained out of the correlation matrix X, denoted by R.
PC regression avoids the problem of multicollinearity by reducing the dimension
of the predictors. The loadings {pk}ak=1 are taken as a-first eigenvectors of the
spectral decomposition of R matrix, and these vectors are the directions that
maximize the variance of the principal components. The principal components
are defined using the projections of the X’s upon these directions. That is, the
ith principal component of X is defined as tk = Xpk so that pk maximizes the
variance of tk,

max
pk

〈Xpk,Xpk〉 = max
pk

pTkXTXpk

with pTk pk = 1 y pTk pl = 0, l < k. The principal components represent the
selection of a new coordinate system obtained when rotating the original system of
axes, X1, X2, . . . , Xp. All of the loadings or principal directions are then obtained,
P = [p1|p2| · · · |pa]p×a, as are the projections of the X

′
is on p′ks, that is, all of the

principal components, T = [t1|t2| · · · |ta]n×a, with the restrictions 〈tk, tl〉 = 0 and
〈tk, tk〉 = V ar(tk) = λk, with λk: the eigenvalues associated with the eigenvectors
Pk with λ1 ≥ λ2 ≥ . . . , λa. A regression model of Y is then adjusted against
the latent variates T. Then, the response for Y-new ones is predicted associated
with new observations of the predictors vector. In PC regression, the principal
components in the predictor space X’s are used without taking into account the
information of the responses Y’s.

PLS regression was introduced in Wold (1975) and applied in the economic
and social sciences fields. However, due to the contributions made by his son
in Wold, Albano, Dunn, Edlund, Esbensen, Geladi, Hellberg, Johansson, Lind-
berg & Sjöström (1984), it gained great popularity in the area of chemometrics,
where data characterized by many predictor variables with multicollinearity prob-
lems and few available observations are analyzed. This happens in many studies
of imaging analysis. The PLS regression methodology generalizes and combines
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characteristics of Principal Component Analysis (PCA) and Multiple Regression
Analysis (MLR). Its demand and evidence has increased and it is being applied in
many scientific areas. PLS regression is similar to the canonic correlation analysis
(CCA), but instead of maximizing the correlation, it maximizes the covariance
between the components. That is, p and q directions are found so that

max
p,q
〈Xp,Yq〉 = max

p,q
pTXTYq

subject to ‖p‖ = ‖q‖ = 1

In general, the PLS regression is a two-phase process. First, the predictor ma-
trix X is transformed with the help of the vector of response variables, Y, in a
matrix of latent, non-correlated variables T = (t1, t2, . . . , tp), called PLS compo-
nents. This distinguishes it from the PLS regression, in which the components
are obtained using only the predictor matrix, X. Second, the estimated regression
model is adjusted using the original response vector and the PLS components as
predictors, and then, response for Y’new ones associated with future observations
of the repetition vector are of predict. A reduction of dimensionality is obtained
directly on the PLS components because they are orthogonal, and the number of
components necessary for the regression analysis is much lower than the number
of original predictors. The process of maximizing the covariance instead of the
correlation prevents the possible problem of numeric instability that can appear
when using correlation, which is due to the division of covariances by variances
that may be too small. The directions of the maximum covariance p and q among
the PLS components can be found by the following eigen-decomposition problem:

XTYYTXp = λp and YTXXTYq = λq

with ‖p‖ = ‖q‖ = 1. The latent variates (or PLS components) are calculated
by projecting the X and Y data in the p and q directions, that is, t = Xp and
u = Yq results in all latent components being obtained such that T = XP and
U = YQ.

3. Geometrical Structure of Sym+(m)

A summary will now be given of some of the basic results of (Schwartzman
2006) on the geometric structure of the Sym+(m) set as a Riemannian manifold.
The Sym+(m) space is a sub-manifold of the Euclidian space Sym(m). Geometri-
cally, the Sym+(m) and Sym(m) spaces are differential manifolds of m(m + 1)/2
dimensions, and they are homeomorphically related by an exponential and log-
arithmic transformation matrix. For any matrix A ∈ Sym(m), its exponential
matrix is given by exp(A) =

∑∞
k=1

Ak

k! ∈ Sym+(m). Reciprocally, for any matrix
S ∈ Sym+(m), there is a log(S) = A ∈ Sym(m), such that exp(A) = S.

For responses in Euclidian spaces in non-parametric standard regression mod-
els, E[S|X = x] is estimated. However, for responses on a curved space, the con-
ditional expectancy of S, given x = x, cannot be defined. For µ(x) = E[S|X = x],
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a tangent vector is introduced in µ(x) on Sym+(m). For a small scalar δ > 0,
the differentiable map C : (−δ, δ) −→ Sym+(m), t → C(t), is considered such
that C(0) = µ(x). A tangent vector in µ(x) is defined as the derivative of the
soft curve C(t), with respect to t, valued at t = 0. The set of all tangent
vectors in µ(x) is called the tangent space of Sym+(m) in µ(x), and it is de-
noted by Tµ(x)Sym+(m). This space can be identified by a copy of Sym(m).
The Tµ(x)Sym+(m) space is equipped with an internal product 〈 . , . 〉, called
a Riemannian metric, which varies softly from point to point. For example, the
Frobenius metric can be used as a Riemannian metric. For a given Riemannian
metric, 〈u , v〉 is calculated for any u and v in Tµ(x)Sym+(m), and then, the
length of the soft curve C(t) : [t0, t1] −→ Sym+(m) is calculated, which is equal

to: ‖C(t)‖ =
∫ t1
t0

√
〈
.

C(t),
.

C(t)〉dt, where
.

C(t) is the derivative of C(t), with re-
spect to t. A geodesic is a soft curve in Sym+(m) with tangent vectors that do
not change in length or direction along the curve. For any u ∈ Tµ(x)Sym+(m),
there is a single geodesic, denoted by γµ(x)(t; u), with a dominion that contains
the range [0, 1], such that γµ(x)(0; u) = µ(x) and

.
γµ(x)(0; u) = u.

The exponential Riemannian map is defined as

Expµ(x) : Tµ(x)Sym+(m) −→ Sym+(m) ; u −→ Expµ(x)(u) = γµ(x)(1; u) (1)

The inverse of the exponential Riemannian map, called a Riemannian logarithmic
map, is defined as

Logµ(x) : Sym+(m) −→ Tµ(x)Sym+(m) ; S −→ Logµ(x)(S) = u (2)

such that Expµ(x)(u) = S. Finally, the shortest distance between 2 points µ1(x)

and µ2(x) in Sym+(m), is called the geodesic distance and is denoted by
g(µ1(x), µ2(x)), which satisfies

d2g(µ1(x), µ2(x)) = 〈Logµ1(x)µ2(x),Logµ1(x)µ2(x)〉 = ‖Logµ1(x)µ2(x)‖2g (3)

where d2g(. , .), denoted the geodesic distance.
The residual from S with respect to µ(x), denoted by εµ(x), is defined as

εµ(x) = Logµ(x)S ∈ Tµ(x)Sym
+(m). The vectorization of C = [cij ] ∈ Sym(m) is

defined as Vecs(C) =
[
c11 c12 . . . c1m c22 . . . c2m . . . cmm

]T ∈ R
m(m+1)

2 .
The conditional expectancy of S, given x = x, is defined as the matrix µ(x) ∈
Sym+(x), such that

E[Logµ(x)S|X = x] = E[εµ(x)|X = x] = 0m×m (4)

where the expectancy is taken component by component with respect to them(m+

1)-vector aleatory multivaried Vecs[Logµ(x)S] ∈ R
m(m+1)

2 .

3.1. Regression Model for Response Data in Sym+(m)

Because the DTs are in a non-linear space, it is theoretically and computation-
ally difficult to develop a formal statistical framework that includes estimation
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theory and hypothesis tests where by a set of covariates are used to directly pre-
dict DTs as responses. With the recently developed log-Euclidian metric Arsigny,
Fillard, Pennec & Ayache (2006), DTs can be transformed from non-linear space
into logarithmic matrices in a Euclidian space. Zhu et al. (2009) developed a
regression model with the log-transformation of the DTs as the response. The
model was based on a semi-parametric method, which avoids the specification
of parametric distributions for aleatory log-transformed DTs. Inference processes
have been proposed for estimating the regression coefficients and test statistics of
this model to contrast linear hypotheses of unknown parameters as well as to test
processes based on re-sampling methods to simultaneously evaluate the statisti-
cal significance of linear hypotheses throughout large ROIs. The procedure for
the laying out of the local intrinsic polynomial regression model (RPLI) for SPD
matrices as a response is described below, ver Zhu et al. (2009).

The procedure to estimate µ(x) = E[S|X = x0] in the RPLI model will now
be described. Because µ(x) is on a curved space, it cannot be directly expand to
µ(x) in x = x0 using a Taylor series. Instead, the Riemannian logarithmic map of
µ(x) in µ(x0) on the space Tµ(x)Sym+(m) is considered, that is, we are considering
Logµ(x0)µ(x) ∈ Tµ(x)Sym+(m). Because Logµ(x0)µ(x) occupies a different tangent
space for each value of X, it can be transported from the common tangent space
TImSym+(m) through the parallel transport given by:

Φµ(x0) : Tµ(x0)Sym
+(m) −→ TImSym+(m);

Logµ(x0)µ(x) −→ Φµ(x0)(Logµ(x0)µ(x)) = Y (x) (5)

Its inverse is given by Logµ(x0)µ(x) = Φ−1µ(x0)
(Y (x)) ∈ Tµ(x0)Sym

+(m).

For Logµ(x0)µ(x0) = Om ∈ Tµ(x0)Sym
+(m), because Φµ(x0)(Om) = Y (x0) =

Om and because Y (x) y Y (x0) are in the same tangent space TImSym+(m), a
Taylor series expansion can be used for Y (x) in x0. The following is obtained:

Logµ(x0)µ(x) = Φ−1µ(x0)
(Y (x)) ≈ Φ−1µ(x0)

(
k0∑
k=1

Y (k)(x0)(x− x0)k

)
(6)

with k0 as a whole and Y (k) as the kth derivative of Y (x) with respect to x divided
by por k!. Equivalently,

µ(x) = Expµ(x0)

(
Φ−1µ(x0)

(Y (x))
)

=

Expµ(x0)

(
Φ−1µ(x0)

(
k0∑
k=1

Y (k)(x0)(x− x0)k

))
= µ (x, α(x0), k0) (7)

where α(x0)-contains all the parameters in {µ(x0), Y (1)(x0), . . . , Y (k)(x0)}.
For a set of vectors in Tµ(x)Sym+(m), various Riemannian metrics can be de-

fined. Among these metrics is the log-Euclidian metric, and some of its basic
properties will now be reviewed. Notations exp(.) and log(.) are used to rep-
resent the exponential and log matrices, respectively; Exp and Log are used to

Revista Colombiana de Estadística 36 (2013) 177–192



PLS-Regression on SPD Matrices 185

represent the exponential and logarithmic maps, respectively. The differential of
the logarithmic matrix in µ(x) ∈ Sym+(m) is denoted by ∂µ(x)log.(u), which acts
on an infinitesimal movement u ∈ Tµ(x)Sym+(m). The log-Euclidian metric on
Sym+(m) is defined as:

〈u,v〉 := tr
[
(∂µ(x)log.u)(∂µ(x)log.v)

]
(8)

for u,v ∈ Tµ(x)Sym+(m).
The geodesic γµ(x)(t; u)-is given by:

γµ(x)(t; u) := exp
[
log(µ(x)) + t∂µ(x)log.v

]
, ∀t ∈ R (9)

The differential of the exponential matrix is denoted by ∂log(µ(x))exp.(A), in
log(µ(x)) ∈ Sym(m) = Tµ(x)Sym+(m) which acts on an infinitesimal movement
A ∈ Tlog(µ(x))Sym+(m). The exponential and logarithmic Riemannian maps are
defined, respectively, as follows: for S ∈ Sym+(m),

Expµ(x)(u) := exp
[
log(µ(x)) + ∂µ(x)log.(u)

]
;

Logµ(x)(S) := ∂log(µ(x))exp [log(S)− log(µ(x))] (10)

For µ(x) and S ∈ Sym+(m), the geodesic distance is given by:

d2g(µ(x),S) := tr
[
(log µ(x)− log(S))⊗2

]
(11)

with a⊗2 = aaT and with a-vector. For two matrices µ(x) and µ(x0) ∈ Sym+(m)
and any uµ(x0) ∈ Tµ(x0)Sym

+(m), the parallel transport is defined as follows:

Φµ(x0) : Tµ(x0)Sym
+(m) −→ TImSym+(m);

uµ(x0) −→ Φµ(x0)(uµ(x0)) := ∂µ(x0)log.
(
Uµ(x0)

)
If uµ(x0) = Logµ(x0)µ(x) ∈ Tµ(x0)Sym

+(m), then

Y (x) = Φµ(x0)

(
Logµ(x0)µ(x)

)
= log µ(x)− log µ(x0) (12)

and µ(x) = exp [log µ(x0) + Y (x)].
The residual of S with respect to µ(x) is defined as: εµ(x) := log(S)− log(µ(x))

with E[logS|X = x] = log µ(x). The model RPLI is defined as:

log(S|x) = log(µ(x)) + εµ(x) (13)

with E[εµ(x)] = 0, which indicates that E[logS|X = x] = log(µ(x)).

4. The PLS Regression Model

Suppose we have n DTs, denoted by Ti : i = 1, 2, . . . , n, obtained from a voxel
correspondent with a normalized and especially re-oriented DTI from n subjects.
The log-transformation of Tk is then obtained, which is denoted by

LT,i = (LiT(1,1)
, LiT(1,2)

, LiT(1,3)
, LiT(2,2)

, LiT(2,3)
, LiT(3,3)

)T (14)
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where LiT(j,k)
-denotes the (j, k)-element of the logarithm matrix of Tk. For each

individual, a set of covariates of interest is observed as well.
In studies of medical images, many demographic or clinical measurements are

normally observed for different patients considered in a certain study. The amount
of available information is abundant, and there may be problems of linear depen-
dences between the covariates of interest, which generates the problem of multi-
collinearity. In addition, available data to analyze the information are scarce. For
the log-transformed DTs, a linear model is considered, which is given by:

LT,i
1×6

= xi
1×p

β
p×6

+ εi
1×6

, i = 1, 2, . . . , n (15)

or
LT
n×6

= X
n×p

B
p×6

+ ε
n×6

(16)

with E[ε|x] = 0n×p and Cov(ε|x) = Σnp×np and where X, Y=L, B, ε and Σ, are
matrices representing the covariates, responses, regression coefficients, the model
errors and covariance of ε|x.

Compared to the general lineal model, the model, based on the conditional
mean and covariance in equation (16)does not assume any distributional supposi-
tions for the image measurements.

If θθθ(6p+21)×1 is the vector of unknown parameters contained in β and Σ, then
to estimate θ, the objective function given by:

ln(θθθ) = −1

2

n∑
i=1

(
log|Σ|+ (LT,i − βxi)

TΣ−1(LT,i − βxi)
)

(17)

is maximized using the iterative algorithm proposed by Li et al. (2009).
The regression model (16) has been adjusted using existing algorithms for PC

and PLS regression, following the steps described in Section 2.2 and taking into
account the log-transformations on the original data to transfer them to a Euclidian
space.

4.1. Evaluation of the PLS Regression Model with Simulated
Data

The behavior of the PLS regression model is evaluated with sets of simulated
data, and predicted results are compared with those obtained using the PC tech-
nique in the case of a design matrix of full range.

The settings considered to simulate the data are the following. First, a sample
of SPD matrices with a size of n = 20 with k = 15 covariates was generated from
a multivariate normal distribution with a mean of zero and a covariance structure
given by Σ = 0.6I6. Then, the sample size was increased to n = 30, and the
number of covariates was increased from k = 15 to k = 40, with a covariance
structure given by Σ = 0.3I6 + 0.6161

T
6 , with 16, a vector of ones. In both

settings, the values for the coefficients of beta were used in the matrix given by
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p× 6, βk = [1 + 0.1× (k− 1)]T . The exponential of Σ was calculated to ensure its
positive definiteness. Results obtained in each scenario are expounded below.

For the first setting, shown in Table 1, the percentages of variance explained
by each of the latent components through PC and PLS regression demonstrate
that PC explains more of the variability of X than PLS regression, which is a
typical result. In Table 2, the PLS components explain a higher percentage of the
variability of Y than the PC components; with two components, more than 80%
of the variability in Y and approximately 20% of the variability in X is explained.
Figure 1 shows the graphs of the square root of the prediction middle quadratic
error (RMSEP) against the number of components used in the cross validation
(CV). Here, it can be observed that in PC, approximately four components would
be needed to explain a majority of the variability in the data. However, in PLS re-
gression, three components are needed in most cases. In general, few repetition are
shown through this illustration of the repetition results obtained by each method,
when compared with the simulation. Figure 2 shows the graphs of the predicted
data with the observed responses. A greater precision in the adjustment can be
observed when PLS regression is used. For the second setting, Table 3 shows the
percentages of variance explained by each of the latent components using PC and
PLS regression. Again, PC explains more of the variability of X than PLS regres-
sion. Table 4 shows that the PLS components explain a greater percentage of the
variability of Y than the PLS components. In five components, more than 60% of
the variability in Y and approximately 35% of the variability in X is explained.
Figure 3 shows the graphs for the RMSEP against the number of components. It
can be observed that in PC, approximately 7 components would be needed to ex-
plain most of the variability of the data, while in PLS regression, five components
are needed in most cases. Figure 4 shows the graphs of the predicted data along
with the observed values of the responses; a greater precision in the adjustment
can be observed when PLS regression is used.

Table 1: Percentages of variance explained by each component.
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

PC 17.57 15.55 13.59 12.46 11.16 9.16 6.81 4.64
PLS 14.27 9.93 10.16 13.45 12.60 5.75 4.46 7.07
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Figure 1: RMSEP versus number of components by PC regression and PLS regression

Table 2: Percentages of variance explained cumulated of X and Y for the components
by PC and PLS regression.

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8
PC X 17.57 33.11 46.70 59.16 70.32 79.48 86.28 90.93
PLS X 14.27 24.20 34.37 47.82 60.43 66.17 70.64 77.70
PC Y1 7.69 18.38 33.74 51.79 52.72 52.91 54.64 57.04
PLS Y1 66.85 82.64 88.85 89.51 90.13 91.21 95.17 95.26
PC Y2 14.95 22.65 36.98 58.96 60.99 61.09 62.21 62.29
PLS Y2 74.87 87.30 96.16 96.35 96.46 97.01 98.04 98.05
PC Y3 7.45 20.12 34.30 55.21 56.38 56.43 56.44 56.77
PLS Y3 70.51 88.00 94.72 95.05 96.33 97.57 97.67 97.78
PC Y4 7.30 19.10 41.57 58.71 60.19 60.20 61.57 61.78
PLS Y4 74.39 91.05 95.78 96.90 96.92 97.87 99.36 99.39
PC Y5 7.44 19.65 45.13 60.30 60.66 61.30 62.61 62.93
PLS Y5 74.38 89.10 93.22 95.70 96.19 96.62 97.51 98.38
PC Y6 13.89 20.83 40.31 62.35 63.45 63.46 63.46 63.47
PLS Y6 77.35 90.32 97.51 97.60 97.63 99.12 99.12 99.38

Table 3: Percentages of variance explained by each component, 2.
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10

PC 12.81 9.33 8.74 7.42 7.22 6.39 6.33 5.12 4.97 4.44
PLS 10.63 8.65 6.39 5.21 3.85 5.34 4.88 5.36 5.32 5.00

5. Conclusions and Recommendations

A PLS linear regression model is proposed in this article to study the relation-
ship between a large set of covariates of interest in a Euclidian space with a set of
response variables in a symmetric Riemannian space. The theory of exponential
and Riemannian maps has been used to transform data from a non-Euclidian space
into a Euclidian space of symmetrical matrices, where the methodology has been
developed. Results indicate support for the proposed methodology as compared to
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a technique using regression by major components, as has been observed in classic
situations of data analysis in euclidean spaces with matrices of covariates present-
ing high multicollinearity, or in problems with a low number of observations and
many covariates. In future works, we will investigate more realistic models, such
as non-linear PLS models for the types of SPD matrix data discussed in this study
and other types of manifold-valued data, such as data obtained by geometric repre-
sentations of objects via medial axial representation (m-rep), orthogonal rotation
groups, and other methods. The illustration presented in this article for simulated
data favorably sheds light on the results that can be obtained by applying these
types of models to real data.
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Figure 2: Predicted values with the observables values by PC regression and PLS re-
gression. Solid lines: Observed, dashed lines: Predicted.

Table 4: Percentages of variance explained cumulated of X and Y for the components
by PC and PLS regression, 2.

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
PC X 12.81 22.14 30.88 38.30 45.52 51.90 58.23 63.35 68.33 72.77
PLS X 10.63 19.28 25.67 30.88 34.73 40.07 44.95 50.32 55.64 60.64
PC Y1 26.52 50.85 51.17 56.31 59.51 59.69 79.40 80.74 80.83 82.65
PLS Y1 83.70 93.81 97.39 98.80 99.37 99.59 99.66 99.66 99.66 99.67
PC Y2 26.97 51.87 51.99 57.41 61.87 62.25 80.86 82.42 82.52 83.83
PLS Y2 84.85 94.65 97.57 98.58 99.09 99.19 99.37 99.72 99.74 99.74
PC Y3 24.82 50.72 51.34 57.02 61.40 61.56 81.08 82.05 82.05 83.70
PLS Y3 83.92 95.16 97.72 98.91 99.38 99.38 99.52 99.54 99.70 99.73
PC Y4 27.00 51.74 52.05 57.50 61.39 61.65 80.51 81.84 81.99 84.23
PLS Y4 84.74 94.50 97.54 98.67 99.23 99.44 99.66 99.73 99.74 99.81
PC Y5 25.11 50.70 50.90 56.36 59.61 59.97 81.14 81.93 81.96 83.96
PLS Y5 83.80 94.97 97.77 98.77 99.14 99.37 99.38 99.54 99.74 99.75
PC Y6 26.75 53.38 53.80 59.58 63.02 63.15 82.70 83.96 84.18 85.90
PLS Y6 86.10 95.97 98.12 99.03 99.37 99.53 99.69 99.71 99.73 99.85
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Figure 3: RMSEP versus number of components by PC regression and PLS regression,
2.
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Figure 4: Predicted values with the observables values by PC regression and PLS re-
gression, 2. Solid lines: Observed, dashed lines: Predicted.
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