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Abstract
Statistical methods based on ranked set sampling (RSS) often lead to

marked improvement over analogous methods based on simple random sam-
pling (SRS). Entropy has been influential in the development of measures of
fit of parametric models to the data. This article develops goodness-of-fit
tests of the Laplace distribution based on sample entropy when data are col-
lected according to some RSS-based schemes. For each design, critical values
of the corresponding test statistic are estimated, by means of simulation, for
some sample sizes. A Monte Carlo study on the power of the new tests is
performed for several alternative distributions and sample sizes in order to
compare our proposal with available method in SRS. Simulation results show
that RSS and its variations lead to tests giving higher power than the test
based on SRS.
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Resumen
Los métodos estadísticos basados en muestreo de rango ordenado a menudo

son una considerable mejora que el muestreo aleatorio simple. La medida de
entropía ha sido influencial en el desarrollo de medidas de ajuste de mode-
los paramétricos. Este artículo propone pruebas de bondad de ajuste de la
distribución Laplace basada en la entropía muestral cuando se usan estruc-
turas basadas en muestras de rango ordenado. Para cada diseño, los valores
críticos del correspondiente estadístico de prueba son estimados por medio
de simulaciones para diferentes tamaños de muestra. Un estudio de Monte
Carlo de la potencia de los nuevos tests es implementado para diferentes dis-
tribuciones alternas y tamaños de muestra con el fin de comparar el método
propuesto con otros disponibles. La simulación muestra que el muestreo de
rango ordenado y sus variaciones brindan mayor potencia que los métodos
basados en muestreo aleatorio simple.

Palabras clave: entropía, muestreo rango ordenado, prueba de bondad de
ajuste.
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1. Introduction

The ranked set sampling (RSS) was introduced by McIntyre (1952) who built
on the sample mean to obtain a more precise estimator of the population mean.
In this design, the experimenter exploits inexpensive additional information about
the characteristic of interest for ranking randomly drawn sampling units and then
quantifies a selected subset of them. Auxiliary information may be provided by,
for example, visual inspection, concomitant variables, expert opinion, etc., or some
combinations of these methods. This flexibility in the choice of ranking mechanism
is an appealing feature which makes RSS a cost-efficient sampling technique po-
tentially applicable in fields such as agriculture, biology, ecology, forestry, etc. As
an example, consider the following situation mentioned by Takahasi & Wakimoto
(1968). Suppose that the quantity of interest is the height of trees in a orchard.
While the actual measurement is going to be laborious, a simple glance can help
us to rank a handful of trees locating close to each other.

The RSS method can be summarized as follows:

1. Draw k random samples, each of size k, from the target population.

2. Apply judgement ordering, by any cheap method, on the elements of the ith
(i = 1, . . . , k) sample and identify the ith smallest unit.

3. Actually measure the k identified units in step 2.

4. Repeat steps 1-3, h times (cycles), if needed, to obtain a ranked set sample
of size n = hk.

The set of n measured observations are said to constitute the ranked set sample
denoted by {X[i]j : i = 1, . . . , k ; j = 1, . . . , h}, where X[i]j is the ith judgement or-
der statistic from the jth cycle. Current literature on RSS reports many statistical
procedures, in both parametric and nonparametric settings, which are superior to
their counterparts in simple random sampling (SRS). For an excellent review of
most previous works on RSS, see the recent book by Chen, Bai & Sinha (2004).
The success of RSS can be traced to the fact that a ranked set sample consists of
independent order statistics and contains more information than a simple random
sample of the same size, whose ordered values are correlated.

A basic version of RSS has been extensively modified to come up with schemes
resulting in more accurate estimators of the population attributes. Multistage
ranked set sampling (MSRSS) introduced by Al-Saleh & Al-Omari (2002) is such
a variation surpassing RSS. The MSRSS scheme can be described as follows:

1. Randomly identify kr+1 units from the population of interest, where r is the
number of stages.

2. Allocate the kr+1 units randomly into kr−1 sets of k2 units each.

3. For each set in step 2, apply 1-2 of RSS procedure explained above, to get a
(judgement) ranked set of size k. This step gives kr−1 (judgement) ranked
sets, each of size k.
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4. Without actual measuring of the ranked sets, apply step 3 on the kr−1 ranked
set to gain kr−2 second stage (judgement) ranked sets, of size k each.

5. Repeat step 3, without any actual measurement, until an rth stage (judge-
ment) ranked set of size k is acquired.

6. Actually measure the k identified units in step 5.

7. Repeat steps 1-6, h times, if needed, to obtain an rth stage ranked set sample
of size n = hk.

Similarly, the rth stage ranked set sample will be denoted by {X(r)
[i]j : i = 1, . . . , k;

j = 1, . . . , h}. It is to be noted that special case of MSRSS with r = 2 is known
as double ranked set sampling (DRSS) (Al-Saleh & Al-Kadiri 2000). Clearly, the
case r = 1 corresponds to RSS.

While testing hypotheses on the parameters of the normal, exponential and
uniform distributions under RSS and its variations have been widely investigated,
little effort has been made for developing a test of fit based on RSS. Stokes & Sager
(1988) characterized a ranked set sample as a sample from a conditional distribu-
tion, conditioning on a multinomial random vector, and applied RSS to the esti-
mation of the cumulative distribution function. They proposed the Kolmogorov-
Smirnov test in RSS setup and derived the null distribution of the test statistic.

Entropy of a distribution was proposed by Shannon (1948) as a measure of
uncertainty in information theory. He found that the entropy of the normal dis-
tribution is maximum among all distributions with fixed variance. Based on this
result, Vasicek (1976) developed a test for normality and, indeed, introduced a
new approach for constructing test of fit. Similar tests have been suggested for
other distributions based on their entropy characterization results. See Dudewicz
& van der Meulen (1981), Gokhale (1983), Grzegorzewski &Wieczorkowski (1999),
Mudholkar & Tian (2002), and Choi & Kim (2006).

The classical Laplace distribution introduced by Laplace in 1774 is one of the
basic symmetric distributions often used for modeling phenomena with heavier
than the normal tails. It has been applied in steam generator inspection, navi-
gation, reliability, generalized linear regression and Bayesian analysis. For more
recent applications refer to Kotz, Kozubowski & Podgórski (2001). In this work,
we deal with the problem of developing a goodness-of-fit test for the Laplace dis-
tribution when the researcher obtains data using RSS and MSRSS. Mahdizadeh
& Arghami (2010) suggested similar procedures for the inverse Gaussian law.

The layout of this article is as follows: In Section 2, entropy estimation is
extended to RSS and MSRSS, goodness-of-fit tests for the Laplace distribution
based on these designs are introduced. Section 3 contains the results of simulation
studies carried out to expose the power properties of the new tests. Section 4
is given to the effect of entropy estimator used in the test statistics on power
properties. Some brief conclusions are provided in Section 5.
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2. Proposed Tests

To put the procedure into perspective, we first review some concepts from
information theory. Suppose that a continuous random variable X has distribution
function FX with density function fX . Shannon’s entropy of fX is given by

H(fX) = −
∫ ∞
−∞

fX(x) log fX(x) dx (1)

It is easy to show that using the quantile function F−1X (u) = inf{x : FX(x) ≥ u},
(1) can be written as

H(fX) =

∫ 1

0

log
( d
du

F−1X (u)
)
du (2)

This entropy representation was used by Vasicek (1976) to define the sample en-
tropy in terms of order statistics as follows: Let X(1), . . . , X(n) be the ordered
values of a random sample of size n from FX . At each sample point (X(i),

i
n ), the

derivative in (2) is estimated by

si(m,n) =
X(i+m) −X(i−m)

2m/n
(3)

where m ∈ {1, . . . , n2 } is a window size to be determined. Vasicek’s entropy esti-
mator is the mean of logarithm of di’s defined in the above, i.e.,

Vm,n(fX) =
1

n

n∑
i=1

log
( n

2m
(X(i+m) −X(i−m))

)
(4)

where X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n−m.
Since the entropy estimator (4) is based on spacings, we would need ordered

values of the ranked set sample to estimate entropy in RSS. Proceeding as in the
SRS case, we first pool the units in all cycles and then form the estimator based
on the ordered pooled sample. The MSRSS analogue of Vm,n(fX) becomes

V (r)
m,n(fX) =

1

n

n∑
i=1

log
( n

2m
(X

(r)
(i+m) −X

(r)
(i−m))

)
(5)

where X(r)
(a) is the ath (a = 1, . . . , n) order statistic of the rth stage ranked set

sample. The reference to subscript k is not made here for conciseness in notation.
From now on, we use V (0)

m,n(fX) to denote the estimator (4). So X(0)
(a) represents

ath order statistic of a simple random sample of size n. In fact, {V (r)
m,n(.)} is a

sequence of entropy estimators indexed by the stage number in MSRSS.
A Monte Carlo experiment was conducted to compare the proposed estimators

of entropy when the underlying distribution is the standard Laplace with mean 0
and variance 2. Generation of random samples is easily done based on a result from
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distribution theory; difference a of two standard exponential random variables has
the standard Laplace distribution. Figure 1 displays simulated biases and root
mean square errors (RMSEs) of V (r)

m,n for r = 0, 1, 2 based on 50,000 samples
with n = 10, 20, 30, and k = 5 in MSRSS design (this setup will be used in the
rest of the paper). An empty circle is used as the plotting symbol, and points
corresponding to SRS, RSS and DRSS are connected by solid, dashed and dotted
lines, respectively. It is seen that given a sample size, MSRSS improves entropy
estimation with respect to SRS. Moreover, the larger stage number r the smaller
absolute value of bias, and RMSE of the corresponding estimator. This property
is helpful in distinguishing between the results of different designs when the types
of connecting lines are not visible because of compactness in Figure 1.
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Figure 1: Bias and RMSE comparison for the entropy estimators Vm,n and E1
m,n for

the standard Laplace distribution with H(f) = 1.6931.

Choi & Kim (2006) presented an entropy characterization of the Laplace dis-
tribution and used the following result (Corollary 2) to establish an entropy based
test of fit for the Laplace distribution.

Corollary 1. (Choi & Kim 2006). Suppose X has a Laplace distribution La(µ,θ)
with density function

fX(x;µ, θ) =
1

2θ
exp(−|x− µ|/θ) µ ∈ R , θ > 0

Then the entropy of fX is given by

H(fX) = log(2θ) + 1
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Corollary 2. (Choi & Kim 2006). Let X be a random variable with density
function fX(x) satisfying the restriction

EfX (|X|) =
∫ ∞
−∞
|x| fX(x) dx ≡ θ

Under this restriction, the distribution of X maximizing Shannon’s entropy is
La(0,θ).

Consider a random sample X1, . . . , Xn from a population with density function
f and suppose it is of interest to test H0 : fX ∈ L = {La(µ, θ) : µ ∈ R, θ >
0} against the general alternative H1 : fX /∈ L. Choi & Kim (2006) proposed
rejecting the null hypothesis if

Tm,n(gY ) = exp
(
Vm,n(gY )

)
/ θ̂ ≤ T ∗m,n,α(gY ) (6)

where

Vm,n(gY ) =
1

n

n∑
i=1

log
( n

2m
(Ỹ(i+m) − Ỹ(i−m))

)
is the estimate of the entropy of Ỹ = X−µ based on Ỹ(i) = X(i)− µ̂ (i = 1, . . . , n)
with µ̂ being the median of Xi’s, θ̂ =

∑n
i=1 |Ỹi|/n, and T ∗m,n,α(gY ) is the 100α

percentile of the null distribution of Tm,n(gY ).
In order to obtain the percentiles of the null distribution, Tm,n(gY ) was calcu-

lated using the estimators V (r)
m,n(gY ) for r = 0, 1, 2 based on 50,000 samples of size

n generated from the La(0,1) distribution. The values were then used to determine
T ∗m,n,0.05(gY ) in different designs and for different sample sizes. To estimate µ and
θ in MSRSS, we simply plug the data into the formulae available in SRS. Tables
of 0.05 critical points for the tests could be requested from the author. They are
not reported here.

To implement the tests, we must first select the window size m associated with
a given sample size. In general, there is no unanimous rule to choose the optimal
m for each n. Previous studies, however, suggest to of use the window size which
leads to the least conservative test. Thus, using the window size giving the largest
critical value is advised to achieve higher power. The optimal window size, denoted
by m∗, for sample sizes 10, 20 and 30 are approximately 3, 3 and 4, respectively.

3. Simulation Study

In this section, we shall use the Monte Carlo approach to evaluate the entropy
tests in terms of power. The distributions considered in the simulation study are
as follows: (A) normal(0,1), (B) t(10), (C) logistic(0,1), (D) uniform(0,1), (E)
Beta(2,2), (F) chi-square(4), (G) lognormal(0,0.5) and (H) Gamma(1.5,1). We
note that (A)-(E) are symmetric and (F)-(H) are asymmetric.

Under each design, 50,000 samples of sizes n = 10, 20, 30 were generated from
each alternative distribution and the power of the tests were estimated by the

Revista Colombiana de Estadística 35 (2012) 443–455



Ranked Set Samples in Entropy Based Test of Fit 449

fraction of the samples falling into the corresponding critical region. Figures 2-7
depict the estimated power of the tests in which the same plotting symbol and
connecting lines of Figure 1 are employed.
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Figure 2: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives A-D when n = 10.
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Figure 3: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives E-H when n = 10.
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Figure 4: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives A-D when n = 20.
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Figure 5: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives E-H when n = 20.
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Figure 6: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives A-D when n = 30.
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Figure 7: Power comparison for the entropy tests of size 0.05 based on Vm,n and E1
m,n

against alternatives E-H when n = 30.
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It is observed that given a sample size, the entropy tests based on RSS and
DRSS are more powerful than that based on SRS regardless of the alternative
distribution. More interestingly, the higher sampling effort the more powerful
resulting test would be. That is DRSS has the best performance among three
considered designs. Remember that a similar trait was reported earlier in the
context of entropy estimation. This is fairly expected because the test statistic in
each design is constructed based on the corresponding entropy estimator. It should
be mentioned that against asymmetric distributions and for each n, maximum
power is gained at optimal m or at one of its neighboring values. This trend,
however, does not hold for symmetric distributions where maximum power occurs
in m ≈ n

2 . Since the best m associated with a sample size varies according to the
alternative, we may use a data histogram to decide on the best window size for
applying the tests.

It is interesting to examine whether a further increase in power is possible
by increasing the number of stages in MSRSS. To this end, testing procedures
under MSRSS with r = 3, 4 were developed. Figure 8 displays the power of
the tests, where alternatives A-H are denoted by integers 1-8 on the X axis, and
points corresponding to r = 2, 3, 4 are connected by solid, dashed and dotted lines,
respectively. Results of DRSS design were included to facilitate comparison. For a
given n, the result are provided only for optimal m, not for all m ∈ {1, . . . , n2 }, to
save space. From Figure 8, we can see as r increases, some improvement in power
happens. Since the differences in results for r = 2 and r = 3, 4 are not marked for
(A)-(C), we may confine ourselves to DRSS against these alternatives.
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Figure 8: Power comparison for the entropy tests of size 0.05 against alternatives A-H
under MSRSS designs.
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4. Effect of Entropy Estimator

As mentioned before, Vasicek’s estimator has been widely used for developing
entropy based test of fit. Many authors have modified this test to come up with
more efficient estimators. In this section, power behavior of the tests employing
such estimators are investigated. To this end, we consider two entropy estimators
proposed by Ebrahimi, Pflughoeft & Soofi (1994).

The first estimator which modifies the denominator of (3) is defined as follows

E1
m,n =

1

n

n∑
i=1

log

(
X(i+m) −X(i−m)

cim/n

)
(7)

where

ci =


1 + i−1

m 1 ≤ i ≤ m,
2 m+ 1 ≤ i ≤ n−m,
1 + n−i

m n−m+ 1 ≤ i ≤ n

The second estimator, obtained by modifying both the numerator and denom-
inator of (3), is given by

E2
m,n =

1

n

n∑
i=1

log

(
Z(i+m) − Z(i−m)

dim/n

)
(8)

where

di =


1 + i+1

m −
i
m2 1 ≤ i ≤ m,

2 m+ 1 ≤ i ≤ n−m− 1,

1 + n−i
m+1 n−m ≤ i ≤ n,

the Z(i)’s are

Z(i) =


a+ i−1

m (X(1) − a) 1 ≤ i ≤ m,
X(i) m+ 1 ≤ i ≤ n−m− 1,

b− n−i
m (b−X(n)) n−m ≤ i ≤ n,

and a and b are constants to be determined such that P (a ≤ X ≤ b) ≈ 1. For
example, when F has a bounded support, a and b are lower and upper bound,
respectively (for uniform(0,1) distribution, a = 0 and b = 1); if F is bounded
below (above), then a(b) is lower (upper) support, a = x− ks (b = x+ ks), where

x =
1

n

n∑
i=1

xi, s2 =
1

n− 1

n∑
i=1

(xi − x)2

and k is a suitable number say 3 to 5 (for exponential distribution, a = 0 and
b = x + ks); in the case that F has no bound on its support, a and b may be
chosen as a = x− ks and b = x+ ks.

Simulation results show that both estimators have less bias and less RMSE
than Vasicek’s estimator (uniformly). Since E1

m,n has simpler form, we focus on
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that in the sequel. Simulated biases and RMSEs of E1(r)
m,n (The MSRSS analogue

of E1
m,n) for r = 0, 1, 2 are given in Figure 1, where a filled circle is used as the

plotting symbol, and points corresponding to SRS, RSS and DRSS are connected
by solid, dashed and dotted lines, respectively. Again, it is evident that as r
increases, E1(r)

m,n becomes more efficient. Also, the estimated power of the tests
developed using E1(r)

m,n for r = 0, 1, 2 appear in Figures 2-7 with the same display
conventions used for bias and RMSE of the corresponding entropy estimator. In
each design, tests based on the new estimator is more powerful than those based
on the original estimator for all sample sizes and alternatives.

5. Conclusion

The aim of this paper was to develop goodness-of-fit tests for the Laplace
distribution under RSS and MSRSS designs. Motivated by the entropy based
test of fit in SRS, we employed the sample entropy based on aforesaid designs
to construct the corresponding tests of fit. An extensive simulation study was
conducted to provide insight into the finite sample power behavior of the proposed
tests. The results indicate that using (multistage) ranked set samples in entropy
based test of fit for the Laplace distribution result in higher power as compared
with simple random samples. We have developed analogous tests for the uniform,
normal, exponential, Weibull and some other distributions using improved entropy
estimators whose results will be reported in future articles. Tables of critical points
and power of the tests in different designs along with the corresponding computer
codes are available on request from the author.
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