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ABSTRACT Nonstandard methods aUow a flat integral representation of de 
Wiener measure on Po (R.). A representation of the Wiener measure on Po (R-'') 
is given, allowing us to give a nonstandard representation of the Wiener measure 
on Pe (G) by using Ito raap. 

0 . P R E L I M I N A R I E S 

For a good introduction of nonstandard analysis we can see (Albeverio, S. (1986)). 

The main features that we need in our work are the following. 

We assume the existence of a set ' R 2 R- called the set of the 

nonstandard real numbers and a mapping * : V ( R ) ^ V^(*R), (where 

V'i (5) = S, Ki+i (5) = l/„ (5) U V ( V „ (5)) and V (5) = U^^^Vn (S)) with three 

basic properties. To state the properties we give the following notions. 

An elementary s ta tement is a s tatement $ built up from " = ", " € ", relations: 

u = V, u G V, the conectives "and" , '"or", "not" , and " impt ies" , bounded quantifiers 

(Vu e t;) , (3u G f ) . 

An internal object A is an element of V (*R) such tha t A = ' S, S £ V ( R ) . A 

set in V ( ' R ) which is not internal is called external. 
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(1) Extens ión Pr incipie . *R is a proper extensión of R and • : V (R) — V (*R) 

is an embedding such that ' r = r for all r G R. 

(2) T h e Sa tu ra t ion P r o p e r t y : Let {Rn : n G N } b e a sequence of internal objects 

and {Sm • m G N} be a sequence of internal sets. If for each m G N there is 

an Nm G N such that for all n > Nm, Rn G 5m, then {Rn : n G N ) can be 

extended to an internal sequence {Rr, : T] G ' N } such that ñ,, G Hm^m for 

every rj € *N — N. 

(2') Genera l Sa tura t ion Principie: Let K be an infinite cardinal. A nonstandard 

extensión is called K-saturated if for every family {A'i}¿gj , card(I) < K, with 

the infinite intersection property, the intersection n,g/A'i is nonempty, i.e. this 

intersection contains some internal object. 

(3) Transfer Principie: Let ^{Xi , . . . ,Xm,xi , ...,x„) be an elementary statement 

in V'(R). Then, for any Ai, ...,Am Q R and ri, ...,r„ G R, 

$(Ai , . . . ,Am,r i , . . . , r„) 

is true in V (R) if and only if 

$(*Ai, . . . ,*A^,*ri ' r „ ) 

is truein K(*R) . 

(•R,* -I- .' • , '< ) extends R as an ordered field, in general we will omit the * for 

the operation and the order relation. 

In R we can distinguish three kinds for numbers: 
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(a) X € "R is infinitesimíd, if |a;| < r for each r G R"*"-

(b) X G ' R is finite, if there is a real number r G R"*" such that | j ; | < r. 

(c) X G *R is infinite number, if \x\ > r for each r G R"*" 

Por each finite number x G ' R we can associate a unique real r := st (x) := "x, 

such that X = r -\- (, where e is infinitesimal. We say that x is ínfinitely closed to 

y, denoted by x « y if and only if x — y is infinitesimal. 

In general we use capital letters H, F, X, etc. for internal functions and processes, 

while h, f, X etc. are used for standard ones. For stoppíng times we will always use 

capital letters, and specify whether standard or nonstandard is meant. 

For given set A, 'A stands for the elementary extensión of A, and ns ('A) denotes 

the nearstandard points in *A. If s is an element in ns{'A), the standard part of s 

ís written as st (s), or °s. For given function / , ' / means the elementary extensión 

of/. 

We say that the set T is 5-dense if { " t . t e T , "< < 00} = [0,00), and 

ns (T) = {í G T : ° t < 00}. With T we denote an internal 5-dense subset of *[0,00). 

The elements of T, or more generally, of *[0,oo), are denoted with s, í, u, etc... . 

The real numbers in [0,00) are denoted by s, t, u, etc... We will work with different 

sets T, so will always specify the definition of such T. 

With N we denote the set of nonzero natural numbers {1,2,3,...}, and Ng = Nu{0}. 

Elements of No are denoted with n, m, /, etc... while, elements in *N — N will be 

denoted with T], N, etc... . 

When we say that F : .4 ^ S ís an internal function, mean that the domain, the 

range and the graph of the function are internal concepts. 
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1. Definition. A subset .4 C ' R which is internal and for which there exists 

N G *N and an internal bijection f : A — {0,1,2 A'̂  - 1} is called hyperfinite 

set. In such case A ís saíd to have hyperfinite internal cardinalíty N, and we write 

1A| = N. 

Hyperfinite sets are to the nonstandard universe what the finite sets are to the 

standard one. 

2. Propos i t ion . Let A and B be hyperfinite sets with internal cardinalities H 

and N, respectively. Then: 

i) .4 X fi is hyperfinite, with \A x B\ = HN 

ii) .4^ = {f : fí — .4 : F is an internal function} is a hyperfinite set ímd its cardi

nalíty is H'^. 

iii) .4 U S, Af) B are hyperfinite. 

iv) If .4 is hyperfinite and G C A is an internal set, also C is hyperfinite. 

Let *R+ = ' R u { 0 , o o } be the extended nonnegative hyperreals. An 

internal finitely additive measure on the internal algebra U is an internal set function 

p : U ^ 'R.+ , such that 

( i ) p (4>)=0 

(ii) For A , B £ U with Ar\ B = <i>, p{A\J B) = p{A)->r p ( B ) . 

Since p is internal, the finite additivíty extends to hyperfinite unions. Let fi be 

a hyperfinite set and let U be the class of all internal subsets of f2. Let us define a 

finitely additive measure "/i : ¿/ —> *&+ by °p{A) — "(^(.4)), where "r — oc when 

r is an Ínfinitely large element of 'R.|.. 
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A countable unión of sets can be written as a countable dísjoint unión of sets of the 

same kind. As have seen in Corollary A2.8 (Muñoz de Ozak, M. (1995)), a countable 

unión of dísjoint internal sets is not internal. Then, "p ís a <T-addítíve measure on 

the algebra of internal hyperfinite subsets of íí. The Loeb meeisure ís basicsdly the 

extensión v of "p to the (T-algebra generated by U by means of the Carathéodory's 

Extensión Theorem. 

3. Theorem (Loeb) . The extended real valued function v = L {p) has a stan

dard <r-additíve extensión to the smallest (externed) «r-algebra M ouQ containíngW. 

For each B G M , the valué of this extensión is given by v (B) = InÍA^u.BCA "(J^iA). 

This extensión ís unique if p{íl) < -l-oo, in which case, for each B £ M , v{B) = 

SUPA6W.B3A "P (^) and there is A G W with v (BAA) = v { ( B - A ) U { A - B)) = 0. 

Por the proof see (Loeb, P. (1975)). 

We say that A ís Loeb measurable if 

Fe. (S) = ^ inf ^ y (A) = sup "p (A) = F.„ (B) , 
A€U,BCA AeU,B2A 

and we denote this common valué by L (p) . The collectíon of ídl measurable sets is 

denoted with L{íl) . 

4. Theorem. (fi, L (Í2), L (p)) is a complete probability space which extends 

{Sl,U,p). It is called the Loeb space associated with {í l ,U,p). 

Por the proof see A3.2 in the appendlx in (Muñoz de Ozak, M (1995)). 

5. Theorem. (Pubini type) Let ( í l i ,Ui ,Pi) and (^2,^2,^*2) be hyperfinite 

probability spaces and let F : ííi x 02 —' R be a Loeb integrable function. Then: 

(i) / (it'i, •) is Loeb integrable for almost all Wi £ Q 1-
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(ii) y(u'i) = f f (wi,W2)dL{P2) ís Loeb integrable on íí i . 

(iii) ¡ f (w , , lV2)dL(P iXP2) = ¡{¡ f{Wi ,W2)dL{P2))dL(P, ) . 

The proof ís due to Keísler. See (Keisler, H.J. (1984)), Theorem 1.14.b) 

1. I N T R O D U C T I O N 

We extend the one dimensional definition of N. Cutland (1990) of the Wiener 

measure on Pg (R) to Pg (R"*) . This allows to give a nonstandard definition of Wiener 

measure on Lie algebras. Then by means of Ito's map, we obtain the notion of 

a nonstandard representation of the Wiener meeisure on Pe(G), where G is a Líe 

group. 

2. W I E N E R M E A S U R E ON Pe (G) 

Let 

Po (R) = {x : [0,1] —*• R I x is continuous and Xo = 0} 

and let C the Borel cr-algebra on Pg (R) (Po (R) is given with the uniform convergence 

norm). The Wiener measure po over (F© (R) ,C) is a probability measure such that, 

for O = ÍO < <i < •• < <n = 1 and a = ( a i , . . . , a„ ) G R", 

PO {Xt, < ai, l < i < n ) = J l l {2ir (<,+i - <,))- ' / 'exp L ^ t i _ L ? Í L l ! J dy 

where y = (y i , . . . , yn) G R", yo = O and dy the Lebesgue measure on R". po can be 

also described as a probability on (Fo(R) ,C) making the íncrements (Aj,^, — -'^<,)o<,<„_i 

independent and A' (0,<,-4.i — ti) distributed. The canonical continuous process given 

by Po is a Brownían motion. 

Let r = {0. Ai. 2A<,.. ., 1} be the hyperfinite unit interval. Following Cutland 
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we can make a nonstandard construction of the Brownían motion that gives us an 

adequate definition of the Wiener measure on (F© (R) ,C) as follows: 

Fíx an internal probability space {íl,U, P) carrying independent N {0,t) random 

variables (f/i),,™- Define a process B : T x Q —y ' R b y 

F(0,ti;) = 0 

AB{i,w)= B{i ,w)- B{t_-At,w) = rju t_eT. 

Let P — L ( F ) . Cutland obtains the following result: 

(i) For F-a.a. w, B{-,w) is 5-continuous. 

(ii) The process 6(-.ií!) = °B{-. w) is a brownían motion. 

Cutland also shows that this construction of 6 gives rise to a construction of the 

Wiener measure that can be expressed as follows: Let F be the internal measure on 

*R^ induced by B, i.e., for A G I*, where V ís the Borel tr-algebra in *R-'̂ , 

r ( A ) = F ( 5 ( - , u ; ) G A ) 

= (2.A0-^/^ / n exp ( - ^ ^ ^ S i r ^ ) dX̂ d̂X̂ ^̂  • -dX, 

with dXt denoting the *Lebesgue mecisure over *R. Writting dX for the *Lebesgue 

measure on *R^, and 

• _ Xt̂ — A<_¿if _ AAĵ  

' ^ ' - - ' A t ' - ^ ' 

we have 

r(.4) = (27rAí)"^' -/«p(-i|:.vfA,)..v 
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and is follows that, with respect to L (f), A' is 5-continuous for almost all A' G ' R ^ , 

and the Wiener measure on (F<, (R) ,C) is given by 

po{D) = L { r ) { 8 t - ' { D ) ) , D e C , 

where s t ' ^ (D) = {A' G "R^ : "X G D) . 

Now consider 

Po {R'') = {x : [0,1] ^ R"*! X continuous and Xg = 0} 

and denoted with C the Borel «r-algebra on F<, (R**) . The Wiener measure on (Fo (R'') , C ) 

is defined by 

tio{xt, e Ai,l < i < n) = 

where {t, : 1 < í < n} is a partition of [O, 1], Ai G B (R' '), ||a|| is the length of a and 

dpi is the Lebesgue measure on R"*. 

Generalizing Cutland's constructions for the Brownían motion, we can construct 

d independent B' (•, u') processes such that 6' (•, w) = "B' {•, w). Then 

' ' B { - , w ) = {b^{- .w) , - - ,b ' ' { - .w) ) 

is an R"̂  valued Brownían motion. Similarlv as for the one dimensional Brownían 
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motion, we can construct a Wiener measure that can be expressed as follows: 

\:'^{D) = P { B { - , w ) £ D ) 

= (2;rA<)"^''^'y"exp Í - Í ^ | | Á Í | | ' A Í | dA^tdAjA. • --dAi 

Where D ET> x • - x V (d-tímes), dXt_ denotes the * Lebesgue measure over 'R'^, and 

Now let £) = Di X • • • X Dd, where D, is an internal Borel set in *R^. For 

I = l , . . . , d . This class of sets generates V . Por X G * (R"*)^, X = { X \ . . . , X ' ' ) , 

with Xi G ' R ^ . i — l , . . . , d . Applying Theorem 5. (Keísler-Fubini Theorem) we 

have 

r{D,)-r{D,) = {2nAt)-'""^ íexp\-^'Y[x¡yAt]dXÍ,dX¡^,. . .dXl 

/ ^̂ P ( - 5 E ('"^1)' ̂ ' ) dXUX^_ ,̂ . dXf 
ter 

= (2^At)- '" ' ' ' J J'Mnn) 
'̂̂ P ( - ^ E ('"^i)' ^ ' ) dxit • • • dx i , . . . dxl • • • dxt 

= (2.Aí)-^^^^/expí-i$:||A,fAA dX¿^t • • • d X i 

so that for £> = Di x • •• x Dd, D, G 2>, 

r''(D) = r ( A ) - r ( D d ) 
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and ÍOT A = Al X ••• X Ad, with A¿ G C, t = 1,2, •• • .d, 

PÍ{A) = /io(Ai). • •/io(Ad) = L{r) {st- ' (Al)) •••L(T) {st- ' (A^)) 

Since the sets A = Ai x • • • x Aj, with A, G C, i = 1,2, • • •, oí, genérate the Borel 

(T-algebra C'', we can extend the definition of PQ to C*. 

Let G be a compact, connected Lie group, and let g be the corresponding Lie 

algebra. Let us take an Euclidean metric on g which is Ad{g) invariant. This metric 

induces a Riemannian metric on G. Suppose dimG = d. Using and orthonormal 

basis, 

Fo (y) = {x : [0,1] -+ y| x is continuous and Xg = 0} 

is isomorphic to Pg (R"^) . let Pe (G) be the set of x : [0,1] —• G which are con

tinuous , Xo = e and Xt ís invertible with respect to the group operation for all 

t G [0,1]. From Wiener's Theorem we can assume the existence of a Wiener meaisure 

on (Fe {G),B{Pe (G))), where B{Pe (G)) is the Borel (T-algebra on Fe (G), we want 

to give a nonstandard construction of this Wiener measure. 

Following P.Malhavín and M.Malliavin (1990), given x G Po{g) and a partition 

S = {tg, ••,<„} of [0,1], we define exp, (x) = 7 as follows: 

7(0) = e 

7(<) = 7(<;-i)exp [[jféifr) (^(<j) -^Cj-i))) ' < e [<;-i,<;] 

It is known that when the mesh of 5 tends to zero p'^ a.e., then , the following limit 
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exists in the metric space Pe (G) : 

limexp, (x) = / (x ) . 

The map x — / (x ) is called the Ito map and is a measurable map. 

Now consider the space ' g^ . We know that the nearstandard elements of this 

space are the 5-continuous functions, and also that with respect to L (r**), A' is 5-

continuous for almost all A' G ' g^ • With no loss of generality we can assume that 

for all X G 'y^ , A' is 5-continuous. 

For A' G ' g^ define the internal function V G ' G as follows: 

Y (0) = e 

y(L)-U^-p{\,.-Xi^) 

where, t_ — lî  = kSt. ÍG r„ = T. Considering *7 , the elementary extensión of 

7, defined above, we see that '7 |x = Y; and since ' y is 5-continuous, then Y is 5-

continuous and so Y G *G^. Thus, Y is nearstandard in ' G ^ . Also Y (í) is invertible 

for all ÍE .T , and we can define a map I : ' y^ —̂  *G^, such that I { X ) — Y. 

From the above nonstandard construction of the Wiener measure on Pg (R"*) and 

the R"̂  valued Brownían motion, we have that 

ñ { B { - , w ) ) ^ e { ' ' B { - , w ) ) ^ l { h { - , w ) ) , 

where Z is the stochastic exponential function defined in Theorem 1.3.8.in (Muñoz de 

Ozak, .M. (1995)). Since / is a measurable map. J is a *Borel measurable map. We 
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can define an internal measure on (*G^. B ( 'G^)) by 

i/(A) = r < ' ( i '{A)) 

for .4 Borel subset of *G^. 

6. Theorem. Por a Borel set B in Pe{G), we can define the Wiener measure 

l iPAO)(B) as 

p p ^ ^ G ) { B ) ^ L { t y ) { s t - ' { B ) ) . 

proof. For B a Borel set in Fe (G) we have 

s í - ' (7-1 (B)) = {X G 'y^ : "X G / " ' (F)} 

= {AG -y^ : / ( ° A ) G F } 

and 

I " ' (*•<-! (fl)) = r ' {{Y G -G^ : "Y G F}) 

= {AG - y ^ : < ' r (A)GB} 

= { A G • y ^ : / ( " A ) G F } 

so that, s í - ' ( / - ' ( F ) ) = í " ' ( s í - ' ( B ) ) . Since /ip,,G)(S) = / í ^ ( / - ' ( F ) ) from the 

nonstandard definition oí Pg, we then have 

/ip.lG, (F) = /xf ( / - ' (S)) = L (F") ( s í - ' ( / - i (F))) 

= L (r") ( r ' (sí-MB))) = ¿(í^) (^n (F)) 
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