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STOCHASTIC MODELLING OF MONTHLY

SUN BRIGHT IN COFFEE GROWING

AREAS
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Resumen

Se ajustaron modelos ARIMA a series mensuales de brillo solar obtenidas
en 32 estaciones meteorológicas de la Federación Nacional de Cafeteros de
Colombia. La estructura de los modelos ajustados fue ARIMA(0, 1, 1) ∗
(0, 1, 1)12 de promedios móviles con componente estacional de 12 meses.
Los parámetros estimados fueron suficientes para describir el compor-
tamiento de la serie. Los pronósticos obtenidos fueron muy cercanos de
los valores observados, actualizados mensualmente. Esta caracteŕıstica
permite reajustar el modelo cuando haya cambios en el patrón de la serie
y planificar actividades relacionadas con la absorción de la enerǵıa solar.
El mayor error de pronóstico fue de 23%, considerado como aceptable.

Palabras Clave: Modelo estocástico, ARIMA, Series Temporales, Brillo
solar.
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Abstract

Autorregressive integrated moving average models ARIMA, were ad-
justed to series of monthly sun bright for 32 meteorological stations of
The National Federation of Coffee Growers of Colombia. The structure
of the adjusted models was ARIMA(0, 1, 1) ∗ (0, 1, 1)12 this is a mov-
ing average with a seasonality component each 12 month, the estimated
parameters were sufficient to describe the behavior of the series, they
were statistically different from zero and non correlated. The estimated
forecasts were found very approximated to observed values, they are ac-
tualized monthly, this characteristic allow to readjust the model when
the pattern series change and to plan activities related with absorption
of solar energy. The greatest forecast error was 23% and it is considered
acceptable.

Key words: stochastic model, ARIMA, time series, sun bright.

1 Introduction

Solar radiation that reaches crop surfaces is affected by atmospheric compo-
nents through energy diffusion and absorption processes. That is why energy
observed at the earth’s surface is lower than the one initially enters into the
atmosphere, which is named solar constant (1.367 w/m2).

Radiant energy at the earth’s surface can be measured by means of sun
bright using the following linear function:

A = a + b ∗ Z

N
+ ei

Where:

A: Is the atmospheric transmission showed by the relationship between
daily global radiation observed at each of the sites and daily extraterrestrial
global radiation.

Z: Is the number of daily sun bright hours.

N : Is the number of sun bright hours in the top of the atmosphere; a and
b are the parameters to be estimated.

At the present the National Federation of Coffee Growers does not possess
all the equipment needed to measure radiation in it’s various meteorological
stations; it is mainly because of the cost of getting information. Hence, the
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above expression (A)can be used for calculating the observed daily global radi-
ation, having mean daily sun bright in the surface which was estimated in the
top of the atmosphere. The calculation of radiation using sun bright lets deter-
minate energy quantity that reaches the crop and that is absorbed by it; or else
the one used for generating heat and electric energy for another applications.

Modeling sun bright as a mechanism for stimulating and forecasting dry
matter accumulation and coffee yield represents a primary element for the
production model’s functioning.

Models for time series are applied for describing variables whose observa-
tions are generally made at equally spaced intervals of time; this makes they
depend on each other. Theory and methods for time series have had a strong
development in the three last decades of this century. Its application has spread
to the different branches of science.

Three basic stages are required for building models for time series: model
identification, estimation of the parameters or fitting the identified model; then
its diagnostic and evaluation. Last stage involves calculation and evaluation of
the forecast. It allows one to decide whether to go back to the identification
stage or not, according to the fitting level that the model presents.

Study and development of models for climate variables through forecasts let
plan and program strategies for pest management and control, soil conservation
methods, proper irrigation and drainage management, proper time for farm
practices as well to make forecast for crops, growing, yield and post harvest
management.

So far there is not much work leading to the building of stochastic models
for climate variables in which coffee growers and researchers can be based on
when they want to make crop forecasts.

Modelling climate variables is very useful for the different fields in whichre-
search on coffee is carried out and even for people who growth it. That is the
reason why this paper pretends to show that using Box and Jenkins methodol-
ogy (2)it is possible to build ARIMA models which describe sun bright behavior
and let make forecast.

Based on ARIMA models theory and methods, models for time series will be
built and applied and then make short-term forecast for monthly sun bright at
32 meteorological stations owing to the National Federation of Coffee Growers.

In 1954, Trojer (16) assured that the statistical survey of the different
macroclime developments could permit the classification of the climate of a
given area in dynamic way. He considered thaat the dynamic method for trop-
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ical zone meteorology is of great importance. In 1959 Trojer (17) argued that
dynamic climatology lets meteorology be proved in topics of the studued pro-
cesses in another areas. Those provide technical basis for climate analysis and
forecast. Also he mentioned the meteorological basisi - among other ones - for
dynamic processes: atmospheric, pressure, temperature, air humidity, cloudi-
ness and radiation.

In 1960 Trojer (18)manifested that time forecast had not been applied in
tropical areas mainly because of inappropriate methods. he stated that seasonal
distribution for both dry and rainy seasons essentially depends of three factors:

1. The displacement of intertropical circulation system is synchronized to
sun position movement and therefore the radiation quantity that reaches
earth’s surface, which is in terms of number of sunspots an influence on
global solar radiation.

2. The seasonal variation of sun position and inclination angle of sun’s rays
in relation to the receiving surface.

3. And last, atmospheric turbidity.

Using stochastic model of Markov chains, probability and continuity of wet
periods in coffee areas were studied by Jaramillo (7). He stated that the most
common way for showing climatic data is by means of simple statistics as
totals or arithmetic means. These hardly ever represent appropriately those
phenomena to be explained.

Montgomery and Johnson (11) considered that Box and Jenkins models are
probably the most accurate ones for forecasting phenomena occurring in time
series. The authors stated that in practice, methods for exponential smoothing
to time series are often used. Although results are reasonably good, there are
forecast techniques exploring the reliance among observations yielding better
results; most of those forecast techniques are based on recent advances in time
series analysis consolidated and developed by Box and Jenkins (2).

Kuehl et. al. (18) argued that correlation techniques are important tools
for researching relationships between crop growth and enviromental exogenous
variables. However, when they are applied to time series, the presence of auto-
correlations of each series affects the estimations of correlations. They proposed
-as a solution to this problem- to use the cross correlation in order to relate
residuals of series modeled through Box and Jenkins methodology and using
ARIMA models. They concluded that modeling time series is a good tech-
nique for identification of relationships among agronomic variables which are
measured during the time.
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Persaud and Chang (14) used expectral analysis for estimating the relation-
ship that exists between deterministic components of temperature series and
solar radiation. They concluded that an annual cycle with 2π frequency/365
radians/day and a semiannual cycle with 4π frequency/365 radians/day con-
tributed the most to explain series variation. After those components were
removed, Box and Jenkins’s transference function theory was used for relating
both temperature and radiation remainders. Above references evidence that
seasonal components, i.e., periodical behavior of climate variables, constitutes
a basic characteristic for climate variables and its period is a year. This sea-
sonal component is not treated in a deterministic way since it is not and exactly
constant cycle.

Time series have been used for madelling climate variables in areas not aw-
ing to the tropics. Pérez, Gallego and Castillo (13) worked on mean annual
temperature series from 6 Spanish cities. The purpose of this work was mod-
elling every studied series and making short-term forecast. ARIMA models
were fitted using Box and Jenkins’ methodology. Following results were found:
autoregressive of order 2 was fitted for Badajoz; autoregressive AR(1) of order
1 for Barcelona and integrated moving average ARIMA(0,1,1) of order 1 for
Madrid, La Coruña, San Fernando and Valencia. Forecast errors were low,
therefore fitted models were considered fairly acceptable.

A bivariate model for daily sequences of solar radiation and air temperature
was developed by Book and Finney (3). An autoregressive model was first used
to produce a monthly time series. A disaggregation process was then employed
to produce daily series. Under forecast error judgement, fitted models were
considered very good since they found little differences when historical obserced
series were compared to data resulting from the models. This made authors
consider the models suitable for simulating solar energy systems for short -and
long- term performance.

An analysisi of the stationary and sequential properties of monthly global
horizontal solar radiation is presented by Gordon and Reddy (6) for 13 loca-
tions of widely varying climatic conditions. They considered that information
obtained by means of the above analysis is essential as input to analytic models
for solar energy systems and for generating daily radiation sequences that can
serve as input to numerical simulations which model solar system.

Univariate autoregressive stationary models of differents orders for anoma-
lies of specific humidity of 1000 and 850 mbar levels were built by Borisova (1).
He stated that fitted models success lay in getting fairly accurate forecast from
the point of view of statistics.

Nash, Wirenga and Gutjahr (12) employed time series theories and tech-



64 Bernardo Chaves

niques to examine relationships between soil water content and rainfall, and to
compare the relationship of the overall average (the entire transect)soil moisture
content with that of individual transect segments. The study of correlograms
and estimated cross-correlograms showed relationship between soil moisture
and rain through the time.

Using Box and Jenking’ methods, Loveday and Craggs (9) carried out uni-
variate models for three different air temperatures influencing the performance
of a solar-assisted heat pump system. They concluded that this approach can
be used for developing models for time series which describe climate thermal ba-
havior. Solar radiation mus be considered in development of stochastic models
for describing such performance of heating system. Also, they (10)used mul-
tivariate models for time series to illustrate the time-dependent relationships
between air temperature -at outward ambient, at entry to, and at exit from.
They concluded that these models are the menas for readjust heating system
which were built to optimize energy savings.

In Colombia -for the Savanna of Bogotá- monthly atmospheric electrical
discharges series were studied and modelled by Castaño (4) as well as its re-
lation to monthly rainfall series (number of days with precipitation), monthly
vapor pressure average and number of monthly sun bright hours. he employed
ARIMA models for describing each of the above-mentioned series. he used
transfer functions to make their relationships. He inferred that according to
statistical test used for measuring model fitting goodness, every studied series
was adequately fitted to ARIMA(0, 1, 1)x(0, 1, 1)12 model, i.e., seasonal mov-
ing average series with 12-month periods and moving average in the regular
part. Also, he concluded that this method is quite useful for this kind of mod-
elling, however, as well as mathematic theory knowledge, much skill is needed
to develop and understand the intended models.

2 Materials and Methods

First, reviewed methodology for building ARIMA models is presented. Then,
locations are described.

2.1 Statistical methodology

In general, the models to be developed have the following form:

Φp(Bs)Φp(B)∇d∇DZa
t = µ + θq(B)ΘQ(Bs)at
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Where Zt is the observed sun bright in the month t. Φp(Bs) = (1 − Φ1B
s −

... − ΦpB
Ps) is the autoregressive operator of order P from seasonal struc-

ture, polynomial in Bs of degree P.Φp(B) = (1 − Φ1B − ... − ΦpB
p) is the

autoregressive operator of order p from the regular structure, polynomial in
B of degree p. θq(B) = (1 − θ1B − ... − θpB

q) is the mean-moving opera-
tor of order q from the regular structure, polynomial in B of the degree q.
ΘQ(Bs) = (1−Θ1B

s − ...−ΘQBqs) is the mean-moving operator of order Q
from seasonal structure, polynomial in Bs of degree Q. ∇d and ∇D are regular
and seasonal difference operator. µ is the mean of the series. λ means that
the serie is transformed, at is the aleatory error in the month t. This model is
named ARIMA(P,D, Q)sx(p, d, q).

In a explicit way, a moving average stationary model -differentiated in the
regular part d = 1 and in the seasonal part of order 12, D = 1 having parame-
ters θΘ and Θ for regular part and seasonal part, respectively- can be described
in the following way:

Zt = Zt−1 + Zt−12 − Zt−13 + at − θat−1 −Θat−12 + θΘat−13

Box and Jenkins’ methodology (2) have been used to model data.

Forecast error is indicated in percentages and obtained as a coefficient pro-
duced by the difference -in absolute value- of the observed value from the cal-
culated value, divided by the observed value. It is the main goodness indicator
for the fitted model. A forecast error of ≤ 25% was considered acceptable for
the present study.

2.2 Meteorological Stations to be Modelled

Sun bright for 32 meteorological stations listed in table 1, will be modelled us-
ing the available information and applying Box and Jenkins () time series the-
ory and methods. Information concerns with meteorological observations from
the stations owing to the National Federation of Coffe Growers of Colombia.
Depuration and checking of daily data were carried out by the Agroclimatol-
ogy Section at CENICAFE which constantly keeps the climate data bank up
dated. The extent of the series to be modelled ranges from 10 and 43 years of
sun bright data recorded every day.
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Table1. Geographic information about methodological stations in the study

STATION ALTITUDE LATITUDE LONGITUDE BRIGHT1

El Cedral 2120 4◦ 42’ 75◦ 32’ 925.9
Luis Bustamante 1610 3◦ 55’ 74◦ 34’ 1003.1
Jorge Villamil 1500 2◦ 20’ 75◦ 31’ 1186.6
Heraclio Uribe 1540 4◦ 17’ 75◦ 55’ 1262.5

El Sena 1550 4◦ 34’ 75◦ 39’ 1277.1
Mesitas de Sta Inés 1250 4◦ 43’ 74◦ 28’ 1396.2

La Bella 1450 4◦ 30’ 75◦ 40’ 1402.3
Aguas Blancas 920 6◦ 50’ 73◦ 29’ 1419.2

Blonay 1235 7◦ 34’ 72◦ 37’ 1420.7
Agronomı́a 2150 5◦ 03’ 75◦ 29’ 1431.8
Tibacuy 1550 4◦ 22’ 74◦ 26’ 1546.1

La Trinidad 1430 4◦ 54’ 75◦ 03’ 1554.0
Santa Helena 1450 5◦ 19’ 75◦ 00’ 1607.6

Maracay 1450 4◦ 36’ 75◦ 46’ 1628.1
Limón 990 3◦40’ 75◦ 35’ 1658.5

Manuel Mallarino 1380 4◦ 13’ 76◦ 19’ 1659.1
La Montaña 1260 3◦ 33’ 74◦ 54’ 1692.4
Montelibano 1340 5◦ 28’ 74◦ 22’ 1708.9

Rafael Escobar 1320 5◦ 28’ 75◦ 39’ 1727.5
Julio Fernández 1360 3◦48’ 76◦ 32’ 1736.4
Ospina Pérez 1700 1◦ 15’ 77◦ 29’ 1737.2
Arturo Gómez 1320 4◦40’ 75◦ 47’ 1772.4

La Joya 1250 4◦ 46’ 75◦ 47’ 1780.0
Manuel Mej́ıa 1700 2◦ 25’ 76◦ 45’ 1782.4

Naranjal 1400 4◦ 59’ 75◦ 39’ 1798.1
Miguel Valencia 1570 5◦ 36’ 75◦ 51’ 1802.8

Paraguaicito 1250 4◦ 23’ 75◦ 44’ 1829.8
Cenicafé 1310 5◦ 00’ 75◦ 36’ 1887.8

Santagueda 1010 5◦ 05’ 75◦ 40’ 2007.8
Granja Luker 1020 5◦05’ 75◦ 41’ 2065.3
El Rosario 1600 5◦ 58’ 75◦ 43’ 2076.2

Pueblo Bello 1000 10◦ 25’ 73◦34’ 2386.3
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3 Results and Discussion

Sun brigth original series for the 32 studied stations did not show stationarity.
Having a difference at the regular part of the series and one at the seasonal part,
this characteristic was achieved. By means of estimations of simple and partial
autocorrelation functions from series distinguished at the regular and seasonal
(12 month period) parts, seasonal moving average model was identified. This
model was consistent for sun bright series a the modelled meteorological sta-
tions. It is characterized for presenting first order dependence in the errors.
Seasonal structure for identified model is due to the annual cycle’s effect of
extraterrestrial sun bright on the climatic perfomance.

When the model was identified, parameters were estimated. Then, the
fitted model and forecast goodness were evaluated. Parameter estimations were
significantly different to zero. They did not show correlation and were enough
to describe monthly sun birght perfomance. The residuals estimated by the
difference between observed values and forecasted ones, were distinguished for
adjusting to a completely aleatory series or white noise. This assures that there
are not more components which must be included in the model.

In multiplicative way, the fitted model is the following:

(1−B)(1−B12Zλt = (1− θB)(1−ΘB12)at

Where B is delaying operator (BrZt=Zt−r); Zt is sun bright λ is a transfor-
mation value, θ is regular parameter, Θ is the seasonal parameter and at are
aleatory errors. In an explicit was, the model is

Zt = Zt−1 + Zt−12 − Zt−13 + at − θat−1 −Θat−12 + θΘat−13

The preceding equation shows that sun bright in month t depends on: sun
bright observed the preceding month corrected by the same month aleatory
error and considered by the estimation of regular part parameter, and sun
bright observed a year before and affected by the aleatory error, considered
by the estimation of seasonal-part parameter and on sun bright observed 13
months before and modified by interaction between estimations of regular and
seasonal parameters and aleatory error of the corresponding month.

Forecast fuction is derived from the fitted equation; the last allows forecast
sun bright for subsequent months to the last observed. Forecast standard error
increases as time passes. Therefore, forecast after the first and second months
are best accuate. Table 2 shows the estimated parameters, its standard errors
and the forecast error, considering just the next month forecast. Once the
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corresponding month is observed, forecast for the next month are made. Thus,
a forecast for the next month is always made. However, Forecast fuction is:

Zt+1 = Zt + Zt−11 − Zt−12 − θat −Θat−11 + θΘat−12

Where Zt+1 is the forecasted value for the month following the last one observed
in the series. at, at−11 and at−12 are calculated taking the difference between
the observed value and the forecasted value for the registered periods. Forecast
errors listed in table 2, show that maximum error is in the neighborhood of
23%. It is acceptable from the meteorological point of view.

According to Castaño’s findings (4) and results showed in table 2, it can be
stated that monthly sun bright series between 1◦ 15’ and 10◦ 25’ latitudes and
72◦ 39’ and 77◦ 29’ longitudes perform as an ARIMA(0,1,1)(0,1,1)12 model.
The main characteristic from the above model is the dependence of a given
month on the immediately preceding year determining the seasonal part and
on an interaction of the two components.

Forecast fuction derived from the fitted model lets no only calculate further
values but it indicates the model goodness. So, if there are changes in the
performance pattern for monthly sun bright, these will be reflected in the dif-
ferences between the forecasted value and the observed value. Thus, the model
is permanently evaluated and can be intervened in order to meteorological sta-
tion’s information is necessary for this model to behave well and currently.

Sun bright study and modelling, as well as its relation to radiation, con-
stitute one of many components involved in mathematic modellation for crop
growth and yield. Radiation forecast for various farm practices in different
environmental conditions is essential for simulation and forecasting of results
development, production and validation. From sun bright study and stochastic
modelling, it can be concluded that found expressions for describing its behav-
ior just represent its behavior in the analyzed stations and by forecast functions,
a very accurate radiation can be forecasted. In addition, it is a component of
primary importance on building mathematic models for crops. It can be used
for another applications when radiation intervenes.

A negative correlation was found between the estimation of the egular part
parameter from the model and the overall annual sun bright average. It means
that the more sun bright hours in a year, the fewer it is the value for parameter
estimation. Correlation between sun brigth and altitude was negative; when
altitude increase, fewer number of sun bright hours occurs.

Those relations can not be generalized. The studied characteristic depends
not only on the altitude. There are another elements wich make it change, e.g.,
valley-mountain circulation system, climatic equator, hydrographic slop, etc.
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Direct relation between number of sun bright hours and radiation lets conclude
that in stations with the most sun bright, there is most available energy to be
received by solar collectors or plants.
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Table 2. Estimated Parameters and forecast errors
STATION θ E.STD Θ E.STD Error2

El Cedral 0.7224 0.04461 0.9194 0.06787 21.02

Luis Bustamante 0.7038 0.04718 0.8117 0.05376 20.27

Jorge Villamil 0.6961 0.04809 0.8711 0.05608 8.93

Heraclio Uribe 0.6362 0.05011 0.8569 0.05414 18.44

El Sena 0.6094 0.05256 0.8064 0.05293 20.06

Mesitas de Sta Inés 0.6501 0.05250 0.7331 0.05293 21.73

La Bella 0.6199 0.05071 0.8953 0.05912 18.08

Aguas Blancas 0.6083 0.05978 0.8385 0.06455 14.55

Blonay 0.5955 0.05171 0.8883 0.05974 21.75

Agronomı́a 0.7190 0.04845 0.6923 0.05819 22.75

Tibacuy 0.7014 0.04654 0.8001 0.05100 14.38

La Trinidad 0.8274 0.04091 0.9111 0.09047 19.34

Santa Helena 0.8476 0.04743 0.8547 0.10075 18.97

Maracay 0.7550 0.05817 0.8959 0.17672 16.41

Limón 0.7277 0.04478 0.9555 0.12159 14.13

Manuel Mallarino 0.6555 0.04912 0.8920 0.06053 14.57

La Montaña 0.6253 0.05273 0.8352 0.05391 16.37

Montelibano 0.6118 0.05226 0.8673 0.05415 16.31

Rafael Escobar 0.4998 0.05611 0.9559 .12213 20.56

Julio Fernández 0.7456 0.04335 0.9418 0.09045 12.04

Ospina Pérez 0.7484 0.04324 0.8778 0.05720 14.12

Arturo Gómez 0.6598 0.04908 0.8156 0.05720 13.60

La Joya 0.5048 0.07937 0.7366 0.09557 12.30

Manuel Mej́ıa 0.5557 0.05459 0.8696 0.05380 13.43

Naranjal 0.6159 0.03815 0.9103 0.03136 11.88

Miguel Valencia 0.5947 0.05396 0.7878 0.05354 14.21

Paraguaicito 0.6387 0.04448 0.7776 0.04266 14.37

Cenicafé 0.7502 0.02889 0.9573 0.02994 11.31

Santagueda 0.7290 0.04637 0.7723 0.05522 11.92

Granja Luker 0.6687 0.05885 0.7766 0.07007 11.42

El Rosario 0.5826 0.05399 0.8344 0.05372 14.70

Pueblo Bello 0.2526 0.06080 0.9690 0.15062 8.05


