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Abstract

We present Intra-Table Correspondence Analysis using two approaches:
Correspondence Analysis with respect to a model and Weighted Principal
Component Analysis. In addition, we use the relationship between Cor-
respondence Analysis and the Log-Linear Models to provide a deeper in-
sight into the interactions that each Correspondence Analysis describes. We
develop in detail the Internal Correspondence Analysis as an Intra-Table
Correspondence Analysis in two dimensions and introduce the Intra-blocks
Correspondence Analysis. Moreover, we summarize the superimposed rep-
resentations and give some aids to interpret the graphics associated to the
subpartition structures of the table. Finally, the methods presented in this
work are illustrated by their application to the standardized public test data
collected from Colombian secondary education students in 2008.

Key words: Multidimensional contingency table, Principal component
analysis.

Resumen

Para presentar los análisis de correspondencias intra-tablas, se usan los
enfoques del análisis de correspondencias con respecto a un modelo y del
análisis en componentes principales ponderado. Adicionalmente, se utiliza
la relación de los análisis de correspondencias con los modelos log-lineales
para entender mejor las interacciones que cada análisis de correspondencias
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describe. Se desarrolla de manera detallada el análisis de correspondencias
interno como un análisis de correspondencias intra-tablas en dos dimensiones
y se introduce el análisis de correspondencias intrabloques. Por otra parte,
se resumen las representaciones superpuestas y las ayudas para la inter-
pretación de las gráficas asociadas a la estructura de subparticiones de la
tabla. Finalmente, se ilustran los procedimientos con el análisis de una tabla
de contingencia construida a partir de los resultados de las pruebas de estado
realizadas a los estudiantes de educación media en Colombia en el año 2008.

Palabras clave: análisis en componentes principales, tabla de contingencias
multidimensional.

1. Introduction

Contingency tables (CT) with sub-partitions on rows and columns have row
and column categories defined from two nested factors. We use B(A) ×D(C) to
denote the table structure. The rows are formed by factors A and B, with B
categories nested into A categories. In the same way, C and D factors form the
columns, with D categories nested into C categories. Each A category defines a
row band and each C category defines a column band. A sub-table crossing a row
band with a column band is called a block.

The nesting may occur naturally, for example, in a table crossing subregions
and economic sub-sectors, where the subregions are aggregated into regions and
the economic sub-sectors are aggregated into sectors. In this case, we say that the
CT has a “true” sub-partition structure. In other applications, the researcher will
choose the variable defining the coarsest partition according to the objectives of the
study. For example, the notation age-group(sex) indicates that the categories of
the variables sex and age-group are codified interactively. The sex variable defines
the partition and the age-group categories are nested into the two categories of sex.
A four-way CT with factors A, B, C and D can be flattened into a two-way table
in different manners; for example, into the two-way CT denoted by B(A)×D(C).

We cite hereafter several examples of CT with row and column sub-partitions
extracted from the literature:

Hydrobiological studies: species(taxonomic groups)×places(dates), i.e. phau-
nistic tables, with row-species categorized into taxonomic groups and columns
places × dates), being the same places observed at different dates (Cazes,
Chessel & Doledec 1988).

Genomics: sequences(species)× codons(amino acids), a CT crossing sequences
aggregated into species and codons aggregated into amino acids (Lobry &
Chessel 2003, Lobry & Necsulea 2006).

Genetics: objects(populations) × aleles(loci), a CT with objects split in popu-
lations described using alleles clustered into several loci (Laloë, Moazami-
Gourdarzi & Chessel 2002).
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We aim at presenting different strategies, in the framework of Correspondence
Analysis (CA; Lebart, Piron & Morineau 2006, Ramírez & Martínez 2010), to
describe contingency tables endowed with sub-partition structures both in rows
and columns. Having this objective in mind, we do not discuss inferential methods
that might be used to analyze this kind of table.

From a contingency table crossing the row categories B(A) with the column
categories D(C), several CA can be performed, depending on the sub-partition
structures that are considered. Each CA can be seen as a particular CA with
respect to a model, using the generalization of CA proposed by Escofier (1983).
This point of view allows us to consider the relationship between Log-Linear Mod-
els and Correspondence Analysis applied to the analysis of a two way contingency
table. This table is obtained through flattening a four way CT, as described in
Van der Heijden (1987).

The structure of the CT, as well as the treatments applied to it, are deduced
from the objectives. Dolédec & Chessel (1991) lay out the use of these CA in the
environmental sciences.

The first example considers a faunal table in hydrobiology field. The row cat-
egories are nested as species(group). The authors apply Intra-group CA (row
bands) and argue both that the specialists have different skills to identify species
in each taxonomic group, and that, in such a method, the between-groups vari-
ability is eliminated. The Intra-date CA (column bands) shows, more clearly,
the associations between species and sites. The Internal Correspondence Analysis
(ICA) is both Intra-dates and Intra-groups, as proposed by Cazes et al. (1988) to
highlight the species-site associations.

Bécue-Bertaut, Pagès & P. (2005) present ICA as a double Intra-Table CA
and show that it can be computed either as a CA with respect to a model or as a
Weighed Principal Component Analysis. Furthermore, they propose to project on
the principal planes issued from this ICA, the “partial” rows (“partial” columns),
that is, the rows (columns) as seen from the different points of view corresponding
to each group of columns (rows). The superimposed representation of the partial
rows (partial columns) is obtained following the same rationale that Multiple Fac-
tor Analysis (MFA: Escofier & Pagès (1982); Pagès (2004)). These superimposed
representations ease the comparison of the different viewpoints and so enrich the
interpretation of the results.

In this paper, the theoretical sections presented by Bécue-Bertaut et al. (2005)
are extended and Intra-Block Correspondence Analysis (IBCA) is presented. The
resulting methodology is applied to a CT built up from the results of the schools
standardized test scores answered by last grade Colombian students in secondary
education in 2008. The relationship between CA and Log-Linear Models are used
to show the interactions described by the different CA.

§2 defines the notation, taking into account the sub-partition structures of the
CT. In §3 we present the different CA as specific cases of both CA with respect
to a model and Weighted Principal Component Analysis. The superimposed rep-
resentations are detailed in §4. The interest of the methodology is shown in §5,
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by its application to the schools standardized tests scores in Colombia in 2008. In
the Appendix, the demonstrations of some formulae are detailed.

2. Notation

The notation adopted in this work is close to this used by Bécue-Bertaut et al.
(2005). Let B(A)×D(C) be a CT with I rows and K columns. The factors A and
C have L and J factors, respectively. The L categories from A are sub-partitioned
into I1, . . . , Il, . . . , IL categories, respectively; and, similarly, the J categories from
C into K1, . . . ,Kj , . . . ,KJ categories. We use the same symbols to indicate sets
and their cardinality. Thus, I is both the set and the number of rows, that is,
the categories of B(A); K is both the set and the number of the columns. The
categories of D(C); Il is both the set and number of categories that are nested
into the category l from A. From the CT, the relative frequencies table F is built
up. It is structured as shown in Figure 1.

1 K1 1 Kj 1 KJ Margin
1 j J

Global Table F

1
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1
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1
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Figure 1: Table F with sub-partition structures in the rows and in the columns

——————————————————————————–

1

Figure 1: Table F with sub-partition structures in the rows and in the columns.

The general term of F is noted by f ljik and its row and column margins by f l·i·
and f ·j·k , respectively. Fl∗ is the row band l and F∗j the column band j. The
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total of the row band Fl∗ is f l··· =
J∑
j=1

f lj·· and the total of the column band F∗j is

f ·j·· =
L∑
l=1

f lj·· .

The block (l, j), noted Flj , has Il rows and Kj columns. Its row and column
margins are f lji· =

∑
k∈Kj

f ljik and f lj·k =
∑
i∈Il

f ljik; and its total is f lj·· =
∑
i∈Il

∑
k∈Kj

f ljik.

A cell of F is identified by the block lj , as superscript, and the specific cell into
the block ik, as subscript.

F can be analyzed though the different CA presented in this work: a Simple
Correspondence Analysis (SCA); two Intra-Table CA, called here ‘analysis in only
one dimension’: the Intra-Column Bands CA and the Intra-row Bands CA; the
Internal Correspondence Analysis (ICA) or double Intra-analysis; the Intra-blocks
Correspondence Analysis (IBCA).

To avoid misinterpretations, we use the expression ‘Intra-Tables CA’, when
the structure only concerns one dimension. When the structure concerns the two
dimensions, we use the term ‘Internal Correspondence Analysis’ (ICA) rather than
‘Double Intra-Tables CA’. ICA was proposed, with this denomination, by Cazes
et al. (1988). Pagès & Bécue-Bertaut (2006) use the term ICA for referring to
Intra-Tables CA only in one dimension because, in this case, the two methods are
equivalent.

The clouds of points, associated with CA, are noted by using the letter N and
a subscript, referring to both the set of points and its cardinality. For example,
NI is the cloud of the I row points and NIl is the cloud of the Il points belonging
to the row band l.

3. Correspondence Analysis (CA)

We summarize the use of CA to describe a CT endowed with sub-partitions
both in rows and columns. Each CA is presented as a Weighted Principal Com-
ponent Analysis, denoted PCA(X,M,D). X is the data matrix, issued from the
original data possibly conveniently transformed; M is a diagonal matrix corre-
sponding to both the metric in the row space and the column weights. D is a
diagonal matrix corresponding to both the metric in the column space and the
row weights. PCA(X,M,D) is also called, in French literature, the general factor
analysis (Lebart, Morineau & Warwick 1984, Escofier & Pagès 1992, Pagès 2004)
or duality diagram (Cailliez & Pagès 1976, Tenenhaus & Young 1985). This ap-
proach emphasizes the geometric point of view of PCA leading to call several
statistical measures as in Physics. For example, the barycentre or centroid corre-
sponds to the vector of means, the inertia corresponds to the generalized variance.
Active and illustrative elements are considered; the former are taken into account
to compute the principal axes while the latter, if present, are projected on the
principal axes previously computed from the active elements.
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3.1. Simple Correspondence Analysis (SCA)

SCA describes the residuals of F with respect to the independence model. The
independence model is defined as the product of the marginal terms. SCA applied
to F is also PCA(X,M,D) being X the matrix with the general term:

xljik =
f ljik − f l·i·f

·j
·k

f l·i·f
·j
·k

(1)

and M and D the matrices:

D = diag(f l·i· ) and M = diag(f ·j·k) (2)

M (respectively, D) is the metric matrix (matrix of weights) in row (column) space
and the matrix of weights (metric matrix) in the column (row) space.

3.1.1. Centroids of the Subclouds as Illustrative Elements

In the row space induced by CA, the cloud NI can be considered as the union
of the L subclouds NIl formed, each of them by the points belonging to the row
band Il. The weight of the row point (l, i) within the subcloud NIl is f l·i·/f l··· ; thus,
the coordinate (j, k) of the centroid of the subcloud NIl is:

∑
i∈Il

f l·i·
f l···

(
f ljik
f l·i·f

·j
·k
− 1

)
=

f lj·k
f l··· f

·j
·k
− 1 (3)

In the same way, the coordinate (l, i) of the centroid of the subcloud NKj
in

the column space is:

∑
k∈Kj

f ·j·k
f ·j··

(
f ljik
f l·i·f

·j
·k
− 1

)
=

f lji·
f ·j·· f l·i·

− 1 (4)

3.1.2. Inertia Decomposition from the SCA

The partition of the cloud NK into J subclouds NKj induces the inertia de-
composition into BetweenInertia+ IntraInertia:

• Between subclouds NKj
Inertia:

∑
l,i

f l·i·
∑
j

f ·j··

(
f lji·
f l·i·f

·j
··
− 1

)2

=
∑
l,i

∑
j

(
f lji· − f l·i·f

·j
··
)2

f l·i·f
·j
··

(5)

• Intra subclouds NKj Inertia:

∑
l,i

f l·i·
∑
j

f ·j··
∑
k∈Kj

f ·j·k
f ·j··

(
f ljik
f l·i·f

·j
·k
− f lji·
f ·j·· f l·i·

)2

=
∑
l,i

∑
j

∑
k∈Kj

(
f ljik −

f ·j·kf
lj
i·

f ·j··

)2
f l·i·f

·j
·k

(6)
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Through exchanging the subscripts i and j, we obtain the decomposition of
the inertia of the cloud NI into between-clouds NIl inertia and Intra-clouds NIl
inertia.

3.2. Correspondence Analysis with Respect to a Model

Let A be the model matrix with general term aljik, with the same dimensions
and margins as F. The CA of F with respect to the model A, noted CA(F,A), is
equivalent to PCA(X,M,D), with M and D defined above, in (2), and X with
general term:

xljik =
f ljik − a

lj
ik

f l·i·f
·j
·k

(7)

CA with respect to a model keeps almost all of the properties of the classical
CA when the model margins are equal to F margins (Escofier 1984). This is the
case for Intra-Tables CA.

The inertia of both clouds NI and NK associated to CA(F,A) is:

Inertia(NI) = Inertia(NK) =
∑
l,j

∑
i∈Il,k∈Kj

(f ljik − a
lj
ik)

2

f l·i·f
·j
·k

(8)

The SCA of F is obtained if the independence model H = (f l·i·f
·j
·k) is used in

the Formula (7).

3.2.1. Decomposition of the Inertia Associated to the SCA when A
Model is Considered

Equation (8) is also the chi-square distance centered in H between the con-
joint probability distributions F and A, noted d2χ2

H
(F,A) (Cailliez & Pagès 1976,

p.449).
It is possible to perform a SCA with respect to model A, denoted CA(A,H).

The associated clouds NI and NK have inertia:

Inertia(NI) = Inertia(NK) =
∑
l,j

∑
i∈Il,k∈Kj

(aljik − f l·i·f
·j
·k)

2

f l·i·f
·j
·k

(9)

The inertia (9) is also the chi−square distance, centered in H, between the
conjoint probability distributions A and H: d2χ2

H
(A,H).

If A and F have the same margins and

∑
l,i,j,k

(
f ljik − a

lj
ik

)
aljik

f l·i·f
·j
·k

= 0 (10)
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the inertia associated to CA(F,H) is the sum of the inertias associated to CA(F,A)
and CA(A,H):

d2χ2
H
(F,H) = d2χ2

H
(F,A) + d2χ2

H
(A,H) (11)

The demonstration can be found in the Appendix (§Appendix A.1).
In particular, the models associated with CA Intra-bands and ICA, presented

hereafter, fulfill the conditions to obtain the inertia decomposition of SCA shown
in (11).

3.2.2. Correspondence Analysis and Log-Linear Models

CA(F,A) describes the residuals with respect to model A. Hence, it is possible
to perform specific CA to analyze the residuals of a log-linear model or to eliminate
some interactions in SCA to better describe the non-eliminated ones (Van der
Heijden 1987, Van der Heijden, de Falguerolles & de Leeuw 1989).

The saturated log-linear model associated to a four-way table is:

ln(πljik) = u+ u
A(l)

+ u
B(i)

+ u
C(j)

+ u
D(k)

+

u
AB(li)

+ u
CA(lj)

+ u
AD(lk)

+ u
BC(ij)

+ u
BD(ik)

+ u
CD(jk)

+

u
ABC(lij)

+ u
ABD(lik)

+ u
CAD(lkj)

+ u
BCD(ijk)

+ u
ABCD(lijk)

(12)

where πljik is the probability of the cell (.)ljik and the u terms are the model
parameters.

If F (Figure 1) is the “flattened” B(A) × D(C) of a four-way CT, the inde-
pendence model H corresponds to the log-linear model [AB][CD]1 estimation (A
and B are jointly independent from C and D). This model is the sum of the four
main effects and the first order interactions AB and CD. Then, the CA of F
(CA(F,H)) describes the interactions AC, AD, BC, BD and those of superior
order.

From a ‘true’ sub-partition structure, the row factors A and B and the column
factors C and D are nested and, therefore, have no interactions between each
couple. The saturated model (12) is reduced to:

ln(πljik) = u+u
A(l)

+u
B(i)

+u
C(j)

+u
D(k)

+u
CA(lj)

+u
AD(lk)

+u
BC(ij)

+u
BD(ik)

(13)

In this case, the H model represents all the main effects and the SCA is the
description of all the interactions in (13).

3.3. Intra-Table Analysis

We denominate Intra-Row Band/Column Analysis, the two Intra-Table Anal-
ysis that are possible to perform on the F table. We only summarize the Intra-
Column Band Analysis, because the other one can be symmetrically deduced.

1 With this notation, the model includes the whole interactions between the variables that
belong to the same square brackets. For example, the [AB][C] model represents the main effects
and the interactions between A and B.
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F is considered as the juxtaposition of the J column bands, as shown by Bécue-
Bertaut & Pagès (2004) in the Multiple Factor Analysis of Contingency Tables
(MFACT):

F = [F∗1 · · ·F∗j · · ·F∗J ]

The Intra-Column Band CA is the CA of F with respect to the Intra-Bands Inde-
pendence Model, denoted AJ, with general term:

(aJ)ljik =
f lji· f

·j
·k

f ·j··
(14)

This is the estimation of the log-linear model [ABC][CD] (A and B are jointly
independent from D, when C is given). This model includes the interactions AB,
AC, BC, CD and ABC; thus, the CA(F,AJ) describes the interactions, AD, BD,
ABD, ACD and ABCD. If the subpartition structure is ‘true’, the CA(F,AJ)
describes the interactions AD and BD (see §3.2.2).

Symmetrically, the Intra-Row Band Independence Model AL, [AB][ACD] (C
and D are jointly independent from B, given A), includes AB, AC, AD, CD and
CAD. Thus, the CA(F,AL) describes the interactions BC, BD, ABD, ABC and
ABCD.

The Intra-Column Bands Analysis, CA(F,AJ), is computed as PCA(X,M,D),
where X is the matrix with general term:

xljik =
f ljik
f l·i·f

·j
·k
− f lji·
f l·i·f

·j
··

(15)

and M and D are metric and weight matrices already defined in (2).

We observe that (15) is equal to (1) - (4): in the Intra-Column Bands CA, the
subclouds NKj in the space RI are translated such as their centroids are in the
origin. Figure 2a. shows the centroids of the subclouds in SCA and Figure 2b. the
same subclouds, but centered in the origin. By centering, the associated inertia to
CA(F,AJ) is the Intra subclouds NKj

inertia from the SCA of F.

RI

NK1

NK2

NK3

RI

NK1 NK2

NK3

a. Subclouds associated to SCA b. Centered subclouds (Intra-Column Bands CA)
Figure 1: Subclouds in RI , associated to the three column bands.

——————————————————————————–

1

Figure 2: Subclouds in RI , associated to the three column bands.
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3.3.1. Inertia Decomposition of SCA of F

In the SCA of F, the inertia of the NK cloud in RI can be expressed as the
sum of the between and intra-inertias subclouds NKj

obtained replacing A by AJ

in (11):
d2χ2(F,H) = d2χ2(AJ,H) + d2χ2(F,AJ) (16)

The two right terms in (16) are associated, respectively, to the following CA
(see Appendix Appendix A.2):

• CA(AJ,H), which is also the SCA of the table TJ, with general term f lji·
and dimension I × J .

• CA(F,AJ), which is the Intra-Column Bands CA of F.

3.3.2. Subclouds NIl ∈ RK from the Intra-Column Bands CA

In the Intra-Column Bands CA it is possible to obtain the centroids of the
subclouds NIl ∈ RK and to project them as illustrative elements. The general
term of the coordinate (j, k) of the centroid of the sub cloud NIl is:

∑
i∈Il

f l·i·
f l···

(
f ljik
f l·i·f

·j
·k
− f lji·
f l·i·f

·j
··

)
=

f lj·k
f l··· f

·j
·k
− f lj··

f l··· f
·j
··

(17)

3.4. Internal Correspondence Analysis (ICA)

The Double Intra Bands CA is obtained by centring the subclouds NIl of the
Intra-Column Bands CA. Then, the general term of X is equal to (15) - (17):

xljik =
f ljik
f l·i·f

·j
·k
−

f lj·k
f ·j·kf

l···
− f lji·
f l·i·f

·j
··

+
f lj··

f l··· f
·j
··

(18)

The Formula (18) can also been obtained centering the subclouds NKj
in the

Intra-Row Bands CA.
The double Intra CA or Internal Correspondence Analysis (ICA) is the CA(F,C),

where C is the model with general term:

cljik =
f lj·kf

l·
i·

f l··̇
+
f lji· f

·j
·k

f ·j··
−
f l·i·f

·j
·kf

lj
··

f l··· f
·j
··

(19)

We denote E the matrix with general term
f l·i·f

·j
·kf

lj
··

f l··· f
·j
··

, then C can be written

AJ +AL −E and expressed as:

C = [AJ −E] + [AL −E] +E (20)
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The inertia of the SCA of F can be decomposed as follows:

d2χ2(F,H) = d2χ2(E,H) + d2χ2(AJ,E) + d2χ2(AL,E) + d2χ2(F,C) (21)

Following Sabatier (1987), the right hand terms in (21) are ( see §Appendix
A.2 in the Appendix):

• SCA of table T formed by the sum of the blocks (l, j), with general term f lj··
and dimension L× J . This CA describes the interactions AC, i.e. between
the factors defining the row and column bands.

• Intra-Tables CA of TJ, with general term f lji· and dimension I × J . TJ is a
three-way table, since it is the margin of the column bands of F, so factor
D disappears. The Intra-Tables CA of TJ corresponds to the residuals with
respect to the model [AB][AC] (B is independed of C, given A). The model
contains the interactions AB and AC; thus, the Intra-Tables CA describes
the interactions BC and ABC.

• Intra-Tables CA of TL, with the general term f lj·k and dimension L × K.
Table TL is the margin of the row bands of F, hence, it is a three way table.
This Intra-Table CA describes the interactions AD and ACD, that are the
residuals with respect to the model [AC][CD] (A is an independent from D,
when C is given).

• ICA of F (CA(F,C)). C is not the estimation of a log-linear model, its
structure is additive instead of multiplicative. Because the four CA contain
all of the interactions from the CA(F), the ICA describes the interactions
that are not in the three former CA, i.e. BD, ABD, BCD and ABCD.

In other words, the SCA of F is a global analysis that can be decomposed into
four CA, where the first order interactions present in the SCA of F, are separated.
The inertias associated with the four CA and their relative contributions to the
inertia from the SCA are indicators of the importance of these associations.

3.4.1. Intra-Bands CA as Particular Cases of ICA

Intra-Row Bands CA is a particular case of ICA because it can be obtained
by considering the L row bands but only one column band with K columns. The
Intra-Column Band CA can be obtained considering the J column bands but only
one row band with I rows. In the former case, the terms 1 and 3 from (19)
cancel one another; in the second case the terms 2 and 3 cancel one another.
This justifies the name of “Internal Correspondence Analysis” (ICA) given to one
dimension Intra-Tables CA by Pagès & Bécue-Bertaut (2006).

3.4.2. ICA as a Weighted PCA

ICA is the CA(F,C), i.e. the PCA(X,M,D), where X has the general term
given in (18) and M and D are defined in (2). In this analysis, the representa-
tions in spaces RK and RI are symmetric: in RK the cloud NI is divided into L

Revista Colombiana de Estadística 36 (2013) 115–144



126 Campo Elías Pardo, Mónica Bécue-Bertaut & Jorge Eduardo Ortiz

subclouds NIl ; in RI the cloud NK is divided into J subclouds NKj
. Without loss

of generality, the properties are presented below in the space RK .

3.4.3. Row Clouds in RK

In ICA, the cloud NI of the I rows is formed by the union of the L subclouds
NIl , each centered in the origin. So, the coordinate of a point (l, i) represents the
deviation of the point with respect to the centroid of the subcloud NIl to which it
belongs (Figure 2).

Distances: the square distance between two row points is:

d2[(l, i), (l′, i′)] =
∑
j,k

1

f ·j·k

(
f ljik − c

lj
ik

f l·i·
−
f l
′j
i′k − c

l′j
i′k

f l
′·
i′·

)2

(22)

Two points (l, i) and (l′, i′) are close to one another if their deviations to the
respective model, weighted with the inverse of f ·j·k , are similar for every (j, k). A
point (l, i) is located far from the origin if row (l, i) in table F differs from the
model C (Escofier 2003, p. 120).

Transition Formulae: a row coordinate Fs(l, i) on a factorial axis s is a function
of the column coordinates Gs(j, k) (see §Appendix A.3):

Fs(l, i) =
1√
λs

∑
j

∑
k∈Kj

(
f ljik
f l·i·
−
f lj·k
f l···

)
Gs(j, k) (23)

Formula (23) indicates that a row (l, i) lies on the same side that the columns (j, k)
whose coordinates are greater than the coordinates of the homologous columns in
the l band margin.

Aids to the Interpretation: the contribution to the inertia and the quality of
representation on the axes are calculated for each row point. Moreover, aids to
the interpretation are defined for each subcloud NIl :

• Weight subcloud: f l··· .

• Quality of representation on axis s: Inertias(NIl)/Inertia(NIl).

Inertias(l, i) = f l·i· (Fs(l, i))
2

Therefore:
Inertias(NIl) =

∑
i∈Il

f l·i· (Fs(l, i))
2

In RK the contribution of a row point to the inertia of cloud NI is:

Inertia(l, i) = f l·i·x
′
liMxli

where x′li is the row (l, i) of X and M = diag(f ·j·k).
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• Contribution to axis inertia: the sum of the inertia of the points belonging
to the subcloud.

3.5. Intra-blocks Correspondence Analysis (IBCA)

Intra-blocks Correspondence Analysis of F, denoted IBCA(F), is defined as
the CA with respect to the Intra-blocks Independence Model B, using the same
metrics as the SCA of F. The general term of B is defined by:

bljik =
f lji· f

lj
·k

f lj··
(24)

B is the estimation of the log-linear model [ABC][ACD] (B is independent of
D, when AC is given). This model includes the interactions AB, AC, BC, CD,
AD, ABC and CAD; thus, the IBCA (CA(F,B)) describes the interactions BD,
ABD, BCD and ABCD.

If the CT has a ‘true’ partition structure, the interactions AB, CD and those
of superior order including them do not exist. Hence, the model B contains only
the interactions AC, BC and AD and IBCA describes the interactions BD (see
§3.2.2).

IBCA(F) is the PCA(X,M,D) with:

• M= diag(f ·j·k)

• D= diag(f l·i· )

• X with general term given by:

xljik =
f ljik − b

lj
ik

f l·i·f
·j
·k

=

f ljik −
f lji· f

lj
·k

f lj··
f l·i·f

·j
·k

(25)

3.5.1. Centered Clouds and Subclouds

The cloud NI formed by the I points is centered, because the margins of table
F and model B are equal.

Each subcloud NIl formed by the Il points belonging to the row band l are

centered, using the weights
f l·i·
f l···

:

1

f l···

∑
i∈Il

f l·i·

f ljik −
f lji· f

lj
·k

f lj··
f l·i·f

·j
·k

=
1

f l···

(∑
i∈Il

f ljik
f ·j·k
−
∑
i∈Il

f lji· f
lj
·k

f lj·· f
·j
·k

)
=
f lj·k − f

lj
·k

f l··· f
·j
·k

= 0
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3.5.2. Distances

The square distance between two row points is:

d2[(l, i), (l′, i′)] =
∑
j,k

1

f ·j·k

(
f ljik − b

lj
ik

f l·i·
−
f l
′j
i′k − b

l′j
i′k

f l
′·
i′·

)2

(26)

Two points (l, i) and (l′, i′) are close to each other if they similarly differ from
the model. Each difference is pondered by 1/f ·j·k . Therefore, a point (l, i) is far
from the origin when the row (l, i) of table F strongly differs from the model B
(Escofier 2003, p.120).

3.5.3. Transition Formulae

The formulae allowing the simultaneous representation of row and column
points, as well as their interpretation, are:

Fs(l, i) =
1√
λs

∑
j,k

(
f ljik − b

lj
ik

f l·i·

)
Gs(j, k) ;

Gs(j, k) =
1√
λs

∑
l,i

(
f ljik − b

lj
ik

f ·j·k

)
Fs(l, i)

(27)

Attractions between row and column profiles exist when the observed frequen-
cies are greater than the values in the model.

3.5.4. Aids to the Interpretation

The aids to interpretation used in CA are also available in IBCA, i.e. con-
tribution to the axis inertia and square cosines. Similarly, the aids associated to
subclouds NKj

and NIl are expressed in ICA.

3.5.5. Intra-Blocks CA only in one Dimension

If only one dimension structure is considered, model B becomes the intra-
row bands independence or the intra-column bands model, depending of the case.
Thus, the Intra Bands CA can also be considered as Intra-Blocks Analysis in one
single dimension.

IBCA has the advantage of being associated with a log-linear model, while ICA
allows us to split the inertia of the clouds associated to SCA in four addends, each
corresponding to a CA (see 3.4).
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4. Superimposed Representation of the Partial and
Global Clouds over a Common Referential

In ICA or IBCA, the global representation of the cloud NI , in the row space,
is obtained considering the whole K coordinates for each row point (l, i). The
sub-partition of the columns into J bands also permits to consider each row from
the point of view of each J band. Thus, there are J points, denoted (l, i)j and
called partial points, considered and projected as illustrative points. The simul-
taneous projections of global and partial points are denominated superimposed
representations.

4.1. Projection of the Partial Clouds

The projections of the partial clouds are defined as done by Pagès (2004) in
the frame of multiple factor analysis (MFA).

• Each column j induces the partial cloud N j
I ⊂ RKj ⊂ RK=

⊕
j

RKj , Mj is

the metrics in RKj obtained from M, the coordinates of the points N j
I are

the rows of X∗j and the coordinates of these points in RK are the rows of
the matrix X̃∗j defined as:

X̃∗j = [0 · · · 0 X∗j 0 · · · 0]

• The union of the J partial clouds form the cloud NJ
I with IJ points, that

can also be considered as the union of the I clouds NJ
(l,i), each with J partial

points (l, i)j belonging to the same row (l, i).

• The inertia of the cloud NJ
I can be expressed as WithinInertia + BetweenIn-

ertia subclouds NJ
(l,i).

• The cloud of the centroids of the I partial clouds NJ
(l,i) is

1

J

∑
j

X̃j . To force

Fs(i) to lie at the centroid of the J partial points F js (i), the rows of X̃j ,
called partial, are projected as illustrative but dilated by J .

4.2. Restricted Transition Formulae

In (23), each addend j is the restricted formula to the columns Kj belonging
to its band. This formula allows us to interpret the position of the partial rows
(l, i)j on the factorial axis s, similarly to the global coordinates:

Fs(l, i)
j =

1√
λs

∑
k∈Kj

(
f ljik
f l·i·
−
f lj·k
f l···

)
Gs(j, k) (28)
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Formula (28) indicates that a row (l, i)j is placed on the same side that columns
k ∈ Kj whose profile coordinates obtained from the F table are greater than the
profile coordinates obtained from the margin of its band l. The interpretation of
the superimposed representations is mainly supported by these formulae. In the
graphic representations, the coordinates are amplified by J .

By exchanging the indices, the restricted transition formulae for the partial
columns are deduced.

4.3. Aids to the interpretation of the Partial Clouds

In the superimposed representation, for each factorial axis s there are:

• IJ partial coordinates F js (l, i)

• I global coordinates Fs(l, i)

These points form different projected clouds:

• I partial clouds NJ
(l,i), each with centroid Fs(l, i)

• J partial clouds N j
I

• L clouds NIl : {Fs(l, i); i ∈ Il}.

Since the partial rows (l, i)j are illustrative they do not contribute to the inertia
of the axes. For the partial clouds, the aids to the interpretation are defined as
detailed hereafter.

4.3.1. Quality of the Representation of the Partial Clouds

The quality of representation on axis s of each partial cloud N j
I is computed

as the ratio between the projected inertia and the inertia in RK .

4.3.2. Similarity Measure between Partial Clouds

The total inertia of NJ
I can be decomposed into within and between inertia of

clouds NJ
(l,i).

The ratio BetweenInertia/TotalInertia, computed for each factorial axis s,
is a measure of the proximity of the partial points belonging to the same row and
therefore of the global similarity between the J partial clouds projected on axis s.
If this ratio is close to 1, the homologous points {(l, i)j ; j = 1, . . . , J} are close to
each other and the axis s represents a structure common to the different column
bands (Pagès 2004, pp.8-9).
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4.3.3. Row Contributions to the Within-Inertia

The within-inertia can be decomposed into the contributions of each row, in
order to detect differences between the several points of view represented by the
column bands. Then, it is possible to identify both the most heterogeneous and
homogeneous, in order to interpret the global relations.

It is possible to calculate the contribution to the within-inertia of NJ
I for the

cloud associated with a partial row NJ
(l,i).

4.4. Zero Partial Points into the Blocks in ICA versus IBCA

Zero Row Inside a Block: in ICA, if the values of the row (l, i) belonging to a
column band j of the contingency table are zeros, the partial point does not always
lie at the origin. In fact: if f ljik = 0, ∀k ∈ Kj , then f

lj
i· = 0 but the general term

of X (18) for the cells of row (l, i) in column band j is xljik =
1

f l···

(
f lj··

f ·j··
−
f lj·k
f ·j·k

)
,

and this term is not necessarily zero.

In this case, the interpretation of the superimposed representations becomes
difficult. Some points belonging to null profiles can lie close to points belonging
to non-null profiles.

IBCA solves this problem because the partial point associated with a row of
zeros lies at the origin: as f ljik = 0; ∀k ∈ Kj then f

lj
i· = 0, thus the cells of X (25)

belonging to the row (l, i) into the column band j are zeros.

Zero Column Inside a Block: in ICA, if the values of a column (j, k) belonging
to a row band l of the contingency table are zeros, the partial point is not at the
origin, while in IBCA, it is always at the origin. These results can be obtained by
exchanging the indices in the former paragraph.

A Block of Zeros: when all the cells inside block Flj are zeros, the cells of the
model (Clj) inside the block are also zeros; then, the cells of the block Xlj are
also zeros. In this block, the cells of model Blj are not defined, but this problem
can be solved defining these cells as zeros.

4.5. Outliers

When few profiles strongly differ from the others, the first axis of the SCA
enhance that difference and might hide the differences among the rest of the points.
In this case, there are two ways to proceed: 1) to observe the differences on
the following axes or 2) to perform the analysis again without the outliers and
eventually project them as illustrative elements. These ways to proceed can be
used in Intra-Tables CA, ICA and IBCA.
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5. Example: Colombia Regional Scores for Secondary
Education Standardized Tests

The Instituto Colombiano para el fomento de la Educación Superior (ICFES)
performs nation-wide secondary education quality assessment based on public
standardized tests. Schools are classified into seven levels, according to their scores,
ranging from: very inferior, inferior, low, medium, high, superior to very superior.
The first two categories were joined into one named inferior and the last three
into another named high, leaving four levels. Thus, score is a categorical variable
with four levels.

To illustrate the application of the methods proposed in the first sections, the
schools classification from their scores in the 2008 tests was used, together with
the following information:

1. School attendance shifts: full day, morning and afternoon including evening,
Saturdays and Sundays;

2. The Colombian administrative system: Colombia is divided into 33 depart-
ments, including Bogotá as capital district. The five departments with less
than one hundred thousand inhabitants were collapsed to form a “fictitious
department” named P01, thus leaving 29 departments.

3. Population size: the departments are grouped into 5 categories depending
on their population: P5 more than two million inhabitants, P4 between one
and two million, P3 between five hundred thousand and one million and P2
between one hundred thousand and five hundred thousand. Department P01
is included into size-group P2.

Our prime objective is the comparison of the departments according to their
schools standardized tests scores. The departments are grouped according to their
population size, since this variable may hide regional differences. The same ratio-
nale leads us to consider the school attendance shifts because, generally, students
attending full day tuition present advantages over their peers attending partial
shifts.

To achieve the main objective, the contingency table (CT) is structured as
department (group)×score (school attendance shift) (Table 1). According to the
notations used in the first sections, four factors are considered: A department size-
group, B department, C school attendance shift and D score. Since the depart-
ments are nested into size-groups, the rows have a “true” sub-partition structure.
We have to deal with a CT with I = 29 rows andK = 12 columns. The 29 rows are
the departments divided into L = 4 size groups with I1 = 7, I2 = 8, I3 = 7, I4 = 7,
according to their population.

The 12 columns correspond to the cross categories of school attendance shifts×
scores. We consider these 12 columns as divided into J = 3 groups according to
the three school attendance shifts. Each of the 12 blocks corresponds to a subtable
with, in rows, the departments of a given size-group and, in columns, the scores
of a given school attendance shift.
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The profile for the Choco department is an outlier, not considered as active in
the analysis. Being located far from the other departments, it is not projected as
illustrative. The table shows the high count of Chocó’ schools classified into an
inferior score. Therefore, the active table has I = 28 departments and I4 = 6.

Table 1: Colombian schools classified by departments, school attendance shift and stan-
dardized public tests score in 2008.

SCHOOL ATTENDANCE SHIFT
FULL DAY MORNING AFTERNOON

GRO COD. DEPART infe low med high infe low med high infe low med high
UP MENT rior ium rior ium rior ium

BOG Bogotá 5 40 101 309 9 79 219 241 15 171 179 61
ANT Antioquia 63 180 116 105 38 105 96 90 125 156 84 29
VAL Valle 35 93 72 81 51 140 118 132 62 113 55 19

P5 CUN Cundi. 19 80 81 103 11 90 114 50 40 84 33 7
ATL Atlántico 31 48 22 37 72 62 48 48 106 61 32 15
SAN Santander 7 27 51 61 10 40 78 79 30 51 24 20
BOL Bolívar 31 31 8 25 90 67 28 30 77 59 14 11
NAR Nariño 8 15 21 16 31 50 63 56 21 33 26 10
COR Córdoba 18 32 18 11 35 54 16 9 41 38 13 3
TOL Tolima 8 19 30 26 28 77 57 28 29 40 21 7

P4 CAU Cauca 36 56 27 8 24 53 32 24 18 27 13 11
NSA NorSantander 6 39 20 23 11 40 37 31 31 20 20 7
BOY Boyacá 6 48 74 40 4 31 52 25 14 39 21 8
MAG Magdalena 31 19 4 6 58 53 14 12 58 37 6 2
HUI Huila 7 37 42 29 1 16 27 12 24 30 14 10
CAL Caldas 11 37 26 26 8 38 54 21 10 18 8 2
CES César 0 16 8 11 9 50 23 15 36 37 19 3
RIS Risaralda 2 14 14 20 0 25 30 24 12 28 14 5

P3 MET Meta 4 12 15 6 7 45 24 19 22 21 10 7
SUC Sucre 9 6 5 3 29 51 19 9 30 28 10 5
LAG Guajira 7 6 7 8 12 30 6 7 24 10 3 1
QUI Quindio 0 6 7 12 1 17 31 18 10 20 7 1
CHO Chocó 23 9 6 1 26 10 3 1 20 5 0 0
CAQ Caquetá 8 10 5 1 2 21 11 7 14 9 5 1
PUT Putumayo 1 7 10 10 4 6 7 4 4 5 2 0

P2 CAS Casanare 3 12 10 6 2 16 16 4 8 13 1 1
ARA Arauca 3 1 5 2 3 7 12 7 7 5 3 1
GUV Guaviare 0 2 2 0 1 4 1 2 0 2 1 0
PO1 <100 inh. 6 16 7 2 2 7 3 3 3 4 2 0

Department size groups (inhabitants in millions): P5: more than two,
P4: between one and two, P3: between 0.5 and one, P2: less than 0.5.

5.1. Simple CA on the Global Table

In the factorial planes, each axis inertia and the corresponding percentage in
relation to the global inertia are specified.

The simple CA total inertia is equal to 0.2648. The first three axes retain
84.2%: 0.15 (59.9%), 0.5 (18.7%) and 0.02 (8.6%). The first two axes retain an
inertia over than the average. According to the sub-partitions structure associated
to the CT, the inertia is decomposed into (see §3.4):
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• 0.0062 (2.3%) department group - school attendance shift association;

• 0.0442 (16.7%) department group - score and department group - perfor-
mance - school attendance shift associations;

• 0.0281 (10.6%) department - school attendance shift association;

• 0.1863 (70.4%) department - score and department - performance - school
attendance shift associations.

Figure 3a. shows the representation of the departments, and the size-groups
as illustrative, on the first factorial plane issued from simple CA applied to the
table crossing departments and scores × school attendance shifts. Figure 3b.
shows the representation of the scores× school attendance shifts and the school
attendance shifts as illustrative, on the same plane. A Guttman (parabola) effect
is observed, more tidy in the scores trajectories corresponding to full day and
morning shifts. The scores are sorted out on the first axis. The second axis
opposes full day shift (on the positive part) to morning and afternoon shifts (on
the negative part). Since the sub-clouds are not centered on their own centroid,
the second axis opposes departments with a high proportion of full day attendance
schools to departments with a high proportion of morning or afternoon attendance
shifts. The former are mostly concentrated in the less populated size-groups of
departments. This opposition is of no interest in the context of our study.

5.2. Intra-School-Attendance-Shift Analysis

The Intra-school-attendance-shift CA allows for removing the variability due
to the different profiles of the school-attendance-shifts from one department to
another. In this analysis, the inertia is equal to 0.2143 (80.9% of the simple
CA’s inertia), corresponding basically to the relationship between departments
and scores. The first factorial plane retains 83.4% of the inertia and, according to
the eigenvalue structure, well synthesizes the results of this analysis.

This analysis differs from the simple CA because of the re-centering of the
school attendance-shift clouds so that their centroids coincide with the global
centroid. In this latter analysis, the departments are more clearly sorted out
depending on their schools scores because the interaction between departments
and school attendance shifts has been eliminated (Figure 4). The Guttman effect
also becomes clearer with this recentering. The departments’ scores seem to be
linked to their population size. The ICA and the IBCA will allow us compare the
scores of the size-groups from an internal point of view.

5.3. ICA and IBCA

The ICA and IBCA results are very similar with total inertias equal to 0.1863
and 0.1856, respectively (70.4 % and 70.1 % of the simple CA’s inertia). IBCA
main results are described, since they allow for better superimposed representa-
tions (§4.4).
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Factor 1: 0.1508 (56.9%)

−1.0 −0.5 0.0 0.5

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

BOL

CAU

MET

caq

BOY

CUN
 p2 

 P3 

 P4

BOG

SAN
RIS

VAL

 P5 

ara

NAR

QUI

putguv
ANT

cas

NSA

CES
LAG

SUC

COR

ATL

MAG

po1

TOL

CAL

Factor 2: 0.0495 (18.7%)

HUI

a. Departments and centroids of the size-groups: P5, P4, P3 y P2 as illustrative.
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b. Scores× school attendance shifts and the school attendance shifts as illustrative.

Figure 3: First factorial plane of the Simple Correspondence Analysis.

Two axes (75.6% of inertia) are retained in the IBCA. Table 2 presents the
aids to interpret sub-clouds for both school attendance and department groups.
The influence of the sub-clouds in the analysis depends on the weight of each band
which is proportional to the percentage of schools that they contain (weight).

Figure 5 shows the simultaneous global representation of rows and columns
on the IBCA first factorial plane. This graph synthesizes the CT’s analysis. The
departments are sorted out by scores issued from the public standardized tests,
along a parabola. Bogotá obtained the best scores while Bolivar and Magdalena
obtained the worst. Results show that the departments of Bolivar, Magdalena,
Atlántico, La Guajira, Sucre and Cordoba, all from the Caribbean Region, ob-
tained inferior results. Cordoba stands out in this region because it has a greater
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Figure 4: First factorial plane of the Intra-school-attendance-shift CA.

Table 2: Aids to the interpretation of row and column bands in the IBCA of schools

A. School attendance (column bands)
Total Comp1 Comp2 Plane

Cont.Inertia Cont.Inertia Cali Cont.Inertia Cali Cali Weight
School day x10000 % x10000 % dad % x10000 % dad % dad % %
Full 636 34.3 376 29.0 59.2 153 60.3 24.0 83.2 30.5
Morning 806 43.4 611 47.0 75.9 90 35.5 11.2 87.0 40.5
Afternoon 414 22.3 312 24.0 75.3 11 4.2 2.6 77.9 29.0
Total 1856 100.0 1299 100.0 254 100.0 100.0

B. Department groups (row bands)
Total Comp1 Comp2 Plane

Cont.Inertia Cont.Inertia Cali Cont.Inertia Cali Cali Weight
Group x10000 % x10000 % dad % x10000 % dad % dad % %
P5 1162 62.6 872 67.1 75.0 197 77.7 17.0 92.0 58.0
P4 459 24.7 310 23.9 67.5 33 12.9 7.1 74.7 25.2
P3 179 9.6 108 8.3 60.6 14 5.6 7.9 68.4 13.1
P2 56 3.0 9 0.7 16.1 10 3.8 17.4 33.5 3.7
Total 1856 100.0 1299 100.0 254 100.0 100.0

percentage of schools in medium levels. As a rule, the most standing out de-
partments belong to the Andean region. Among the less populated size-group of
departments, Arauca (Llanos Orientales) and Putumayo (Amazonia) stand out.
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One hypothesis is that these last two departments have succeeded in transferring
part of the oil production royalties to the educational system.
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Figure 5: First factorial plane of the IBCA for CT department(group)× score(shift).

5.4. Superimposed Representations in the IBCA

The first axis is a dispersion axis common to the three partial clouds of depart-
ments (one for each school attendance shift; ratio BetweenInertia/WithinInertia
= 81.1%). Concerning the four score clouds (one for each group of departments,
ratio BetweenInertia/WithinInertia = 46.9%), this axis corresponds both to com-
mon and specific effects of the clouds. On the second axis, only one third of the
inertia corresponds to a common effect to both shift (ratio = 29.9%) and groups
of departemts (ratio = 28.8%) (see §4.3.2).

5.4.1. Departments

Three partial points correspond to each department in the superimposed rep-
resentations, one for each shift. The global point is the average of those three
points. Figure 6a. shows this representation for the most populated department
group.

Bolivar is the partial cloud with the greatest dispersion (0.0028 of within in-
ertia), morning shift has the lowest average score among the departments of the
most populated size-group. Table 3 shows that 41.9% of the schools with morning
shifts are classified into the inferior category, more than three times the average
of the most populated departments (12.6%). In Bolivar, the percentages of these
schools classified in medium and high categories are less than half the average.
Bogotá has obtained the best results in all three shifts, being the full day shift the
most outstanding with 67.9% of its schools in high level, over the average equal to
38.7%. Bogotá and Santander are more alike from the morning shift point of view
than for the full day shift. Atlántico and Bolivar’s scores are similar in full day
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and afternoon shifts but they differ from the morning shift, with better scores for
Atlántico.

5.4.2. Columns: score(shift)

Each global point represents one shift and one score category. The global point
is the centroid of four partial points (one for each group of departments). Figure
6b. shows the superimposed representation of the score categories corresponding
to full day shift (see §4). In this shift, the scores differ mostly from the most
populated departments (P5 and P4).
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Figure 6: Superimposed representation on the IBCA first factorial plane.

5.5. Separate CA for the 12 Blocks

ICBA can be considered as a comparison method for the profiles corresponding
to each block. For a given block, the Intra-blocks independence model is the
independence model of the table considered separately. The changes in the IBCA,
in relation to the separate CA of each block, concerning metrics and weights, are
the price that must be paid to have a common reference framework. Figure 7 shows
some of the 12 separate correspondence analyses. The axes have been rotated for
an easier comparison to one another and to IBCA.

For instance, the planes corresponding to the three shifts in the most populated
departments (P5) show similar trends that are kept in IBCA.

6. Conclusions

Various correspondence analyses, useful for the description of contingency ta-
bles with sub-partition structures both in rows and columns were demonstrated.
An extension concerning the theoretical sections presented in Bécue-Bertaut et al.
(2005), was made, putting emphasis on the Double Intra Correspondence Analysis
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Figure 7: First factorial planes of some separate CA.

or Internal Correspondence Analysis (ICA) (§3.4). The Intra-Block Correspon-
dence Analysis (IBCA) was proposed (§3.5). The Intra-Row Bands and Intra-
Column-Bands CA are particular cases of ICA and IBCA, whenever the sub-
partition structure is considered in one single dimension (§3.4.1 and §3.5.5).

The decomposition of a simple CA for a CT with sub-partition structure in
rows and columns, presented by Sabatier (1987), was demonstrated, based on the
inertia decomposition of the simple CA into four addends. Thus, the four CA to
each addend were derived (§3.1.2 and Appendix A.2).

The relation between correspondence analysis and log-linear models applied to
multiple ways contingency tables were used to show the interactions described by
the ICA and IBCA (§3.2.2).

In the superimposed representation of ICA, some points belonging to null pro-
files, inside a block, which can lie close to points belonging to non-null profiles.
IBCA solves this problem because the partial points belonging to null profiles
which always lay at the origin (§4.4).

The methods presented in this work were illustrated by their application to the
standardized public test data collected from the Colombian secondary education
students in 2008. IBCA provides, in a synthesized way, the regional differences
between departments regarding the schools scores. The superimposed represen-
tations allow us to compare, on the one hand, the departments scores through
the different shifts and, on the other hand, the score-shifts through the groups of
departments (§5).
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Appendix A. Some Proofs

Appendix A.1. Proofs of Formulae (11) and (10), p.122

The CA inertia can be decomposed as:

∑
l,i,j,k
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Then (11) is true if the last addend is equal to zero. We have:

∑
l,i,j,k
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The last term is zero because the totals of F and A are equal to one another.

Appendix A.2. Decomposition of the Inertia Associated to
the SCA

Sabatier, Lebreton & Chessel (1989) demonstrated the decomposition of the
inertia using the correspondence analysis with respect to instrumental variables.
We show the inertia decomposition by expressing F−H as the sum of differences
and using these differences expressed as general terms to calculate the inertia.
Then, each inertia term is associated to a CA.

F−H = (F−C) + (AJ −E) + (AL −E) + (E−H)

The inertia associated to the SCA of F is:

∑
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(29)

since all the crossed products are equal to zero. In what follows, the equality to
zero for the last crossed product is proved:

∑
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The last term is zero because the totals of AL and E are both zero. The other
term is also zero, since:

∑
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Now, the CA associated to the inertias contained in the formula can be seen (29):

1. CA(F,C), i.e, ICA(F).
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2. CA(AJ,E), but the expression can be reduced adding over k:

∑
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We note TJ the table of dimension I × J and with general term f lji· , this
inertia is associated to the Intra-Tables CA of TJ.

3. We can obtain an analogous result if we add on the subscript i, i.e. the
CA(AL,E) is the Intra-Tables CA of TL, with dimension L×K and general
term f lj·k .

4. The last addend is associated to the CA(E,H). In this case, it is possible to
add to both subscripts i and k:

∑
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This inertia is associated to the SCA of T, with dimension L×J and general
term f lj·· , i.e. the table formed by the totals of the blocks (l, j).

Appendix A.3. Proof of Formula (23), p.126

The coordinate of the row point over the s-axis, as a function of the coordinates
of the column points is (Escofier 1984):
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)
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Replacing cljik (Formula (19), p.124), three sums appear but the two last are zero,
because the coordinates Gs(j, k) from each subcloud NKj are centered with the
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