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Abstract

Some variables are restricted to the open interval (0, 1) and several meth-
ods have been developed to work with them under the scheme of the regres-
sion analysis. Most of research consider maximum likelihood methods and
the use of Beta or Simplex distributions.

This paper presents the use of Bayesian techniques to estimate the pa-
rameters of the simplex regression supported on the implementation of some
simulations and a comparison with Beta regression. We consider both models
with constant variance and models with variance heterogeneity. Regressions
are exemplified with heteroscedasticity.

Key words: Beta distribution, Gibbs sampler, Heterogeneous, Proportions,
Simplex distribution, Variances.

Resumen

Algunas variables están restringidas al intervalo abierto (0, 1) y para tra-
bajar con ellas se han desarrollado diversos métodos bajo el esquema del
análisis de regresión. La mayoría de ellos han sido concebidos originalmente
para ser estimados por métodos de máxima verosimilitud. Los más naturales
parecen descansar especialmente sobre las distribuciones Beta o Simplex.

En este trabajo se presenta el uso de técnicas Bayesianas para la esti-
mación de los parámetros de la regresión Simplex respaldada con la apli-
cación de algunas simulaciones y comparaciones con la regresión Beta. Se
presentan resultados para modelos de varianza constante y de varianza he-
terogénea para cada individuo. Se presenta un ejemplo con datos reales.

Palabras clave: distribución beta, distribución simplex, muestreador de
Gibbs, proporciones, varianza heterogénea.

aPhD Student. E-mail: freddy.vate01@gmail.com

1



2 Freddy Omar López

1. Introduction

Researchers frequently are dealing with situations where they are interested
in modelling proportions, percentages or values within the open interval (0, 1),
according to one or several covariates, within the architecture of the regression
models. This has usually been addressed with different approaches, including:
linear regression, logistic regression, nonlinear regression, tobit regression, among
others. However, most of them are not the natural way of working with such
variables.

For this type of variable, the normal assumption, underlying in most of the
mentioned techniques, it is not supported, invalidating conclusions that could be
obtained from these results. Response variable’s asymmetry and multicollinearity
are two of the most frequent problems which the normal model cannot deal with.

In this situation, some alternatives have been developed such as Beta regression
which take the general linear model advantages and the Simplex distribution,
which is part of a more general class of models, the dispersion models.

These mentioned techniques have been developed to analyze variables that
belong to the open interval (0, 1) and not to [0, 1]. This distinction has been made
by Kieschnick & McCullough (2003) in a comparative study as other authors.
They recommended to use the Beta distribution or a quasi-likelihood based model
when it is required to work with this type of variable.

As a comment to Paolino (2001), Buckley (2003) used the Bayesian paradigm
to estimate the parameters from a Beta regression through the Metropolis-Hasting
algorithm with non-informative previous distributions. This model contemplates
the posibility to manage the heterogenity, besides the mean, by using two submod-
els corresponding to the location and dispersion submodels (Smithson & Verkuilen
2006). The research done by Paolino (2001) originally used a maximum likelihood
method to estimate parameters. Ferrari & Cribari-Neto (2004) also apply this
method.

Song, Qiu & Tan (2004) developed a similar model considering two submodels
(one for a location parameter and another for a dispersion parameter) with a re-
sponse simplex variable. The method to estimate the parameters by these authors
was the generalized estimating equations (GEE).

In this work we consider a Bayesian approach for the estimation of the regres-
sion parameters and some simulations using the Gibbs sampler. Previous distri-
butions to regression parameters have been normal with a high variance. Also,
the estimation methods will be applied to a real dataset.

The main purpose of this work is to present the estimation by Bayesian methods
of the simplex regression’s parameters. Additionally, since Beta regression has the
same objective of modelling proportions and rates, both methods will be compared
some datasets generated by one or the other underlying model. We will be make
emphasis on the details of the simplex distribution given the fact that the features
of the beta distribution enjoy more fame in the literature than the simplex model.
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This paper is structured as follows: in the Section 2 we present the simplex
distribution, simplex regressions and the estimation method used in this investi-
gation. Also, the beta regression and the comparison strategy in order to compare
both models. In Section 3 we present some simulations and an application to real
dataset. Finally in Section 4 some conclusions about this work.

2. Regression Models

2.1. Dispersion Models and Simplex Distribution

The simplex distribution is a distribution that belongs to the family of disper-
sion models, with location and dispersion parameters µ and σ2, respectively (also
abreviatted as DM(µ, σ2)).

The exponential dispersion family density (ED) has the form

p(y; θ, φ) = exp

{
yθ − κ(θ)

a(θ)
+ C(y, φ)

}
, y ∈ C (1)

for some functions a(·), κ(·) y C(·) with parameters θ ∈ Θ and φ > 0 and C
is the support of the density. In particular, it is known that κ is the cumulant
generating function. Note that ED is the classical exponential family of the random
component in the GLM framework.

The general form of a dispersion model is

p(y;µ, σ2) = a(y;σ2) exp

{
− 1

2σ2
d(y;µ)

}
, y ∈ C (2)

where µ ∈ Ω, σ > 0 and a ≥ 0 is a normalizer term, independent of µ. Function d
is known as the unit deviance and is defined in (y, µ) ∈ (C,Ω) and it must satisfy
some additional properties (Song 2007).

A simple advantage over the classical exponential family parametrization in
(1) is that both, mean and dispersion parameters, µ and σ2, are explicitly in the
density expression (2) whereas in (1), µ = E(Y ) = κ′(θ).

More precisely the parameter µ = E(Y ) and Var(Y ) = σ2

V (µ) , where V (µ) is
directly related with d(·; ·), i.e.

V (µ) =
2

∂2d(y;µ)
∂µ2

∣∣∣∣
y=µ

, µ ∈ Ω

This function is known as the “unit variance function”.
Specifically, if y follows a simplex distribution, that is y ∼ S−(µ;σ2), then (2)

takes the form

p(y;µ, σ2) = [2πσ2{y(1− y)}3]−
1
2 exp

{
− 1

2σ2
d(y;µ)

}
, y ∈ (0, 1), µ ∈ (0, 1) (3)
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In particular, where

a(y;σ2) = [2πσ2{y(1− y)}3]−
1
2

and

d(y;µ) =
(y − µ)2

y(1− y)µ2(1− µ)2
, y ∈ (0, 1), µ ∈ (0, 1)

It follows that E{d(Y ;µ)} = σ2, E{d′(Y ;µ)} = 0, Var{d(Y ;µ)} = 2(σ2)2.
These and others features can be studied in detail at Song (2007). Other inferential
properties can be studied in the seminal paper by Barndorff-Nielsen & Jørgensen
(1991).

The distribution can have one or two modes and can take the approximate
shape of a bell, U, J, or L (also known as reverse-J) for different combinations
of its parameters. It is important to note that the simplex distribution cannot
emulates a flat distribution as the uniform distribution on the interval (0, 1).

Figure 1 presents several examples: simplex distributions with mean values:
0.1, 0.25, 0.50, 0.75 and 0.90 with different dispersion parameters. Note that when
the second parameter is increased, the curves are becoming flatter.

2.2. Simplex Regression Model

2.2.1. Introduction

Let be Y1, . . . , Yn independent random variables following the distribution
in equation (3) with mean µi and dispersion parameter σ2

i , and let be xi =
(xi1, xi2, . . . , xip) and wi = (wi1, wi2, . . . , wiq), i = 1, . . . , n, vectors of covari-
ate information. It is important to note that covariables x and w can be identical
or they could be subsets of each other. We want to model the mean value µi and
the dispersion parameter σ2

i .
Similar to Cepeda & Gamerman (2001), Smithson & Verkuilen (2006) and Song

et al. (2004), two link functions, g and h will be considered one for each parameter
in the simplex distribution.

A convenient function g for the mean is the logit function, which ensures the
parameter µ is in the open interval (0, 1). More specifically

g(µi) = log
µi

1− µi
= x>i β (4)

where β = (β0, . . . , βp) is a vector of unknown parameters. Equation (4) is also
known as the location submodel.

The logit function has an extensive application in the statistic field. This
transformation helps to give answers in terms of the odds ratio. This is because
the odd ratio between the predictive variable and its response variable can be
found by using the relation OR = exp (βk), k = 1, . . . , p.
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Figure 1: Different shapes for the simplex distribution. The distributions have as the
mean value parameter µ = 0.1, 0.25, 0.5, 0.75, 0.9 and different values for dis-
persion. (a) σ = 1; (b) σ = 0.5; (c) σ = 2 and (d) σ = 5.

On the other hand, the dispersion parameter σ2
i must be positive and a function

h that enjoys this property is the logarithm function. So

h(σ2
i ) = log(σ2

i ) = w>i δ (5)

where δ = (δ0, . . . , δq) is a vector of unknown parameters that must be estimated.
The equation (5) is known as the dispersion submodel.

2.2.2. Parameter Estimation

Maximum Likelihood

The classical theory of maximum likelihood estimation for the exponential
family models (McCullagh & Nelder 1989) is very related with the maximum
likelihood estimation for dispersion models as a special case. In the specific case
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of simplex distribution and the general linear model the score equation (derivative
of the likelihood with respect to parameters) is a given by

n∑
i=1

xi{µi(1− µi)}δ(yi;µi) = 0 (6)

where
δ(y;µ) =

y − µ
µ(1− µ)

{
d(y;µ) +

1

µ2(1− µ)2

}
Equation (6) is solved using Newton-Raphson or quasi-Newton algorithm.
In particular, it is necessary to introduce an estimation of the dispersion pa-

rameter σ2. In this situation it is common to replace σ2 with

σ̂2 =
1

(n− p+ 1)

n∑
i=1

d(yi; µ̂i)

Interested readers are referred to Jørgensen (1997) and Song (2007) for more
details. In this paper the maximum likelihood method is not considered.

Markov Chain Monte Carlo Sampling

With the aim of estimating the parameters of equations (4) and (5), we specify
the likelihood function

L(β, δ) =

n∏
i=1

a(yi;h
−1(w>i δ)) exp

{
− 1

2h−1(w>i δ)
d(yi; g

−1(x>i β))

}
(7)

which posterior distribution is expressed as

p((β, δ) | y) ∝ L(β, δ)p(β, δ) (8)

where p(β, δ) = p(β)p(δ) are the previous distribution of parameters under the
assumption that they are independent to each other. In this work it is assumed
that each parameter βi, i = 1, . . . , p and δj , j = 1, . . . , q follow a non informative
distribution centered at 0 and a large variance (about 1, 000). With this infor-
mation, it is possible to use several Bayesian mechanisms in order to estimate
the parameters. We have chosen a Gibbs sampling approach due to because the
relative ease to be implemented.

In order to define the Bayesian regression modelling framework, we specify

yi | µi, σ2
i ∼ S−(µi, σ

2
i )

g(µi) = x>i β

h(σ2
i ) = w>i δ

(9)

It is important to note that the models in this section are applicable to response
variables y which range strictly in the open interval (0, 1). However, in some
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situations, it is possible to have data where y = 0 or y = 1 (for instance, it can be
the case where none person support the candidate’s management; or that 100%
of individuals under observation in a clinical trial have had reacted positively to
certain stimuli). This situation can be addressed with different strategies. One of
them is to replace all values 0 by a very small quantity ε > 0 and all 1 values by
1− ε respectively. In other situations, when the theorical maximum and minimum
values, β and α, are known the followings can be used

ynew =
(n− 1)(y − α)

(β − α)n
+

1

2n
(10)

where n is the length of y. These approximations have been considered in the
context of Beta regression by Smithson & Verkuilen (2006), Zimprich (2010),
Verkuilen & Smithson (2011) and Eskelson, Madsen, Hagar & Temesgen (2011).
This approach is not considered in this work.

2.3. Comparison to the Beta Regression Model

Beta regression has been studied with much interest on the last years (Ferrari
& Cribari-Neto 2004, Ospina & Ferrari 2010, Cribari-Neto & Zeileis 2010, Cepeda
& Garrido 2011, Cepeda 2012). In order to model proportions and rates.

The probability density function of a Beta distribution is given by

p(y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 < y < 1

where Γ is the gamma function.

Considering µ = p
p+q and φ = p + q this produces p = µφ and q = (1 − µ)φ.

This will be the parametrization used in this work. A different parametrization
based on mean and variance is studied by Cepeda (2012).

The shape of this distribution could have a variety of options. At most, it
could have a single mode or a single antimode; it can show a bell-shaped, J and
L-shaped and, among its particular cases, are the triangular distribution, uniform
distribution and power function distribution (Johnson, Kotz & Balakrishnan 1994).

Beta regression is the most adequate model to be compared to the simplex re-
gression because it is possible to model individual dispersion on the data (Cribari-
Neto & Zeileis 2010).

It has been estimated traditionally using maximum likelihood methods but also
Bayesian methods (Buckley 2003, Branscum, Johnson & Thurmond 2007, Cepeda
& Garrido 2011, Cepeda 2012). In this work Bayesian methods will be used in
order to estimate the parameters for Simplex and Beta regressions.
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2.4. Model Comparison

2.4.1. Deviance Information Criterion

A way to compare models from the Bayesian perspective is through the DIC
measure (Spiegelhalter, Best, Carlin & van der Linde 2002, Gelman, Carlin, Stern
& Rubin 2003). This measure uses the deviance which is defined in its general
form as

D(y, θ) = −2 log p(y|θ)

where p(y | θ) is the likelihood of the data and θ are the parameters of the model.
This measure depend both upon θ as y.

A measure which depend only of data y is Dθ̂(y) = D(y, θ̂(y)), which uses
a point estimator of θ and is computed from simulations. The average over the
posterior distribution is given by Davg = E(D(y, θ) | y), whose estimator is

D̂avg(y) =
1

n

n∑
i=1

D(y, θi)

Another important measure, known as the effective number of parameters is
defined as

pD = D̂avg(y)−Dθ̂(y)

Finally, the deviance information criterion (DIC) is defined by

DIC = 2D̂avg(y)−Dθ̂(y)

with smaller values suggesting a better-fitting model.

2.4.2. Comparison of Ordered Simulated Data Against Ordered
Observed Data

A strategy to compare the performance of the models is simulate replicated
data yrep, and compare it with the real data, y. The comparison can be done
ordering the simulated values, yrep(i) , and displaying it against the real ordered
data, y(i). If at the moment of plotting, they are close to an identity function,
then we have evidences of a good model. Moreover, we can appreciate values that
can be outliers.

To create simulated data, yrep, samples are taken following a model with the
parameters θ̂, estimated using real data (in this case, it will be sampled from
Simplex and Beta distribution). To gain precision, it is usual to simulate several
datasets and at the moment of plotting, to display empirical confidence intervals
for each point of the observed data y(i).
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3. Data Analysis

The following sections will show the performance of the simplex and beta re-
gression. The simulation was followed using a similar scheme like the one by Song
et al. (2004).

In each Section of 3.1 two types of dataset will be simulated. One, keeping a
constant dispersion and another varying the dispersion cross the individuals. In
Section 3.1.1 all data follow a simplex distribution and simplex and beta models are
considered. In a similar way, data in the Section 3.1.2 lie under a beta distribution
and the models used to these data are beta and simplex.

All simulations and computations were done using the R software (R Develop-
ment Core Team 2011). Bayesian estimation was done using the Gibbs sampling
using the R2OpenBUGS and rjags libraries (Sturtz, Ligges & Gelman 2005, Martyn
2011). All chains have the minimum requirements to think they have converged
(i.e. Geweke diagnostic, Gelman-Rubin diagnostic, autocorrelation).

3.1. Simulation Study

3.1.1. Simulating Simplex Data

Firstly 450 independent observation yi, i = 1, . . . , 450 were obtained, belonging
to a Simplex distribution with parameters (µi, σ

2) with the following specifications{
logit(µi) = β0 + β1Ti + β2Si
log(σ2) = δ0

(11)

where the variable T ∈ {−1, 0, 1} emulates the level of some drug and S ∈
{0, . . . , 6} suggests the illness severity. To each level of T 150 individuals were
taken and from S a random sample based on a binomial distribution was taken
with parameters n = 7 y p = 0.5.

Parameters of equation (11) have been fixed to emulate various shapes of y (for
instance: bell-shaped, J, L, U). Some of these shapes are plotted on figure 2.

After applying the model strategy in (9) the results can be appreciated in
Table 1 and some of its realizations can be seen in Figure 3. All parameters were
estimated with a four-chain run of 30,000 iterations length. Four chains of 30,000
length each were estimated and there its first 15,000 values were discarded from
each one of them. It is important to note that in general, simplex estimation of
parameters is close to real values, however, it seems there is a tendency when δ0
increases then βj , j = 0, 1, 2 are distant from real values. Moreover, we note that
when y variable is bell-shaped then the estimated location parameters using beta
or simplex model are very similar. Coefficients marked with a † symbol means
that its Bayesian confidence interval includes the 0 value.
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Figure 2: Simulations under homogeneous simplex models: (a) Bell-shaped (β0 = 0.1,
β1 = −0.1, β2 = 0.1, σ = 0.5); (b) J-shaped (β0 = −0.5, β1 = 0.5, β2 = −0.5,
σ =

√
15); (c) L-shaped (β0 = 0.1, β1 = −0.1, β2 = 0.1, σ = 0.5); and, (d)

U-shaped (β0 = 0.1, β1 = −0.1, β2 = 0.1, σ = 0.5).

Additionally, DIC measures suggests both models are very competitive. Values
estimated for the location submodels reach the greatest differences from real values
when the shape of data y have form of U; in all cases the parameter of dispersion
was estimated with high precision.

Second, several models were estimated varying the dispersion submodel ac-
cording to the following specifications{

logit(µi) = β0 + β1Ti + β2Si
log(σ2

i ) = δ0 + δ1Ti
(12)

where the parameters value βj , j = 0, 1, 2 have been kept as in the previous exercise
and δj , j = 0, 1 have been varied as shows Table 2 to preserve shapes similar to
those shown in Figure 2.
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Figure 3: Simulation of some chains for the homogeneous simplex model with U shaped:
β0 = 0.1, β1 = −0.1, β2 = 0.1, σ2 = 150: (a) and (b) are summaries for
parameter β0; (c) and (d) for β1; (e) and (f) for β2; (g) and (h) for δ0.

In the same way, the results from a four-chain run of 30,000 iterations (15,000
burn-in) are presented in Table 2. Additionally, when the shape of the distribution
is like a bell, estimated parameters of the location submodel in simplex and beta
model are extremely similar and according to DIC, the superiority of a model over
the other is not pronounced. However, these estimated values are clearly distant
from its true values. When the shape of the distribution is like a J or L then the
estimated location parameters are closer to true values. Estimation of dispersion
parameters were also close to its true values.

3.1.2. Simulating Beta Data

Also, several models following equations (11) and (12) were considered where
the support distribution is beta. The structures were estimated with beta and
simplex models and results are shown in Tables 3 y 4.

It can be appreciated in Table 3 that in some cases, when beta distribution is
bell-shaped, some estimations (beta and simplex) tend to be similar in its location
submodel. The beta estimation seems, however, to be more distant from its true
parameters values; for instance, when the distribution has shape of U given that
most of its location parameters include the 0 value inside its empirical highest
posterior density.

The heterogeneous case (see Table 4) was not very different. Estimated param-
eters are more distant from its true values in most of the cases (shapes). In several
of them, the DIC measure point out that the preferred model is the simplex one.

Revista Colombiana de Estadística 36 (2013) 1–21



12 Freddy Omar López

Table 1: Homogeneous simplex models: Results after fitting Simplex and Beta regres-
sion models.

Bell− shaped

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) 0.13 0.13 β0 (0.1) 0.10 0.10 β0 (0.1) 0.11 0.10
β1 (-0.1) -0.11 -0.11 β1 (-0.1) -0.10 -0.10 β1 (-0.1) -0.10 -0.10
β2 (0.1) 0.10 0.10 β2 (0.1) 0.10 0.10 β2 (0.1) 0.11 0.11
δ0(log 0.1) -2.32 10.30 δ0(log 0.01) -4.64 14.93 δ0(log 0.25) -1.45 8.59
DIC -1673 -1677 DIC -2712 -2713 DIC -1293 -1290

J

Simplex Beta Simplex Beta Simplex Beta
β0 (-0.5) -0.44 -0.45 β0 (-0.5) -0.52 -0.34 β0 (-0.5) -0.60 -0.23†

β1 (0.5) 0.49 0.49 β1 (0.5) 0.51 0.43 β1 (0.5) 0.54 0.38
β2 (-0.5) -0.51 -0.49 β2 (-0.5) -0.46 -0.40 β2 (-0.5) -0.59 -0.44
δ0(log 1) 0.03† 6.90 δ0(log 5) 1.60 4.19 δ0(log 15) 2.77 2.63
DIC -1298 -1142 DIC -748.40 -611 DIC -685 -481

L

Simplex Beta Simplex Beta Simplex Beta
β0 (0.5) 0.60 0.56 β0 (0.5) 0.45 0.25 β0 (0.5) 0.37 0.04†

β1 (-0.5) -0.53 -0.51 β1 (-0.5) -0.49 -0.41 β1 (-0.5) -0.45 -0.32
β2 (0.5) 0.47 0.44 β2 (0.5) 0.47 0.42 β2 (0.5) 0.48 0.37
δ0(log 1) 0.00† 6.91 δ0(log 5) 1.62 4.48 δ0(log 15) 2.72 2.74
DIC -1246 -1123 DIC -815 -699 DIC -598 -457

U

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) 0.46 0.39 β0 (0.1) 0.19 0.13† β0 (0.1) 0.18 0.06†

β1 (-0.1) -0.22 -0.18 β1 (-0.1) -0.11 -0.07† β1 (-0.1) -0.12 -0.08†

β2 (0.1) 0.10 0.12† β2 (0.1) 0.13 0.09† β2 (0.1) 0.13 0.12
δ0(log 50) 3.89 0.58 δ0(log 100) 4.51 0.08 δ0(log 150) 4.96 -0.31†

DIC -300 -125 DIC -386 -201 DIC -688 -385

3.2. Example with Real Data

In this section we study the relationship between the amount people of in
poverty and the government form they have elected in some geographical region.
We want to determine if some variables, traditionally indicators of poverty (number
of people indeed poverty, suicide rate, Human Development Index) are associated
with a political option in electoral preferences terms.

The relationship between these variables has been studied previously. For
instance, it is documented that for some countries, suicide rates increases when a
specific political party is in the government. Blakely & Collings (2002) commented
that “suicide rates were indeed higher during periods of conservative government”
for the investigation done with Australian data carried out by Page, Morrell &
Taylor (2002). Shaw, Dorling & Smith (2002) analyzed data from England and
Wales and reached similar conclusions to the point to add the subtitle to their
investigation: Do conservative governments make people want to die?

Also there have been findings there exists out a significant association between
general mortality and political preferences (Smith & Dorling 1996).

Data analyzed in this paper correspond to 322 of 335 municipalities in Venezuela
(the position of Amazonas’ Governor and others municipalities were not available
for that election date). These data were taken from the website of the National
Electoral Council, (CNE 2008) and the National Statistical Office, (INE 2008).
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Table 2: Heterogeneous simplex models: Results after fitting Simplex and Beta regres-
sion models.

Bell− shaped

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) -0.05† -0.06† β0 (0.1) 0.12† 0.12† β0 (0.1) -0.03† -0.03†

β1 (-0.1) -0.06 -0.06 β1 (-0.1) -0.10 -0.10 β1 (-0.1) -0.07 -0.07
β2 (0.1) 0.07† 0.07† β2 (0.1) 0.12 0.12 β2 (0.1) 0.06 0.06
δ0(1) 1.06 4.13 δ0(0.1) 0.15 5.57 δ0(0.3) 0.29 5.33
δ1(1) 1.19 -1.90 δ1(0.1) 0.03† -0.13† δ0(0.2) 0.20 -0.36
DIC -394 -374 DIC -639 -634 DIC -588 -584

J

Simplex Beta Simplex Beta Simplex Beta
β0 (-0.5) -0.42 -0.41 β0 (-0.5) -0.71 -0.48 β0 (-0.5) -0.47 -0.05†

β1 (0.5) 0.49 0.48 β1 (0.5) 0.54 0.45 β1 (0.5) 0.49 0.34
β2 (-0.5) -0.45 -0.45 β2 (-0.5) -0.49 -0.52 β2 (-0.5) -0.57 -0.59
δ0(1) 0.99 5.58 δ0(2) 2.01 3.95 δ0(3) 3.01 2.65
δ1(1) 0.99 -2.29 δ1(1) 1.01 -2.15 δ0(1) 1.07 -2.00
DIC -994 -896 DIC -783 -647 DIC -808 -601

L

Simplex Beta Simplex Beta Simplex Beta
β0 (0.5) 0.60 0.50 β0 (0.5) 0.33 0.23 β0 (0.5) 0.30 -0.03†

β1 (-0.5) -0.52 -0.47 β1 (-0.5) -0.46 -0.41 β1 (-0.5) -0.43 -0.30
β2 (0.5) 0.49 0.51 β2 (0.5) 0.52 0.55 β2 (0.5) 0.51 0.50
δ0(1) 1.02 5.28 δ0(2) 1.99 4.08 δ0(3) 3.04 2.49
δ1(1) 1.03 -2.34 δ1(1) 1.12 -2.39 δ0(1) 1.01 -1.67
DIC -946 -818 DIC -782 -668 DIC -623 -483

U

Simplex Beta Simplex Beta Simplex Beta
β0 (0.1) 0.25 0.32 β0 (0.1) 0.13† 0.18† β0 (0.1) 0.26† 0.19†

β1 (-0.1) -0.13 -0.13 β1 (-0.1) -0.10 -0.09 β1 (-0.1) -0.13 -0.12
β2 (0.1) 0.14 0.18 β2 (0.1) 0.12 0.12† β2 (0.1) 0.07† 0.03†

δ0(3) 2.98 1.59 δ0(4) 4.04 0.58 δ0(5) 4.98 -0.22
δ1(1) 1.20 -1.36 δ1(1) 1.00 -0.89 δ0(1) 1.06 -0.75
DIC -188 -98 DIC -252 -142 DIC -728 -446

The response variable is the proportion of people who support with their votes the
political proposal lead by Hugo Chávez.

Several models were adjusted to these data and the results can be seen in Table
5. In this Table, three models for the two underlying distributions were considered.
The first of them (ms0 andmb0) are the saturated models andms1 andmb1 are the
null models. Searching over additive structures in function of DIC give us as best
models those labeled as ms2 y mb2 . For both, the same variables are significant
for location and dispersion submodels. Note that, in general terms, coefficients for
location submodels are very similar. This can be expected because the shape of
the variable % Chávez is symmetric (see Figure 5 (b)).
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Table 3: Homogeneous beta models: Results after fitting Beta and Simplex regression
models.

Bell− shaped

Beta Simplex Beta Simplex Beta Simplex
β0 (0.1) -0.07† -0.15† β0 (0.1) 0.05† 0.07† β0 (0.1) 0.17 0.17
β1 (-0.1) -0.06 -0.05† β1 (-0.1) -0.09 -0.09† β1 (-0.1) -0.13 -0.13
β2 (0.1) 0.13 0.15 β2 (0.1) 0.12 0.12 β2 (0.1) 0.09 0.09
δ0(log 30) 3.29 1.65 δ0(log 50) 3.80 1.25 δ0(log 200) 5.36 0.30
DIC -205 -176 DIC -286 -285 DIC -597 -593

J

Beta Simplex Beta Simplex Beta Simplex
β0 (-0.5) -0.09 -0.30† β0 (-0.5) -0.25† -0.99 β0 (-0.5) -0.20† -0.16†

β1 (0.5) 0.28 0.35 β1 (0.5) 0.35 0.61 β1 (0.5) 0.38 0.44
β2 (-0.5) -0.24 -0.07† β2 (-0.5) -0.35 -0.27 β2 (-0.5) -0.42 -0.55
δ0(log 1) 0.52 5.12 δ0(log 5) 1.51 4.46 δ0(log 15) 2.81 3.60
DIC -690 -861 DIC -533 -467 DIC -538 -347

L

Beta Simplex Beta Simplex Beta Simplex
β0 (0.5) 0.11† 0.79 β0 (0.5) 0.24† 0.12† β0 (0.5) 0.25† 0.36†

β1 (-0.5) -0.31 -0.59 β1 (-0.5) -0.40 -0.45 β1 (-0.5) -0.42 -0.51
β2 (0.5) 0.24 0.34 β2 (0.5) 0.44 0.60 β2 (0.5) 0.40 0.46
δ0(log 1) 0.71 5.02 δ0(log 5) 1.85 4.59 δ0(log 15) 2.74 3.78
DIC -752 -949 DIC -625 -472 DIC -587 -399

U

Beta Simplex Beta Simplex Beta Simplex
β0 (0.1) 0.03† -0.02† β0 (0.1) 0.08† -0.01† β0 (0.1) -0.13† -0.20†

β1 (-0.1) -0.09† -0.08 β1 (-0.1) -0.07† -0.04† β1 (-0.1) -0.03† -0.01†

β2 (0.1) 0.06 0.14† β2 (0.1) 0.12† 0.08† β2 (0.1) -0.02† -0.02†

δ0(log 1) 0.29 5.21 δ0(log 0.5) -0.25 5.62 δ0(log 0.25) -0.60 5.81
DIC -177 67 DIC -352 -289 DIC -571 -756

A sample of predicted values for all models can be appreciated in Figure 5 (a).
Note that the models give a linear prediction, that is, crossing the approximate
mean of data for each value of variable Mortality according to its linear nature.
Both models are quite similar and its fitting is displayed in Figure 5 (a). Figures
5 (c) and (d) show the average predicted values (and its empirical error bar) for
each yi point. There were simulated 100 datasets.
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Figure 4: Simulation of some chains for the heterogeneous beta model with L shaped:
β0 = 0.5, β1 = 0.5, β2 = 0.5, δ0 = 3, δ1 = 2: (a) and (b) describes results
for parameter β0; (c) and (d) for β1; (e) and (f) for β2; (g) and (h) for δ0; (i)
and (j) for δ1.
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Table 4: Heterogeneous beta models: Results after fitting Beta and Simplex regression
models.

Bell-shaped
Beta Simplex Beta Simplex Beta Simplex

β0 (0.1) 0.13† 0.34 β0 (0.1) 0.08† 0.08† β0 (0.1) 0.11 0.11
β1 (-0.1) -0.11 -0.19 β1 (-0.1) -0.10 -0.10 β1 (-0.1) -0.10 -0.10
β2 (0.1) 0.01† 0.03† β2 (0.1) 0.15 0.16 β2 (0.1) 0.09 0.09
δ0(3) 2.84 2.23 δ0(5) 5.09 0.48 δ0(10) 9.97 -2.12
δ1(1) 0.97 -0.93 δ1(1) 1.08 -0.69 δ1(5) 5.12 -2.66
DIC -152 -34 DIC -544 -542 DIC -1605 -1608

J
Beta Simplex Beta Simplex Beta Simplex

β0 (-0.5) -0.17† -0.35 β0 (-0.5) -0.55 -0.46 β0 (-0.5) -0.34 -0.41
β1 (0.5) 0.37 0.51 β1 (0.5) 0.44 0.41 β1 (0.5) 0.46 0.49
β2 (-0.5) -0.50 -0.45 β2 (-0.5) -0.23 -0.09† β2 (-0.5) -0.49 -0.44
δ0(1) 1.56 4.55 δ0(1) 2.29 3.98 δ0(3) 3.45 3.32
δ1(1) 0.18 -0.55 δ1(5) 2.73 -2.76 δ1(2) 1.50 -1.80
DIC -703 -757 DIC -884 -980 DIC -783 -678

L
Beta Simplex Beta Simplex Beta Simplex

β0 (0.5) -0.17† -5.72 β0 (0.5) 0.55 0.87 β0 (0.5) 0.58 -3.16
β1 (-0.5) 0.37 -1.06 β1 (-0.5) -0.43 -0.55 β1 (-0.5) -0.55 -0.58
β2 (0.5) -0.50 7.68 β2 (0.5) 0.15 0.18 β2 (0.5) 0.62 4.49
δ0(1) 1.56 36.77 δ0(1) 2.18 3.94 δ0(3) 3.27 16.11
δ1(1) 0.18 -27.85 δ1(5) 2.87 -2.64 δ1(2) 1.80 -12.65
DIC -4121 11948 DIC -824 -924 DIC -1408 3936

U
Beta Simplex Beta Simplex Beta Simplex

β0 (0.1) 0.20† -0.62 β0 (0.1) 0.20† 0.51 β0 (0.1) 0.01† 1.37
β1 (-0.1) -0.13 -0.21 β1 (-0.1) -0.14 -0.22 β1 (-0.1) -0.04† -0.45
β2 (0.1) 0.14 0.61 β2 (0.1) 0.24 0.19 β2 (0.1) 0.13 0.43†

δ0(0.1) 0.36 7.98 δ0(0.1) 0.40 4.92 δ0(0.01) -0.11† 9.06
δ1(0.1) 0.13† -1.97 δ1(0.5) 0.21† -0.44 δ1(0.05) 0.02† 0.08†
DIC -169 1358 DIC -201 -63 DIC -274 1450

Table 5: Parameter estimates using simplex and Bbeta regression for venezuelan elec-
tion data (2008).

Simplex model Beta model
ms0 ms1 ms2 mb0 mb1 mb2

Location submodel
Intercept 0.91 0.08 0.10 0.90 0.08 0.09
Suicides 0.03 0.02
General Mortality -0.10 -0.08 -0.07 -0.07
Households in poverty -0.03 0.08
IDH -1.00 -1.04
Dispersion submodel
Intercept -9.21 0.13 -12.23 15.53 5.84 24.31
Suicides -0.18 -0.19 0.42 0.27
General Mortality -0.03 -0.22
Households in poverty -1.69 3.44
IDH 12.01 15.11 -13.03 -22.62
DIC -469.03 -435.31 -476.23 -505.49 -489.87 -511.87
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Figure 5: (a) Adjusted values for Simplex and Beta models; lines are nearly super-
imposed; (b) histogram of proportion of percentage of people that support
Chávez; (c) ordered Chavism vs. ordered prediction based on Simplex model;
(d) ordered Chavism vs. ordered prediction based on Beta model
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4. Conclusions

This paper has shown how the Bayesian estimation can be applied on simplex
model regression and, in addition, several simulations were performed to compare
Simplex and Beta regressions. It was found that the estimation strategy produces
better results when the true model is homogeneous. In particular, when the true
model is homogeneous simplex, the estimates are closer to the true value param-
eters than the Beta model. Similar situations were found with the heterogeneous
models. Most of the time, dispersion submodel parameters were estimated quite
well even in the case where none parameter for the location submodel was near to
its true value. Methodology was exemplified with a real dataset. For this, point
estimates were pretty similar for both models: Simplex and Beta.

Further research could consider the natural extension to the (longitudinal)
mixed models similar to those presented by Verkuilen & Smithson (2011) and
Zimprich (2010) from the Bayesian perspective and supported by underlying sim-
plex distribution assumption. Song et al. (2004) propose a simplex longitudinal
data analysis in its marginal version.

Although, in the applications considered here, all data were inside the open
interval (0, 1); it is possible to model variables inside the closed interval [0, 1] and
there exist more adequate models such as those proposed by Cook, Kieschnick &
McCullough (2008) and Ospina & Ferrari (2010).

Furthermore, it is important to investigate another alternatives for the link
functions. As pointed out by Eskelson et al. (2011), the logit transformation is
used because it offers an easy interpretation in terms of odds ratio but it is also
possible to use the non-transformed variable. In relation with the beta regression,
Giovanetti (2007) explores another alternatives to link functions and studies the
empirical consequences having an incorrect specification.

In relation with Simplex regression residuals, Santos (2011) considers the situ-
ation when the parameters are estimated using the maximum likelihood method.
Miyashiro (2008) proposes some diagnostic measures and performs comparisons
with two real datasets estimating its parameters under Beta and Simplex assump-
tions. Results for those particular cases are very similar for location submodels. In
that investigation, Miyashiro only studied homogeneous models using maximum
likelihood.
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