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Abstract

The univariate compound Poisson distribution has many applications in
various areas such as biology, seismology, risk theory, forestry, health science,
etc. In this paper, a bivariate compound Poisson distribution is proposed
and the joint probability function of this model is derived. Expressions
for the product moments, cumulants, covariance and correlation coefficient
are also obtained. Then, an algorithm is prepared in Maple to obtain the
probabilities quickly and an empirical comparison of the proposed probability
function is given. Bivariate versions of the Neyman type A, Neyman type B,
geometric-Poisson, Thomas distributions are introduced and the usefulness
of these distributions is illustrated in the analysis of earthquake data.

Key words: Bivariate distribution, Coefficient of correlation, Compound
Poisson distribution, Cumulant, Moment.

Resumen

La distribución compuesta de Poisson univariada tiene muchas aplica-
ciones en diversas áreas tales como biología, ciencias de la salud, ingeniería
forestal, sismología y teoría del riesgo, entre otras. En este artículo, una
distribución compuesta de Poisson bivariada es propuesta y la función de
probabilidad conjunta de este modelo es derivada. Expresiones para los
momentos producto, acumuladas, covarianza y el coeficiente de correlación
respectivos son obtenidas. Finalmente, un algoritmo preparado en lenguaje
Maple es descrito con el fin de calcular probabilidades asociadas rápidamente
y con el fin de hacer una comparación de la función de probabilidad prop-
uesta. Se introducen además versiones bivariadas de las distribuciones tipo
A y tipo B de Neyman, geométrica-Poisson y de Thomas y se ilustra la util-
idad de estas distribuciones aplicadas al análisis de datos de terremoto.

Palabras clave: coeficiente de correlación, conjuntas, distribución bivari-
ada, distribución compuesta de Poisson, momento.
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1. Introduction

Bivariate discrete random variables taking integer non-negative values, have
received considerable attention in the literature, in an effort to explain phenom-
ena in various areas of application. For an extensive account of bivariate dis-
crete distributions one can refer to the books by Kocherlakota & Kocherlakota
(1992), Johnson, Kotz & Balakrishnan (1997) and the review articles by Papa-
georgiou (1997) and Kocherlakota & Kocherlakota (1997). There is however, a
variety of applications, e.g. in an accident or family studies (see Cacoullos &
Papageorgiou 1980, Sastry 1997). The bivariate Poisson distribution (BPD) is
probably the best known bivariate discrete distribution (Holgate 1964). It is ap-
propriate for modeling paired count data exhibiting correlation. Paired count data
arise in a wide context including marketing (number of purchases of different prod-
ucts), epidemiology (incidents of different diseases in a series of districts), accident
analysis (number of accidents in a site before and after infrastructure changes),
medical research (the number of seizures before and after treatment), sports (the
number of goals scored by each one of the two opponent teams in soccer), econo-
metrics (number of voluntary and involuntary job changes).

Bivariate compound distributions can be especially used in actuarial science
to model a business book containing bivariate claim count distributions and bi-
variate claims severities (Ambagaspitiya 1998). In most actuarial studies, the
assumption of independence between classes of business in an insurance business
book containing is made. However this assumption is not verified in practice. For
example, in the case of a catastrophe such as an earthquake, the damages covered
by homeowners and private passenger automobile insurance can not be considered
independent (Cossette, Gaillardetz, Marceau & Rioux 2002). In this situation,
bivariate compound Poisson distribution (BCPD) is useful when the claim count
distribution is bivariate Poisson and the claim size distribution is bivariate.

Although the case of BPD has attracted some attention in the literature, BCPD
has not been systematically studied. The studies on such a distribution are sparse
due to computational problems involved in its implementation. Hesselager (1996)
studied the BCPD but mainly from the recursive evaluation of its joint probability
function. On the other hand, non-existence of explicit probabilities and algorithm
of the BCPD hinders its use in probability theory itself and its applications in
seismology, actuarial science, survival analysis, etc. (see Ozel & Inal 2008, Wienke,
Ripatti, Palmgren & Yashin 2010). Consequently, since relative results are sparse
and case oriented, the aim of this study is to obtain a general technique for deriving
the probabilistic characteristics and obtain an algorithm for the computation of
probabilities.

The rest of the paper is organised as follows. In Section 2, some preliminary
results are given. In Section 3, the probabilistic characteristics of the BCPD
are proposed based on the derivation of the joint probability generating function
(pgf). This pgf enables us to obtain the joint probability function of the BCPD. In
addition, explicit expressions for the product moments, cumulants, covariance and
correlation coefficient are obtained. Then numerical examples and an application
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to earthquakes in Turkey are presented in Section 4, by means of the proposed
algorithm in Maple. The conclusion is given in Section 5.

2. Some Preliminary Results

Let N be a Poisson random variable with parameter λ > 0 and let Xi, i =
1, 2, . . . be i.i.d. non-negative, integer-valued random variables, independent of N .
S has a compound Poisson distribution (CPD), when defined as

S =

N
∑

i=1

Xi (1)

If E(X) and V (X) are the common mean and variance of the random variables
X1, i = 1, 2, . . ., then, the moments of S are given by

E(S) = λE(X), V (S) = λ[V (X) + [E(X)]2] (2)

The probability function of S is given by

pS(s) = P (S = s) =
∞
∑

n=0

P (X1 +X2 + · · ·+Xn = s | N = n)P (N = n), s = 0, 1, 2 . . . (3)

However, it is not easy to yield an explicit formula for the probability function of
S from (3), and this obstructs use of the CPD completely (see, for example Bruno,
Camerini, Manna & Tomassetti 2006, Rolski, Schmidli, Schmidt & Teugels 1999).
Panjer (1981) described a procedure for recursive evaluation of the CPD when N
is Poisson distributed.

Let N be a Poisson distributed random variable with parameter λ and let S
be a compound Poisson distributed random variable. Panjer (1981) showed that
when N satisfies a recursion in the form pN(n) = λ

n
pN (n− 1), n = 1, 2, 3 . . . than

S satisfies

pS(0) = e−λ[1−pX(0)]

pS(s) = λ
s
∑

i=1

i

s
pX(i)pS(s− i), s = 1, 2, 3 . . .

(4)

where pX(x) is the common probability function of Xi, i = 1, 2, 3 . . . Since
(4) is based on a recursive scheme, it causes difficulties in computation time and
computer memory for the large values of s (Rolski et al. 1999). The explicit
probabilities of S are obtained by Ozel & Inal (2010) as in (6) by using (5).

Let Xi, i = 1, 2, 3 . . ., be i.i.d. discrete random variables with the probabilities
P (Xi = j) = pj , j = 0, 1, 2 . . . and let define the parameters λj = λpj . The
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common probability generating function (pgf) of Xi, i = 1, 2, 3 . . ., is given by
gX(s) =

∑

∞

j=0 pjs
j = p0 + p1s+ p2s

2 + · · · and the pgf of S is given by

gS(z) =

∞
∑

n=0

e−λλ
n

n!
[gX(z)]n = e−λ

[

1 +
λgX(z)

1!
+

(λgX(z))2

2!
+ · · ·

]

= eλ[gX (z)−1] = eλ[(p0+p1z+···+pmzm)−1]

= e−λ(1−p0)eλ1z+λ2z
2+···+λmzm

(5)

Let N be a Poisson distributed random variable with parameter λ > 0 and
λj = λpj , j = 1, 2, . . . ,m. Then, the explicit formula for the probability function
of S is determined by using (5) as follows:

P (S = 0) = e−λ(1−p0)

P (S = 1) = e−λ(1−p0)
λ1

1!

P (S = 2) = e−λ(1−p0)

[

λ2
1

2!
+

λ2

1!

]

P (S = 3) = e−λ(1−p0)

[

λ3
1

3!
+

λ1λ2

1!1!
+

λ3

1!

]

P (S = 4) = e−λ(1−p0)

[

λ4
1

4!
+

λ2
1λ2

2!1!
+

λ1λ3

1!1!
+

λ2
2

2!
+

λ4

1!

]

P (S = 5) = e−λ(1−p0)

[

λ5
1

5!
+

λ3
1λ2

3!1!
+

λ2
1λ3

2!1!
+

λ1λ
2
2

1!2!
+

λ1λ4

1!1!
+

λ2λ3

1!1!
+

λ5

1!

]

...

(6)

According to the above probabilities for s = 1, 2, . . ., the on the right terms
depend on how s can be partitioned into different forms using integers 1, 2, . . .,m.
For example, if s = 5, it is partitioned in seven ways and all the partitions of five
are {1, 1, 1, 1, 1}, {1, 1, 1, 2}, {1, 2, 2}, {1, 1, 3}, {2, 3}, {1, 4}, {5}. Note that S has
a Neyman type A distribution if Xi, i = 1, 2, . . . are Poisson distributed in (1).
Similarly, if Xi, i = 1, 2, . . . are truncated Poisson distributed, S has a Thomas
distribution. S has a Neyman type B distribution if Xi, i = 1, 2, . . ., are binomial
distributed. If Xi, i = 1, 2, . . . are geometric distributed, S has a geometric-
Poisson (Pólya-Aeppli) distribution. Let us point out that (6) is also extended
by Ozel & Inal (2011) for these special cases of the CPD and by Ozel & Inal
(2008) for the compound Poisson process with an application for earthquakes in
Turkey. There has also been an increasing interest in bivariate discrete probability
distributions and many forms of these distributions have been studied (see, for
example, Kocherlakota & Kocherlakota 1992, Johnson et al. 1997). The BPD has
been constructed by Holgate (1964) as in (7) using the trivariate reduction method.

Let M0,M1,M2 be independent Poisson variables with parameters λ0, λ1, λ2,
respectively. Then, N1 = M0 + M1 and N2 = M0 + M1 follow a BPD and the

Revista Colombiana de Estadística 34 (2011) 545–566



Bivariate Compound Poisson 549

joint probability function is given by

pN1,N2
(n1, n2) = P (N1 = n1, N2 = n2) =

e−(λ0+λ1+λ2)

min(n1,n2)
∑

i=0

λn1−i
1 λn2−i

2 λi
0

(n1 − i)!(n2 − i)!i!
, n1, n1 = 0, 1, 2, . . . (7)

The formula in (7), allows positive dependence between N1 and N2. Marginally,
each random variable follows a Poisson distribution with E(N1) = V (N1) = λ0+λ1

and E(N2) = V (N2) = λ0 + λ2. Moreover, Cov(N1, N2) = λ0, and hence λ0 is a
measure of dependence between the two random variables. Then, the correlation
coefficient of N1 and N2 is given by

ρ =
λ0

√

(λ0 + λ1)(λ0 + λ2)

This implies that λ0 = 0 is a necessary and sufficient condition for N1 and N2

to be independent. Also, λ0 = 1, if and only if, N1 and N2 are linearly dependent.

In Section 3, the concept of the CPD is extended to the bivariate case.

3. Main Results

3.1. The Joint Probability Function

Let M0,M1,M2 be independent Poisson variables with parameters λ0, λ1, λ2,
respectively, and let N1 = M0+M1, N2 = M0+M2 be bivariate Poisson distributed
random variables with parameters λ0+λ1 and λ0+λ2. Then, (S1, S2) has a BCPD
when defined as

(

S1 =

N1
∑

i=1

Xi, S2

N2
∑

i=1

Yi

)

(8)

where Xi and Yi, i = 1, 2, . . . i.i.d. integer-valued random variables and indepen-
dent of N1 and N2.

In particular, if Xi and Yi, i = 1, 2, . . . are Poisson distributed with parameters
µ1 and µ2 in (8), S1 and S2 have a bivariate Neyman type A distribution. If
Xi and Yi, i = 1, 2, . . . are binomial distributed with parameters (m1, p1) and
(m2, p2), S1 and S2 have a bivariate Neyman type B distribution. Let Xi and
Yi, i = 1, 2, . . . are truncated Poisson distributed with the probability functions

pj = P (Xi = j) = e−α1
α

j−1

1

(j−1)! , j = 1, 2, 3, . . . and qk = P (Yi = k) = e−α2
α

j−1

2

(j−1)! ,

k = 1, 2, 3, . . . for α1, α2 > 0, respectively. Then, the pair of (S1, S2) has a bivariate
Thomas distribution. If Xi and Yi, i = 1, 2, . . . are geometric distributed with
parameters θ1 and θ2, S1 and S2 have a bivariate geometric-Poisson distribution.
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The joint probability function of S1 and S2 takes the following form

pS1,S2
(s1, s2) =

∞
∑

n1

∞
∑

n2

p(n1, n2)P (X1 + · · ·+Xn1
= s1 | N1 = n1)

P (Y1 + · · ·+ Yn2
= s2 | N2 = n2), s1, s2 = 0, 1, . . . (9)

where pS1,S2
(s1, s2) = P (S1 = s1, S2 = s2). Since the probability function given

in (9) contains a summation over i from 0 to ∞, it is not suitable to obtain
probabilities quickly (Ambagaspitiya 1998). More generally, for large n1 and n2,
it is difficult to use (9) because of the high order of convolutions involved.

Hesselager (1996), in his pioneering work on recursive computation of the bi-
variate compound distributions, considered three classes of Poisson distributions
and related compound distributions. A brief description of related recursive rela-
tions is given as follows:

Let M0,M1,M2 be independent Poisson variables with parameters λ0, λ1, λ2.
Let pX(x) and pY (y) be the common probability function of Xi, Yi, i = 1, 2, . . ., re-
spectively. Then, the joint probability function of S1 and S2 satisfies the recursive
relations

pS1,S2
(s1, s2) =

λ1

s1

s1
∑

x=1

xpX(x)pS1,S2
(s1 − x, s2)+

λ0

s1

s1
∑

x=1

s2
∑

y=0

xpX(x)pY (y)pS1,S2
(s1 − x, s2 − y)

pS1,S2
(s1, s2) =

λ2

s1

s1
∑

x=1

ypY (y)pS1,S2
(s1, s2 − y)+

λ0

s2

s1
∑

x=0

s2
∑

y=1

ypX(x)pY (y)pS1,S2
(s1 − x, s2 − y)

s1, s2 = 1, 2, . . .

(10)

Although the use of these recursions considerably reduces the number of com-
putations to obtain probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . compared
with the traditional method based on convolutions in (9), these computations are
still time consuming since each probability depends on all the preceding ones. It
occurs in underflow problems which are not always easy to overcome and therefore
restrict its applicability further (Sundt 1992). Thus, it can be applied only in some
practical circumtances or in an approximate manner.

Finally to establish the probabilistic characteristics of the BCPD. We first
compute the joint pgf of S1 and S2 as follows:

Let Xi, Yi, i = 1, 2, . . . be i.i.d. discrete random variables with the probabilities
P (Xi = j) = pj , j = 0, 1, 2, . . . ,m and P (Yi = k) = qk, k = 0, 1, 2, . . . , r. Then,
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the joint pgf of S1 and S2 is found to be

gS1,S2
(z1, z2) =

∞
∑

s1

∞
∑

s2

P

(

N1
∑

i=1

Xi = s1,

N2
∑

i=1

Yi = s2

)

zs11 zs22

=

∞
∑

s1

∞
∑

s2

∞
∑

n1

∞
∑

n2

P

(

n1
∑

i=1

Xi = s1,

n2
∑

i=1

Yi = s2 | N1 = n1, N2 = n2

)

pN1,N2
(n1, n2)z

s1
1 zs22

=

∞
∑

n1

∞
∑

n2

pN1,N2
(n1, n2)

∞
∑

s1

∞
∑

s2

P

(

n1
∑

i=1

Xi = s1,

n2
∑

i=1

Yi = s2 | N1 = n1, N2 = n2

)

zs11 zs22

Since Xi, Yi, i = 1, 2, . . . are i.i.d. random variables, we have

gS1,S2
(z1, z2) =

∞
∑

n1

∞
∑

n2

pN1,N2
(n1, n2)

∞
∑

s1

P (X1 + · · ·+Xn1
= s1)z

s1
1

∞
∑

s2

P (Y1 + · · ·+ Yn2
= s1)z

s2
2

=

∞
∑

n1

∞
∑

n2

pN1,N2
(n1, n2)gX1+···+Xn1

(z1)gY1+···+Yn2
(z2)

=

∞
∑

n1

∞
∑

n2

pN1,N2
(n1, n2)[gX(z1)]

n1 [gY (z2)]
n2

= gN1,N2
[gX(z1), gY (z2)]

(11)

where gX(z1), gY (z2) are the common pgfs of Xi, Yi, i = 1, 2, . . ., respectively.

Let N1 = M0 +M1, N2 = M0 +M2 be a BPD with parameters λ0 + λ1 and
λ0 + λ2, then the joint pgf of N1 and N2 is given by

gN1,N2
(z1, z2) = gM0+M1,M0+M2

(z1, z2)

= E(zM0+M1

1 zM0+M2

2 )

= E(zM1

1 )E(zM2

2 )E(z1z2)
M0

= exp[λ1(z1 − 1) + λ2(z2 − 1) + λ0(z1z2 − 1)]

(12)
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From (11) and (12), the joint pgf of S1 and S2 is obtained by the following
expression

gS1,S2
(z1, z2) = exp

(

λ1[gX(z1)− 1] + λ2[gY (z2)− 1]

+ λ0[gX(z1)gY (z2)− 1]
)

= exp
(

λ1[p0 + p1z1 + p2z
2
1 + · · ·+ pmzm1 − 1]

+ λ2[q0 + q1z1 + q2z
2
2 + · · ·+ qrz

r
2 − 1]

+ λ0

[

(p0 + p1z2 + p2z
2
1 + · · ·+ pmzm1 )

(q0 + q1z2 + q2z
2
2 + · · ·+ qrz

r
2)− 1

])

= exp
(

−(λ0 + λ1 + λ2)
)

exp
(

λ1(p0 + p1z1 + · · ·+ pmzm1 )

+ λ2(q0 + q1z2 + · · ·+ qrz
r
2)

+ λ0[(p0 + p1z1 + · · ·+ pmzm1 )(q0 + q1z2 + · · ·+ qrz
r
2)]
)

(13)

Now we are interested in studying the joint probability function of the pair
S1 and S2. The joint pgf in (13) can be differentiated any number of times with
respect to s1 and s2 and evaluated at (0, 0) yielding

P (S1 = 0, S2 = 0) = gS1,S2
(0, 0)

P (S1 = s1, S2 = s2) =

∂S1+S2gS1,S2
(z1,z2)

∂z
s1
1

z
s2
2

∣

∣

∣

z1=z2=0

s1!s2!
, s1s2 = 0, 1, 2, . . .

(14)

Differentiating the joint pgf given by (13) and substituting in (14) and after
some algebraic manipulations, the probabilities pS1,S2

(s1, s2) = P (S1 = s1, S2 =
s2), s1s2 = 0, 1, 2, . . . are obtained as

pS1,S2
(0, 0) = e−(λ0+λ1+λ2)e(λ1p0+λ2q0+λ0p0q0)

pS1,S2
(1, 0) = pS1,S2

(0, 0)

[

p1
Λx

1!

]

pS1,S2
(2, 0) = pS1,S2

(0, 0)

[

p21
Λ2
x

2!
+ p2

Λx

1!

]

pS1,S2
(3, 0) = pS1,S2

(0, 0)

[

p31
Λ3
x

3!
+ p1p2

Λ2
x

2!
+ p3

Λx

1!

]

pS1,S2
(0, 1) = pS1,S2

(0, 0)

[

q1
Λy

1!

]

Revista Colombiana de Estadística 34 (2011) 545–566



Bivariate Compound Poisson 553

pS1,S2
(0, 2) = pS1,S2

(0, 0)

[

q21
Λ2
y

2!
+ q2

Λy

1!

]

pS1,S2
(0, 3) = pS1,S2

(0, 0)

[

q31
Λ3
y

3!
+ q1q2

Λ2
y

2!
+ q3

Λy

1!

]

pS1,S2
(1, 1) = pS1,S2

(0, 0)

[

p1q1

(

ΛxΛy

1!1!
+ λ0

)]

pS1,S2
(1, 2) = pS1,S2

(0, 0)

[

p1q
2
1

(

ΛxΛ
2
y

1!2!
+

Λy

1!

)

+ p1q2

(

ΛxΛy

1!1!
+ λ0

)

]

pS1,S2
(1, 3) = pS1,S2

(0, 0)

[

p1q
3
1

(

ΛxΛ
3
y

1!3!
+

Λ2
y

2!

)

+ p1q1q2

(

ΛxΛ
2
y

1!2!
+

Λy

1!

)

+ p1q3

(

ΛxΛy

1!1!
+ λ0

)]

pS1,S2
(2, 1) = pS1,S2

(0, 0)

[

p21q1

(

Λ2
xΛy

1!2!
+

Λx

1!

)

+ p2q1

(

ΛxΛy

1!1!
+ λ0

)]

pS1,S2
(2, 2) = pS1,S2

(0, 0)

[

p21q
2
1

(

Λ2
xΛ

2
y

2!2!
+

ΛxΛy

1!1!
+ λ2

0

)

+ p21q2

(

Λ2
xΛy

2!1!
+

Λx

2!1!

)

+ p2q
2
1

(

ΛxΛ
2
y

1!2!
+

Λy

1!

)

+ p2q2

(

ΛxΛy

1!1!
+ λ0

)]

pS1,S2
(2, 3) = pS1,S2

(0, 0)

[

p21q
3
1

(

Λ2
xΛ

3
y

2!3!
+

ΛxΛ
2
y

1!2!
+

Λy

1!

)

+ p21q1q2

(

Λ2
xΛ

2
y

2!2!
+

ΛxΛy

1!1!
+ λ2

0

)

+ p2q
3
1

(

ΛxΛ
3
y

3!1!
+

Λ2
y

2!

)

+ p2q1q2

(

ΛxΛ
2
y

1!2!
+

Λ2
y

2!
+

Λy

1!

)

+ p21q3

(

Λ2
xΛy

2!1!
+

Λx

1!

)

+ p2q3

(

ΛxΛy

1!1!
+ λ0

)]

(15)

where Λx = (λ1 + λ0q0) and Λy = (λ2 + λ0p0). According to above probabilities
P (S1 = s1, S2 = s2), s1, s2 = 1, 2, 3, . . . the on the right side terms pj , j =
1, 2, . . . ,m and qk, k = 1, 2, . . . , r depend on how s1 and s2 can be partitioned into
different forms using integers 1, 2, . . . Similarly, the terms Λx and Λy also have an
order related with the powers of pj, j = 1, 2, . . . ,m and qk, k = 1, 2, . . . , r based
on the integer partitions. Furthermore, the denominators of Λx and Λy suitable
to these partitions. For example, if (s1 = 1, s2 = 3), the partitions of pj for j = 1
and qk, k = 1, 2, 3 are (p1, q

3
1), (p1, q1q2), (p1, q3) and the partitions of Λx and Λy
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are
[(

Λx

1! ,
Λ3

y

3! ,
Λ2

y

2!

)]

for p1, q
3
1 ,
[(

Λx

1! ,
Λ2

y

2! ,
Λy

1!

)]

for p1, q1q2,
[(

Λx

1! ,
Λ1

y

1!

)]

for p1, q3.

Using these properties, an algorithm is prepared in Maple for the joint probability
function of the BCPD.

A general formula is given in (15) for the joint probability function of the
BCPD. P (Xi = j) = pj, j = 0, 1, 2, . . . .m and P (Yi = k) = qk, k = 0, 1, 2, . . . , r
are defined in (15) to obtain joint probabilities of bivariate Neyman type A and
B, Thomas and geometric-Poisson distribution respectively,

pj = e−µ1µj
1/j!, j = 0, 1, 2, . . .

qk = e−µ2µk
2/k!, k = 0, 1, 2, . . .

pj =

(

m1

j

)

pj1(1− p1)
m1−j, j = 0, 1, 2, . . . ,m1

qk =

(

m2

k

)

pk2(1− p2)
m2−k, k = 0, 1, 2, . . . ,m2

pj = e−α1α
(j−1)
1 /(j − 1)!, j = 1, 2, . . .

qk = e−α2α
(k−1)
2 /(k − 1)!, k = 1, 2, . . .

pj = θ1(1 − θ1)
j , j = 0, 1, 2, . . .

qk = θ2(1 − θ2)
k, k = 0, 1, 2, . . .

3.2. Joint Moment Characteristics

We turn now to the consideration of moments and coefficient of correlation for
the BCPD. As far as we know, product moments, cumulants, coefficient of corre-
lation and covariance of the BCPD have never been investigated before (Homer
2006). We start with finding (a, b)-th product moment µ′(a, b) = E(Sa

1S
b
2). We de-

rive the product moments of S1 and S2 by calculating the joint moment generating
function

M(z1, z2) = exp(−(λ0 + λ1 + λ2)) exp
(

λ1[p0 + p1 exp(z1) + · · ·+ pm exp(zm1 )]

+ λ2[q0 + q1 exp(z2) + · · ·+ qr exp(z
r
2)]

+ λ0[(p0 + p1 exp(z1) + · · ·+ pm exp(zm1 ))

(q0 + q1 exp(z2) + · · ·+ qr exp(z
r
2))]
)
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Differentiating M(z1, z2) at z1 = z2 = 0, the (a, b)-th product moments are
given by

µ′(1, 1) = µ
[1]
X µ

[1]
Y (Λ1 + Λ2 + Λ0)

µ′(2, 1) =
(

µ
[1]
X

)2

µ
[1]
Y (Λ2

1Λ2 + Λ1) + µ
[2]
X µ

[1]
Y (Λ1Λ2 + Λ0)

µ′(3, 1) =
(

µ
[1]
X

)3

µ
[1]
Y (Λ3

1Λ2 + Λ2
1) + µ

[1]
X µ

[2]
X µ

[1]
Y (Λ2

1Λ2 + Λ1)

+ µ
[3]
X µ

[1]
Y (Λ1Λ2 + Λ0)

µ′(2, 2) =
(

µ
[1]
X

)2 (

µ
[1]
Y

)2

(Λ2
1Λ

2
2 + Λ1Λ2 + Λ2

0)

+ µ
[2]
X

(

µ
[1]
Y

)2

(Λ1 + Λ2
2 + Λ2) +

(

µ
[1]
X

)2

µ
[2]
Y (Λ2

1Λ2 + Λ1)

+ µ
[2]
X µ

[2]
Y (Λ1Λ2 + Λ0)

µ′(2, 3) =
(

µ
[2]
X

)2 (

µ
[1]
Y

)3

(Λ2
1Λ

3
2 + Λ1Λ

2
2 + Λ2)

+ µ
[2]
X

(

µ
[1]
Y

)3

(Λ1Λ
3
2 + Λ2

2) +
(

µ
[1]
X

)2

µ
[1]
Y µ

[2]
Y (Λ2

1Λ
2
2 + Λ1Λ2 + Λ2

0)

+ µ
[2]
X µ

[1]
Y µ

[2]
Y (Λ1Λ

2
2 + Λ2)

+
(

µ
[1]
X

)2

µ
[3]
Y (Λ2

1Λ2 + Λ1)µ
[2]
X µ

[3]
Y (Λ1Λ2 + Λ0)

(16)

3.3. Cumulants

The joint cumulant generating function of S1 and S2 is the logarithm of the
joint moment generating function M(z1, z2) and is given by

κS1,S2
(z1, z2) = −(λ0 + λ1 + λ2)λ1[p0 + p1 exp(z1) + · · ·+ pm exp(zm1 )]

+ λ2[q0 + q1 exp(z2) + · · ·+ qr exp(z
r
2)] + λ0[(p0 + p1 exp(z1) + · · ·+ pm exp(zm1 ))

(q0 + q1 exp(z2) + · · ·+ pr exp(z
r
2))] (17)

From (17) we have

κ1,1 = λ1µX + λ2µY + λ0µXµY

κ1,2 = λ1µX + λ2µ
2
Y + λ0µXµ2

Y

κ2,2 = λ1µ
2
X + λ2µ

2
Y + λ0µ

2
Xµ2

Y

κ2,3 = λ1µ
2
X + λ2µ

3
Y + λ0µ

2
Xµ3

Y

where µX and µY are the expected values of Xi and Yi, i = 1, 2, . . ., respectively.
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3.4. Independence of S1 and S2

The covariance of S1 and S2 is obtained using (2) and (16)

Cov(S1, S2) = E(S1S2)− E(S1)E(S2)

= E(X)E(Y )[(λ0 + λ1)(λ0 + λ2) + λ0]

− [(λ0 + λ1)E(X)][(λ0 + λ2)E(Y )]

= λ0E(X)E(Y )

(18)

Let σs1 and σs2 be standard deviations of the random variables S1 and S2,
then the coefficient of correlation of S1 and S2 is obtained from (2) and (18) as
follows

ρ = Corr(S1, S2) =
Cov(S1, S2)

σs1σs2

=
λ0E(X)E(Y )

√

(λ0 + λ1)[V (X) + [E(X)]2](λ0 + λ2)[V (Y ) + [E(Y )]2]

(19)

Note that the correlation of S1 and S2 assumes only positive values. This
implies that ρ = 0 is a necessary condition for S1 and S2 to be independent. Also,
ρ = 1 if and only if S1 and S2 are linearly dependent.

3.5. Asymptotics

If (λ0 + λ1) → ∞, (λ0 + λ2) → ∞, then

(Z1, Z2) =

(

S1 − (λ0 + λ1)E(X)
√

(λ0 + λ1)[V (X) + [E(X)]2]
,

S2 − (λ0 + λ2)E(Y )
√

(λ0 + λ2)[V (Y ) + [E(Y )]2]

)

(20)

follows a standardized normal bivariate distribution and asymptotically,
(Z2

1−2ρZ1Z2+Z2
2)

1−ρ2 is a Chi-squared distribution with two degrees of freedom.

4. Some Numerical Examples

As an illustration of the BCPD and algorithm, a variety of special cases for the
BCPD is considered. An algorithm is prepared in Maple for the joint probability
function of the BCPD. This algorithm can also be used for the special cases of the
BCPD. The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . are presented
in Table 1, which are calculated from (15) for the bivariate Neyman type A dis-
tribution. In these calculations, Xi, i = 1, 2, . . . have a Poisson distribution with
parameter µ1 = 0.35 and Yi, i = 1, 2, . . . have a Poisson distribution with parame-
ter µ2 = 0.65; M0,M1,M2 are independent Poisson distributed random variables
with parameters λ0 = 0.5, λ1 = 0.7, λ2 = 0.1, respectively.

Table 2 presents P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . for the bivariate
Neyman type B distribution where Xi, i = 1, 2, 3, . . . are binomial distributed with
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Table 1: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(µ1 = 0.35, µ2 = 0.65) and (λ0 = 0.5, λ1 = 0.7, λ2 = 0.1).

s1
s2 0 1 2 3 4 5

0 0.2836 0.1163 0.0674 0.0436 0.0212 0.0192

1 0.0985 0.0776 0.0167 0.0091 0.0149 0.0064

2 0.0867 0.0113 0.0095 0.0074 0.0097 0.0052

3 0.0065 0.0095 0.0074 0.0037 0.0087 0.0049

4 0.0042 0.0082 0.0062 0.0019 0.0063 0.0037

5 0.0038 0.0075 0.0057 0.0011 0.0041 0.0024

parameters (m1 = 5, p1 = 0.02) and Yi, i = 1, 2, . . . are binomial distributed with
parameters (m2 = 15, p2 = 0.3); M0,M1,M2 are independent Poisson distributed
random variables with parameters λ0 = 0.4, λ1 = 0.6, λ2 = 0.2, respectively.

Table 2: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(m1 = 5, p1 = 0.02), (m2 = 15, p2 = 0.3) and (λ0 = 0.4, λ1 = 0.6, λ2 = 0.2).

s1
s2 0 1 2 3 4 5

0 0.2836 0.1163 0.0674 0.0436 0.0212 0.0192

1 0.0985 0.0776 0.0167 0.0091 0.0149 0.0064

2 0.0867 0.0113 0.0095 0.0074 0.0097 0.0052

3 0.0065 0.0095 0.0074 0.0037 0.0087 0.0049

4 0.0042 0.0082 0.0062 0.0019 0.0063 0.0037

5 0.0038 0.0075 0.0057 0.0011 0.0041 0.0024

The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . are shown in Table 3,
for the bivariate Thomas distribution. In these calculations Xi, i = 1, 2, 3, . . ., have
a truncated Poisson distribution with parameter α1 = 0.75 and Yi, i = 1, 2, 3, . . .
have a truncated Poisson distribution with parameter α2 = 2; M0,M1,M2 are
independent Poisson distributed random variables with parameters λ0 = 0.5, λ1 =
0.4, λ2 = 0.2, respectively.

The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . . are presented in
Table 4, for the bivariate geometric-Poisson distribution. In these calculations, Xi,
i = 1, 2, 3, . . . have a geometric distribution with parameter θ1 = 0.25 and Yi, i =
1, 2, 3, . . ., have a geometric distribution with parameter θ2 = 0.5; M0,M1,M2 are
independent Poisson distributed random variables with parameters λ0 = 0.9, λ1 =
0.5, λ2 = 0.2, respectively.

The results are also illustrated with an analysis of the earthquake data in
Turkey. The data is obtained from the database of the Kandilli Observatory,
Turkey. Earthquakes are an unavoidable natural disasters for Turkey since a sig-
nificant portion of Turkey is subject to frequent destructive mainshocks, their
foreshock and aftershock sequences. In this study, mainshocks that occured in
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Table 3: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(α1 = 0.75, α2 = 2) and (λ0 = 0.5, λ1 = 0.4, λ2 = 0.2).

s1
s2 0 1 2 3 4 5 6

0 0.4266 0.0540 0.0533 0.0306 0.0225 0.0094 0.0082

1 0.0707 0.0288 0.0131 0.0090 0.0061 0.0085 0.0069

2 0.0468 0.0114 0.0096 0.0074 0.0056 0.0067 0.0053

3 0.0421 0.0094 0.0089 0.0052 0.0042 0.0052 0.0047

4 0.0019 0.0061 0.0072 0.0043 0.0035 0.0048 0.0034

5 0.0003 0.0043 0.0064 0.0038 0.0027 0.0032 0.0028

6 0.0002 0.0036 0.0056 0.0029 0.0018 0.0025 0.0019

Table 4: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
(θ1 = 0.25, θ2 = 0.5) and (λ0 = 0.9, λ1 = 0.5, λ2 = 0.2).

s1
s2 0 1 2 3 4 5 6 7

0 0.3122 0.0374 0.0430 0.0449 0.0387 0.0212 0.0145 0.0093

1 0.0285 0.0173 0.0323 0.0146 0.0214 0.0109 0.0098 0.0086

2 0.0097 0.0115 0.0237 0.0099 0.0138 0.0093 0.0083 0.0074

3 0.0149 0.0092 0.0116 0.0084 0.0097 0.0082 0.0045 0.0062

4 0.0099 0.0083 0.0092 0.0063 0.0085 0.0073 0.0037 0.0053

5 0.0076 0.0064 0.0092 0.0055 0.0073 0.0064 0.0021 0.0047

6 0.0068 0.0035 0.0086 0.0048 0.0062 0.0056 0.0001 0.0036

7 0.0052 0.0023 0.0062 0.0027 0.0053 0.0043 0.0001 0.0027

Turkey between 1900 and 2010, having surface wave magnitudes Ms ≥ 5.0, their
foreshocks within five days with Ms ≥ 3.0 and aftershocks within one month with
Ms ≥ 4.0, are considered. In this area, 132 mainshocks with surface magnitude
Ms ≥ 5.0 have occured between 1900 and 2010.

(Kocyigit & Ozacar 2003)

A BCPD is constructed to explain the total number of foreshocks and af-
tershocks in Turkey. For this purpose, the neotectonic subdivision of Turkey is
considered for the first time with the BCPD. To better understand the neotec-
tonic features and active tectonics of Turkey, the simplied tectonic map of Turkey
is given in Figure 1.

As seen in Figure 1, Turkey is divided into three main neotectonic domains:
area of extensional neotectonic regime, area of strike-slip neotectonic regime with
normal component and area of strike-slip neotectonic regime with thrust compo-
nent. The mainshocks in Turkey are separated according to these neotectonic
zones to obtain more reliable results. Let M0 be the number of mainshocks in
the area of extensional neotectonic regimes, M1 be the number of mainshocks
in the area of strike-slip neotectonic regime with normal component and M2

be the area of strike-slip neotectonic regime with thrust component. Then Xi,
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Figure 1: Neotectonic subdivision of Turkey and adjacent areas (Kocyigit & Ozacar
2003).

i = 1, 2, 3, . . . are defined as the number of foreshocks of ith mainshock and Yi,
i = 1, 2, 3, . . . are defined as the number of aftershocks of ith mainshock. Hence,
(

S1 =
∑N1

i=1 Xi, S2 =
∑N2

i=1 Yi

)

shows the total number of foreshocks and after-

shocks for the mainshocks. If the following conditions hold, the pair of (S1, S2)
has a BCPD:

Condition 1 Fit of the Poisson distribution to the mainshocks: Several studies
have modelled earthquakes in Turkey as a Poisson distribution (Kalyoncuoglu
2007, Ozel & Inal 2008). The test for goodness of fit is performed to com-
pare the observed frequency distributions of the mainshocks to the theo-
retical Poisson distribution. Chi-square values of M0,M1,M2 are calcu-
lated as (0.082 with df = 9, p-value= 0.248), (0.068 with df = 15, p-value
= 0.563 ), and (0.875 with df = 10, p-value = 0.351, respectively. These val-
ues indicate that M0,M1,M2 fit the Poisson distribution with parameters
λ0 = 2.83, λ1 = 0.862, λ2 = 0.145 at the level of 0.05, respectively.

Condition 2 Independency tests of the random variables N1, N2, Xi and Yi,
i = 1, 2, . . .: Previous studies have indicated that there is no correlation
between the number of mainshocks, foreshocks and aftershocks (Agnew &
Jones 1991). Spearman’s ρ test verifies the absence of correlation between N1

and Xi, i = 1, 2, . . . (Spearman’s ρ = 0.092; p-value = 0.759). No correlation
is also found between N2 and Yi, i = 1, 2, . . . (Spearman’s ρ = 0.017; p-
value = 0.473). Similarly, it is shown that there is no statistically significant
dependence between Xi and Yi, i = 1, 2, . . . (Spearman’s ρ = 0.098; p-value
= 0.764).

Condition 3 Fit of the binomial distribution to the foreshocks: As discussed in
Jones (1985), if the occurrence of foreshock sequences is assumed as inde-
pendent from the occurrence of mainshocks without foreshocks, then the
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distribution of foreshocks in the set of all earthquakes can be treated as a
binomial distribution. The percentage, p, of foreshocks is an estimate of the
probability that a future earthquake will be a foreshock. After obtaining the
frequency distribution of foreshocks and the result of the test for goodness of
fit (χ2 = 1.437, with df = 36, p-value = 0.925), it is seen that Xi, i = 1, 2, . . .
have a binomial distribution with parameters m = 35, p = 0.953 at the level
of 0.05.

Condition 4 Fit of the geometric distribution to the aftershocks: It is pointed
that in the literature the number of aftershocks of a shock has a geometric
distribution (Christophersen & Smith 2000). The test for goodness of fit is
carried out to compare the theoretical geometric distribution to the exper-
imental geometric distribution for the number of aftershocks. The test for
goodness of fit (χ2 = 1.184, with df = 30, p-value = 0.273) shows that Yi,
i = 1, 2, . . . have a geometric distribution with parameter θ = 0.086.

Because all conditions hold, it can be written
(

S1 =
∑N1

i=1 Xi, S2 =
∑N2

i=1 Yi

)

and suggested that (S1, S2) has a BCPD. Then, P (S1 = s1, S2 = s2), s1, s2 =
0, 1, 2, . . . are computed using (15) for the parameters λ0 = 2.83, λ1 = 0.862, λ2 =
0.145; (m = 35, p = 0.953); θ = 0.086 and presented in Table 5.

Table 5: The probabilities P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . ., with the parameters
θ = 0.086 and (m = 35, p = 0.953) and (λ0 = 2.83, λ1 = 0.862, λ2 = 0.145).

s1

s2 0 1 2 3 4 5 6 7 8 9 10

0 0.3630 0.0071 0.0001 0.0049 0.0041 0.0040 0.0037 0.0026 0.0013 0.0010 0.0009

1 0.0075 0.0063 0.0053 0.0045 0.0038 0.0036 0.0035 0.0034 0.0013 0.0009 0.0009

2 0.0001 0.0056 0.0048 0.0041 0.0034 0.0035 0.0034 0.0032 0.0012 0.0008 0.0007

3 0.0058 0.0050 0.0043 0.0037 0.0031 0.0035 0.0032 0.0032 0.0009 0.0008 0.0006

4 0.0051 0.0044 0.0037 0.0033 0.0022 0.0021 0.0021 0.0019 0.0009 0.0007 0.0005

5 0.0041 0.0040 0.0034 0.0031 0.0020 0.0019 0.0019 0.0017 0.0008 0.0006 0.0005

6 0.0035 0.0032 0.0031 0.0030 0.0019 0.0019 0.0016 0.0015 0.0006 0.0005 0.0003

7 0.0021 0.0020 0.0020 0.0029 0.0016 0.0015 0.0014 0.0014 0.0006 0.0004 0.0003

8 0.0018 0.0018 0.0013 0.0015 0.0015 0.0013 0.0009 0.0011 0.0004 0.0003 0.0001

9 0.0013 0.0013 0.0009 0.0013 0.0010 0.0009 0.0007 0.0009 0.0004 0.0003 0.0001

10 0.0010 0.0008 0.0008 0.0009 0.0008 0.0008 0.0007 0.0098 0.0002 0.0001 0.0001

It can be seen from Table 5 that the joint probability recurrence of zero fore-
shock and zero aftershock is approximately 0.363. The expected values, variances,
joint moments, cumulants for S1 and S2 are given in Table 6.

Table 6: Expected values, variances and some joint moments and cumulants of S1 and
S2.

E(S1) E(S2) V (S1) V (S2) µ′(1, 1) µ′(2, 1) κ1,1 κ1,2

123.14 34.59 4113.34 804.49 6384.32 22430.97 1128.05 12811.28

As shown in Table 6 that approximately to 123 foreshocks with Ms ≥ 3.0
and 35 aftershocks with Ms ≥ 4.0 are expected in Turkey. It can be concluded
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from Table 5 that the expected value of total number of foreshocks is less than
the expected value of total number of aftershocks. The coefficient of correlation
between S1 and S2 is found as 0.60 using (19). This result seemed to indicate
that increases on the incidence of foreshocks might lead to a more occurences of
aftershocks.

5. Conclusion

In this paper the joint probability function, moments, cumulants, covariance
and coefficient of correlation of BCPD are obtained. It is concluded that P (S1 =
s1, S2 = s2), s1, s2 = 0, 1, 2, . . . can be computed easily for the BCPD if pj ,
j = 1, 2, . . . ,m and qk, k = 1, 2, . . . , r are known. As seen in Section 3, (9) and (10)
need long and tedious computations but P (S1 = s1, S2 = s2), s1, s2 = 0, 1, 2, . . .
can be computed accurately from (15) and its proposed algorithm in Maple. Then,
some important probabilistic characteristics such as moments, cumulants, covari-
ance, and correlation coefficient of the BCPD are provided. Some numerical ex-
amples and an application to the earthquake data have been also presented to
illustrate the usage of the bivariate geometric-Poisson, Thomas, Neyman type A
and B distributions. The results can be informative regarding BCPD and its
applications
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Appendix A. Maple Code for the Joint Probability

Function of the BCPD

# $Source: /u/maple/research/lib/bcpd/jpf, v $

bcpd/jpf‘:=proc(L::{set,nvl},q::posint)

local p0, q0, i, lambda1,lambda2, f_final, R, F,

LambdaP_i, LambdaP_n, j, S1, S2, subscript, k, a, b, c,

n, p, m, z, us, say, y_denom, denom v;

Partitionproduct := proc( n, f, g, statistic) local j, R, visit;

visit:= proc(L) local i, A, S, U, V, W;

A:= add(pow (x, L[i]), i= 1.. nops (L));

S:= [seq(coeff (A,x,i), i=1..n)];

V:= mul (pow (f(i), S[i],i=1,..,n);

W:= mul (pow (g(i), S[i])*S[i]!, i=1..n);

U:= abs (n!*V/W);

i statistic = "sum" then R := R+U

elif statistic = "part" then R := [op (R), U]

elif statistic = "len" then R [nops (L)] := R[nops (L)] + U

elif statistic = "big" then R [L(1)] := R[ K[1]] + U;

fi;

end;

if n = 0 then if statistic = "sum"

then RETURN (1) else RETURN ([1]) fi fi;

if statistic = "sum" then R := 0

elif statistic = "part" then R : = []

else R := [ seq (0, j=1..n)] fi;

GeneratePartitions (n, visit);

R end:

F0 := exp(-lambda1);

if k =1 then

F := lambda1;

else

i := k-2;

n := 2;

F := lambda1^k/k!;

W := lambda2^k/k!;

else

F := F + (lambda1^i/i!)* (LambdaP_n);

W := W + (lambda2^i/i!)* (LambdaP_n);

i := i-1;

n := n+1;

fi;

if i < 0

fi;
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F := 0;

k := k+1;

if k > = subscript then k := 4 ;

else

i := k-2;

m := 1;

n := 2;

nL := nops (L);

F := LambdaP_i * LambdaP_n;

nL := n;

us := 1;

if i =n then us := us+1;

else

y_denom := seq(us!,1);

if F >0 then

do b = nvl(b,0) + F/y_denom while denom =k

m := m+1;

fi

fi;

for z from 1 to n do

p:=0;

if subscript >0 then

p:=p+1;

fi

z:=z-1;

elif z=1 or p>0;

od;

if p=0 then

subscript := F

F := p*LambdaP_n;

denom := subscript/(n+1);

y_denom:= denom*denom!/(denom-1)!

if F and w>0 then

do b = NVL(b,0) + F/y_denom while denom =k

y_denom :=1;

m:=m+1;

fi

fi;

i := i-1;

n := n+1;

p := 0;

while i < k-trunc(k/2)

k := k + 1;

while k > :fNumber;

F := 0;

i := 1;
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fi

j := i-1;

n := 1;

for j from 1 to n do

F := F + lambda1^n/n!;

W := W + lambda1^n/n!;

od;

j := j-1;

n := n+1;

while j < 3;

fi

F := 0;

W := 0;

i := i+1;

while i > :say

set value=nvl(nvl (a,0)+ nvl(b,0)+nvl(c,0),0)*F0

while denom> 0;

end:

return F

for i from 1 to n do

f_final:= 1;

f_final:= f_final*i;

i:=i+1;

while i>n

fi

return f_final

fi;

say :=0;

for i from 1 to n do

v_value(i):=substr (p_string, i, 1);

if v_value(i):=p_string then

say :=say+1;

fi

i:= i+1;

while i-1> length(p);

od;

fi

end:

#savelib(’‘bcpd/jpf‘’):

Revista Colombiana de Estadística 34 (2011) 545–566


	Introduction
	Some Preliminary Results
	Main Results
	The Joint Probability Function
	Joint Moment Characteristics
	Cumulants
	Independence of S1 and S2
	Asymptotics

	Some Numerical Examples
	Conclusion
	Maple Code for the Joint Probability Function of the BCPD

