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ABSTRACT

This study evaluated different methods for geoid undulation prediction and included two types of artificial neural 
networks (ANNs) - the radial basis function neural network (RBFNN) and the generalized regression neural network 
(GRNN) - as well as conventional methods including multiple linear regression (MLR) and ten different interpolation 
techniques. In this work, k-fold cross-validation was used to evaluate the model and its behavior on the independent 
dataset. With this validation method, each of a k number of groups has the chance to be divided into training and 
testing data. The performances of the methods were evaluated in terms of the root mean square error (RMSE), mean 
absolute error (MAE), Nash–Sutcliffe efficiency coefficient (NSE), correlation coefficient (R2), and using graphical in-
dicators. The evaluation of the performance of the datasets obtained using cross-validation was performed in two 
ways. When the method having the minimum error result was accepted as the most appropriate method, the natural 
neighbor (NN) gave better results than the other methods (RMSE = 0.142 m, MAE = 0.097 m, NSE = 0.98986, and R2 

= 0.99011). On the other hand, it was observed that on average, the GRNN exhibited the best performance (RMSE = 
0.185 m, MAE = 0.137 m, NSE = 0.98229, and R2 = 0.98249).

Predicción de ondulación geoide con Redes Neuronales Artificiales (base radial y regresión generalizada), 
regresión lineal múltiple y métodos de interpolación: estudio comparativo

RESUMEN

Este estudio evalúa los métodos diferentes de predicción de ondulación geoide donde se incluye dos tipos de Redes 
Neuronales Artificiales -la red neuronal de base radial y la red neuronal de regresión generalizada- al igual que méto-
dos convencionales donde se incluyen la regresión lineal múltiple y diez técnicas diferentes de interpolación. En este 
trabajo, la validación cruzada de K iteraciones se usó para evaluar el modelo y su comportamiento en un conjunto de 
datos independiente. Con este método de evaluación, cada grupo de números k tiene la posibilidad de dividirse entre 
datos de entrenamiento y datos de evaluación. El desempeño de los métodos se evaluó en términos de la raíz del error 
cuadrático medio (RMSE, del inglés root mean square error), el error absoluto medio (MAE, mean absolute error), el 
coeficiente de eficiencia Nash-Sutcliffe (NSE, Nash–Sutcliffe efficiency coefficient) y el coeficiente de correlación (R2, 
correlation coefficient) a través de indicadores gráficos. La evaluación del desempeño de los grupos de datos obtenidos 
con la validación cruzada se realizó en dos vías. Cuando el método que tiene el resultado de mínimo error es aceptado 
como el método más apropiado, el vecino natural ofrece mejores resultados que otros métodos (RMSE = 0.142 m, MAE 
= 0.097 m, NSE = 0.98986, and R2 = 0.99011). Por otro lado, se observó que en promedio la red neuronal de regresión 
generalizada presentó un mejor desempeño (RMSE = 0.185 m, MAE = 0.137 m, NSE = 0.98229, and R2 = 0.98249).
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Introduction

The use of Global Navigation Satellite Systems (GNSS) in engineering 
and scientific studies has increased considerably along with recent developing 
technology. With this technology, accurate Cartesian (X, Y, Z) or geodetic (φ, λ, 
h) coordinate information for any point on the Earth is easily available (Seeber, 
2003). However, the GNSS-derived ellipsoidal height is not used directly in 
engineering studies. In order to use ellipsoidal heights obtained from GNSS 
data with orthometric heights obtained from geometric leveling measurements, 
geoid undulations must be determined accurately. The relationship between the 
ellipsoidal and orthometric heights of any point on earth can be calculated by 
using Equation (1) (Heiskanen & Moritz, 1967). 

      (1)

where N refers to geoid undulation, h is the ellipsoidal height, and H is 
the orthometric height. 

Two different methods are used in geoid modeling: gravimetric and 
geometric (Featherstone et al., 1998; Kotsakis & Sideris, 1999). With the 
geometric approach, many different techniques such as interpolation and least-
squares collocation (LSC) methods are used to determine a local geoid (Zhong, 
1997; Zhan-ji & Yong-qi, 1999; Yanalak & Baykal, 2001; Erol & Çelik, 2004; 
Zaletnyik et al., 2004; Erol et al., 2008; Tusat, 2011; Rabah & Kaloop, 2013; 
Doganalp, 2016; Das et al., 2018; Ligas & Kulczycki, 2018; Tusat & Mikailsoy, 
2018; Dawod & Abdel-Aziz, 2020).  For example, Doganalp & Selvi (2015), 
using GNSS/leveling data (40 reference points and 205 test points), determined 
a geoid of the 57-km-long Nurdagi-Gaziantep highway project. Polynomial, 
LSC, multiquadric (MQ), and thin plate splines (TPS) methods were used for 
geoid undulation calculation. The findings determined that using polynomial 
methods with LSC had a positive effect on the results in strip projects. It was 
concluded that MQ and TPS prediction methods along with the LSC method 
performed better than polynomial methods in calculations for strip projects. 
They also commented that if the number of reference points had been increased, 
the results might have been better. Karaaslan et al. (2016) created a local geoid 
model in Trabzon Province using geometric methods. Polynomial surfaces 
were created using MQ and weighted average (WA) interpolation methods. 
In the study, a 600-point dataset was divided into reference and test data by 
looking at point distributions and orthometric height values. As a result of the 
study, the best geoid model was obtained with a non-perpendicular third-degree 
polynomial surface.

With the development of computer technology, studies in the field of 
artificial intelligence (AI) have accelerated and various solution methods have 
been developed for different problem types. Studies have shown that application 
of AI methods in the field of geodesy has been increasing in recent years and 
that they have proven to be quite useful to researchers working in the field, 
especially in the formulating of predictions using fuzzy logic as an alternative 
to classic methods (Yιlmaz & Arslan, 2008; Yılmaz, 2010; Tusat, 2011; Erol 
& Erol, 2012; Erol & Erol, 2013). One type of AI technology is the artificial 
neural network (ANN). The ANN produces successful results under conditions 
of multivariable and complex mutual interaction between variables or when 
there is no single solution set. With these features, ANN is seen as a suitable 
method for geoid undulation determination. Studies have yielded successful 
results by using ANN (Stopar et al., 2006; Lin, 2007; Akyilmaz et al., 2009; 
Pikridas et al., 2011; Veronez et al., 2011; Akcin & Celik, 2013; Erol & Erol, 
2013; Elshambaky, 2018; Kaloop et al., 2018; Albayrak et. al, 2020; Erol & 
Erol, 2021). For example, Seager et al. (1999) performed local geoid modeling 
using a feedback artificial neural network (FBANN) to determine the geoid. The 
results demonstrated that the ANN could be used as a tool in geoid determination 
and that it gave rapid results. Kavzoglu & Saka (2005) performed a local geoid 
undulation calculation for Istanbul using an ANN with GPS/leveling data. The 
ANN results were compared with the polynomial and LSC methods. The results 
produced by the ANN were just as accurate as the two classic methods. Cakir 
& Yilmaz (2014) determined a local geoid using polynomial, MQ, radial basis 
function (RBF), and multi-layer perceptron neural network (MLPNN) methods 
in Kayseri Province and compared their performances. Compared to the RBF, 
the MQ was more successful, whereas the MLPNN yielded better results than 
all the other methods. In addition to the methods mentioned above, regression 
methods have also been used in geoid undulation determination (Konakoglu 

& Akar, 2021). For example, Kaloop et al. (2020) examined the usability of 
multivariate adaptive regression splines (MARS), Gaussian process regression 
(GPR), and kernel ridge regression (KRR) methods in geoid undulation 
modeling using GPS/leveling observations. The results obtained with these 
methods were compared with the results of the LS-SVM. According to the 
statistical tests, the KRR yielded better results than the other methods. 

One of the factors affecting the accuracy of a geoid model is how correctly 
it is represented by the selected training set used to create it. The geoid undulation 
determination studies given above show that a dataset is divided into two parts 
as training and testing data according to the spatial homogeneity distribution 
criteria. Studies are conducted in this way to determine the performance of the 
method. The model is trained with the training dataset before the prediction 
is made. The correctness of the trained model is statistically determined using 
the testing dataset. Thus, whether or not to use the established model can be 
decided. In this study, the k-fold cross validation was applied for the first time 
in a local geoid determination study, with the aim of minimizing deviations and 
errors caused by distribution and division. 

The main aim of this study was to provide a comprehensive comparative 
analysis of different approaches for the prediction of the geoid undulation. The 
methods examined consisted of two soft computing techniques (RBFNN and 
GRNN) and eleven conventional methods including: 1) multiple linear regression 
(MLR), 2) kriging (krig), 3) inverse distance to a power (IDP), 4) triangulation 
with linear interpolation (TLI), 5) minimum curvature surface (MCS), 6) 
natural neighbor (NN), 7) nearest neighbor (NRN), 8) local polynomial (LP), 9) 
radial basis function (RBF), 10) polynomial regression (PR), and 11) modified 
Shepard’s (MS). The performance of the methods was evaluated using the root 
mean squared error (RMSE), mean absolute error (MAE), the Nash-Sutcliffe 
efficiency (NSE) coefficient, and the coefficient of determination (R2). This is 
the first study to provide a comprehensive comparison of thirteen methods used 
in the prediction of geoid undulation and it is expected that scientists interested 
in geoid computations may benefit from its findings.

Material and Methods

Study area and dataset

The study area of approximately 4664 km2 is between the 40° 30' 
and 41° 0' latitudes and 39° 0' and 40° 30' longitudes within the borders of 
the province of Trabzon. Figure 1 shows the location of the study area. The 
topography is irregular, with orthometric height varying between 22.87 and 
3387.14 m and geoid undulations between 24.6 and 30.7 m. (Karaaslan et al. 
(2016). For this application, 537 C2 (second order densification) and C3 (third 
order densification) points covering the entire area of Trabzon obtained from 
the Trabzon IX Regional Directorate of the Turkish Land Registry and Cadastre 
were used. The latitude (j), longitude (l), ellipsoidal height (h) and orthometric 
height (H) values of each point are known. The orthometric heights (H) of the 
points were obtained via the geometric leveling method and the ellipsoidal 
heights (h) via GPS/GNSS static measurement. The spatial density of the points 
(1 point per 9 km2) demonstrated a good characterization of the topography. The 
input parameters, comprised of the latitude (j) and longitude (l) values, were 
used to develop the ANN models. The geoid undulation value (N) served as the 
output parameter.

The k-fold cross validation method was used to balance the features in 
the dataset used in the study and to accurately measure the performance of the 
method in the unbalanced datasets. The value of the k parameter required for 
cross-correcting was determined as 5. Thus, the dataset was divided into five 
parts, with four used for training and the other one used to test the algorithm. 
To perform the cross-validation, the dataset was divided into approximately 
80% for training sets (reference points) and 20% for testing sets (test points). 
Table 1 indicates the statistical properties of the geodetic data used in this study, 
including the mean, minimum, maximum, standard deviation, and skewness 
values of these five different datasets (DS#1, DS#2, DS#3, DS#4, and DS#5).

The corresponding average latitude and longitude values were determined 
as 40.73950° (40.47765° - 40.97722°) and 40.06419° (39.30994° - 40.49945°). 
Negative distortion was determined in the latitude, longitude, and geoid 
undulation dataset values. The distribution of negative distortion was indicated 
with an asymmetrical tail extending toward the more negative (lower than 
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average) values. This showed that the skewness values were generally close to 
zero, and in this case, that the data were in normal distribution. The statistical 
parameters given in Table 1 show that there were no significant differences 
among the datasets created. The geographical distribution of the five different 
datasets (DS#1, DS#2, DS#3, DS#4 and DS#5) is shown in Figure 2.

Table 1. Statistical parameters of the geodetic data (latitude, longitude, and geoid 
undulation) used in the study

Dataset Phase Statistical
characteristics j (°) l (°) N (m)

DS#1

Training

Mean 40.739 40.059 28.418
Minimum 40.478 39.340 24.661
Maximum 40.969 40.499 30.748

Standard deviation 0.110 0.294 1.439
Skewness -0.144 -0.663 -0.644

Testing

Mean 40.743 40.085 28.327
Minimum 40.491 39.310 24.597
Maximum 40.977 40.492 30.673

Standard deviation 0.108 0,28524 1.372
Skewness -0.259 -0,79471 -0.503

DS#2

Training

Mean 40.741 40.072 28.357
Minimum 40.478 39.329 24.597
Maximum 40.977 40.499 30.748

Standard deviation 0.110 0.290 1.431
Skewness -0.194 -0.744 -0.590

Testing

Mean 40.733 40.032 28.571
Minimum 40.519 39.310 24.661
Maximum 40.969 40.492 30.689

Standard deviation 0.109 0.301 1.396
Skewness -0.052 -0.477 -0.731

DS#3

Training

Mean 40.737 40.073 28.419
Minimum 40.478 39.310 24.597
Maximum 40.977 40.499 30.748

Standard deviation 0.110 0.290 1.424
Skewness -0.188 -0.722 -0.600

Testing

Mean 40.752 40.030 28.323
Minimum 40.520 39.329 24.661
Maximum 40.969 40.466 30.692

Standard deviation 0.106 0.300 1.433

Skewness -0.042 -0.561 -0.684

Figure 1. Study area

Dataset Phase Statistical
characteristics j (°) l (°) N (m)

DS#4

Training

Mean 40.739 40.062 28.409
Minimum 40.478 39.310 24.597
Maximum 40.977 40.492 30.748

Standard deviation 0.110 0.294 1.435
Skewness -0.133 -0.685 -0.628

Testing

Mean 40.741 40.075 28.362
Minimum 40.509 39.365 25.331
Maximum 40.919 40.499 30.658

Standard deviation 0.109 0.283 1.393
Skewness -0.303 -0.697 -0.566

DS#5

Training

Mean 40.740 40.065 28.384
Minimum 40.478 39.329 24.661
Maximum 40.969 40.499 30.748

Standard deviation 0.109 0.289 1.429
Skewness -0.187 -0.712 -0.579

Testing

Mean 40.738 40.061 28.461
Minimum 40.491 39.310 24.597
Maximum 40.977 40.492 30.325

Standard deviation 0.112 0.304 1.414
Skewness -0.085 -0.605 -0.774

Figure 2. Geographical distribution of the reference and test points of the 5 
different datasets: (a) DS#1, (b) DS#2, (c) DS#3, (d) DS#4, (e) DS#5

Data normalization is a pre-processing stage that plays a significant role 
in the performance of ANN methods. In order to obtain more accurate results, 
all data should be normalized before proceeding with the training and testing 
stages. Therefore, input and output parameters were normalized to the interval 
[-1, 1] and the normalized value (Ynorm) for each input and output parameter (Yi) 
was obtained using Equation (2).

 (2)

where Highvalue and Lowvalue are set to 1 and -1, respectively.

Artificial neural network (ANN)

The artificial neural network (ANN) was inspired by the working principle 
of the biological nervous system and was created by artificially simplifying and 
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imitating the nerve cells (neurons) in the nervous system and then transferring 
them to a computer (Singh et al., 2009). Since ANNs are modeled after the 
biological nervous system, they have the advantage of being capable of 
automatically, on their own, realizing skills such as the ability to derive and 
discover new information through learning, which is one of the features of 
the human brain. Generalization and working with an unlimited number 
of variables are also features of the ANN. Supplying the learning and quick 
decision-making abilities of the human brain to ANNs enables them to solve 
complex problems through training. The ANN looks at examples of problems, 
makes generalizations about these problems, sums up the information, and then, 
when encountering new examples it has never seen before, it makes decisions 
using the information it has learned. Because of all these features, the ANN 
is used to accomplish goals in many areas, including classification, control, 
image processing, modeling, feature determination, optimization, prediction, 
and more. As there is no limit to the application fields of ANNs, they can be 
applied to almost any problem that can be converted into fixed input and output 
variables. In this study, two types of ANN (RBFNN and GRNN) were applied. 
The development of the models was coded in a MATLAB environment. 
An overview and description of all the applied methods are discussed in the 
following sections.

Radial basis function neural network (RBFNN)

The RBFNN was developed in 1988, inspired by the action-response 
behavior seen in biological nerve cells (Broomhead & Lowe, 1988). The 
RBFNN is a curve-fitting approach in multidimensional space and is a special 
version of the multi-layer artificial neural network that uses the radial basis 
function as its activation function. Like the general ANN architecture, the 
RBFNN method is defined in three layers: input layer, hidden layer, and output 
layer (Figure 3).

Figure 3. Radial basis function neural network (RBFNN) structure

The input layer of the network is directly connected to the hidden layer 
and subsequently, weights are only present between the hidden layer and the 
output layer. The RBFNN has a single hidden layer and radial basis functions 
are used as the activation function in the hidden layer neurons. The most 
commonly used radial basis function is the Gaussian function (Hartman et al., 
1990; Park & Sandberg, 1991). The output of an RBFNN with Gaussian-based 
function can be calculated using the following equations (Haykin, 1994). 

            (3)

              (4)

                        (5)

where  is the input vector, ci is the center of the RBF unit,  is the width of 
the  neuron, n is the number of cells in the hidden layer, and wi shows the link 
weights between the hidden and output layers. A different number of hidden 
layer neurons and spread parameters were investigated using the RMSE.

General regression neural network (GRNN)

The GRNN proposed by Specht (1993) does not require an iterative 
procedure as in the MLPNN method. It needs only one-way learning. Due 
to the simplicity of the network structure and ease of implementation, this 
functional approach has been used in different geodetic applications (Ziggah 
et al., 2017; Cakir & Konakoglu, 2019; Li et al., 2020). The GRNN consists 
of four layers: the input layer, the pattern layer, the summation layer, and the 
output layer (Specht, 1993). The structure of the GRNN is given in Figure 4. 

Figure 4.  General regression neural network (GRNN) structure

The input layer, i.e., the first layer where inputs are given, depends on 
the following pattern layer. The distances between training data and testing 
data are calculated in this layer. The results are passed through the radial basis 
function together with the selected  value to obtain the weight values. These 
weight values are transferred to the numerator and denominator neurons in 
the summation layer. In the numerator neuron, the output value of the training 
data whose weight values are in the neuron is multiplied and the multiplication 
values are summed up. In the denominator neuron, weights are summed up 
directly. The output value is obtained by dividing the numerator value by the 
denominator value in the output layer, as shown in Equation (6).

                    (6)

where n is the number of data, s is the spread parameter, and Di
2 represents 

the scalar function, as shown in Equation (7).

                         (7)
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In this method, having only the spread parameter (s), there are not as 
many main design parameters as with the MLPNN (e.g., number of hidden 
layers, number of neurons in each hidden layer, activation function, and training 
type). The only important parameter that has to be determined using this method 
is the spread parameter (s). There is no specific rule about how this parameter is 
selected. In this study, different spread parameters between 0 and 1 were tested 
using the minimum RMSE criterion.

Multiple linear regression (MLR)

In regression methods, the influencing variables are called explanatory 
variables (independent variables), and the affected variable is called the 
described variable (dependent variable). The MLR method reveals the cause-
effect relationship between the dependent variable (Y) and independent variables 
(x1, x2,…, xn) as a mathematical model which can be written as Equation (8) 
(Şahin et al., 2013). 

 (8)

where a0, a1, a2, …, an show the effect of each independent variable on 
the dependent variable.

Interpolation methods

Interpolation is the prediction of the dimensions of unmeasured points 
using measured values of sample reference points. In this study, Surfer 
software v. 17 was used for interpolation calculation (Golden Software, 
2019). The software turns both simple and complex data into understandable 
visual tools such as maps, charts, and models. The Surfer software v. 17 offers 
users the opportunity to determine a geoid using 12 different interpolation 
methods. Of these 12 interpolation methods, those used for this study 
included the kriging (krig), inverse distance to a power (IDP), triangulation 
with linear interpolation (TLI), minimum curvature surface (MCS), natural 
neighbor (NN), nearest neighbor (NRN), local polynomial (LP), radial basis 
function (RBF), polynomial regression (PR), and modified Shepard’s (MS). 
Detailed information about these ten methods can be found in the work of 
Keckler (1995).

k-fold cross-validation method

In classic and AI applications, datasets are divided into those for the 
training and those for the testing of the established model. This separation 
method is carried out in several ways. The hold-out method is widely 
used to provide generalization. In classic and AI methods, the sampling 
methodology used for data division can have a significant impact on the 
quality of the subsets used for training and testing. The k-fold cross-
validation method is one of the methods used in data partition. In this 
validation method, the dataset to be used in the prediction is randomly 
divided into a k number of parts. The testing datasets consist of parts created 
in the order of each separate training part (k1…). In this way, every part 
that is created up to k is used as a testing set. The accuracy of the method is 
determined by taking the average of the accuracy values obtained from each 
part (Stone, 1974; Kohavi, 1995; Rodriguez et al., 2009). In this study, the 
value of k was taken as 5 (Figure 5).

In Figure 5, the dataset is divided into five equal parts. The green 
parts represent the training data and the orange parts the testing data. In 
other words, when four parts of five datasets are used for training, one part 
(the fifth) is used for testing. In this way, modeling was performed five 
times, using each part once for testing and the other four parts for training. 
The arithmetic averages of the success rates were calculated for the five 
models and the resulting success rate was determined. Ziggah et al. (2019) 
demonstrated the potential and feasibility of using the k-fold cross-validation 
method on coordinate transformation from geodetic applications. The dataset 
for a Ghana geodetic reference network was divided into separate training 
and testing data according to the hold-out method. The findings revealed that 
false results could be generated, and it was shown that the use of the k-fold 
cross-validation method provided a better solution for the correct evaluation 
of method performance, especially in the case of a sparse dataset.

Figure 5. 5-layer cross-validation example

Performance Evaluation Criteria

To measure the prediction success of the developed models, this study used 
the root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe 
efficiency (NSE) coefficient, and the coefficient of determination (R2). The 
equations used in the calculation of the selected statistical criteria are given below.

Root mean square error:

 (9)

Mean absolute error:

 (10)

Nash–Sutcliffe efficiency coefficient:

 (11)

Coefficient of determination:

 (12)

where n is the number of datasets, Oi is the observed geoid undulation 
value,  is the mean of the observed geoid undulation values, Pi is the 
predicted geoid undulation value, and  represents the mean of the predicted 
geoid undulation values.

The RMSE is used to determine the error rate between the prediction 
and the corresponding observation. The prediction ability of the method 
increases as the error value approaches zero. The MAE is used to determine 
the absolute error between the prediction and the corresponding observation. 
The closer the error value is to zero, the better the method’s prediction ability 
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is indicated. The NSE coefficient ranges from ‒∞ to 1. Thus, when NSE = 1, it 
means that the method is perfect. An NSE value of between 0 and 1 generally 
means that the method performance is acceptable, whereas a value of less than 
0 emphasizes that the average observation value showing the performance of 
the method is insufficient is a better prediction than the calculated data. The 
R2 is an indication of whether or not the regression equation is compatible 
with the data. It is the ratio that explains one difference in terms of the overall 
difference. This ratio is called the coefficient of certainty and shows the extent 
to which the difference in the dependent variable can be explained by the 
independent variable. The R2 is expressed by a value of between 0 and 1. A 
value close to 1 indicates that a large part of the variance in the dependent 
variable explains the independent variable in the method.

Results and Discussion

The results of the developed models are given under separate headings. It 
should be noted that in the tables, the best metric values are highlighted in dark 
gray, whereas the worst are highlighted in light gray.

RBFNN results

The performance of the RBFNN is based on the spread parameter and 
the maximum number of neurons in the hidden layer. Various attempts were 
made to achieve the best performance using a different number of neurons 
and different spread parameters. The best performance criteria results obtained 
during the training and testing phases are given in Table 2. The optimum 
values for the maximum number of neurons and their spread were 430/0.025 
for DS#1, 421/0.056 for DS#2, 427/0.076 for DS#3, 412/0.034 for DS#4, and 
410/0.065 for DS#5.

Table 2. RBFNN training and testing phase results 

Phase Dataset RMSE (m) MAE (m) NSE

Training

DS#1 0.112 0.079 0.99383
DS#2 0.001 0.000 0.99999
DS#3 0.000 0.000 0.99999
DS#4 0.034 0.009 0.99944
DS#5 0.003 0.001 0.99999

Testing

DS#1 0.197 0.115 0.97925
DS#2 0.780 0.542 0.68478
DS#3 0.525 0.364 0.86442
DS#4 0.720 0.590 0.73029
DS#5 0.569 0.389 0.83665

The lowest RMSE value of the prediction models at the training stage was 
obtained with DS#3 and the highest with DS#1. Moreover, the lowest MAE 
value was also found in DS#3. According to Table 2, the highest NSE values 
during the training stage were with DS#2, DS#3, and DS#5. At the testing 
stage, the lowest RMSE value was obtained with DS#1 and the highest with 
DS#2, whereas the lowest MAE and the highest NSE values were determined 
in DS#1. During the training phase, DS#2, DS#3, DS#4, and DS#5 performed 
well, whereas in the testing phase, the performance results of DS#1 were better 
than in the others. In order to demonstrate the performance of the RBFNN, the 
predicted geoid undulation values and those observed at the testing stage for 
each dataset (DS#1, DS#2, DS#3, DS#4, and DS#5) are shown in Figure 6.

Thus, it is clear that the geoid undulation prediction made with DS#1 was 
superior to that of the other datasets. It is also clear that the a and b coefficients 
of the distribution graphs from the fit line equations (assuming that the equation 
was y = ax + b) were higher than the a and b coefficients obtained with the other 
datasets; a was close to 1 and b close to 0, and the R2 value was higher.

GRNN results

The performance of the GRNN largely depends on the spread parameter, 
so determining this parameter is of great importance. Therefore, in order to 

Figure 6. Comparison of the geoid undulation values predicted by RBFNN and 
those observed at the testing phase

optimize prediction performance, this parameter must be accurately determined 
according to the evaluation criteria. The GRNN spread parameter values that 
provided the best testing performance were determined as 0.015, 0.013, 0.020, 
0.022, and 0.012 for DS#1, DS#2, DS#3, DS#4, and DS#5, respectively. The 
prediction performance of the GRNN for the training and testing stages in terms 
of the RMSE, MAE, and NSE is given in Table 3.

According to Table 3, the lowest RMSE value in the training stage was 
obtained with DS#4, and the highest with DS#2. The lowest MAE value was 
determined with DS#4, whereas the highest NSE value at the training stage was 
determined again in DS#4. The lowest RMSE value in the testing phase was 
found with DS#4 and the highest with DS#2, whereas the lowest MAE and the 
highest NSE values were determined in DS#4. During the training and testing 
phases, the performance results of DS#4 were better than those of the others. 
In order to illustrate the success of the GRNN, the predicted geoid undulation 
values and those observed at the testing stage for each dataset (DS#1, DS#2, 
DS#3, DS#4, and DS#5) are shown in Figure 7.
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Table 3. GRNN training and testing phase results 

Phase Dataset RMSE (m) MAE (m) NSE

Training

DS#1 0.024 0.007 0.99969
DS#2 0.048 0.019 0.99886
DS#3 0.019 0.004 0.99981
DS#4 0.012 0.003 0.99993
DS#5 0.039 0.016 0.99927

Testing

DS#1 0.199 0.147 0.97873
DS#2 0.201 0.140 0.97912
DS#3 0.173 0.134 0.98530
DS#4 0.167 0.124 0.98550
DS#5 0.187 0.140 0.98230

The diagrams show that the results obtained with all datasets were quite 
close to each other. The fact that in the equation for determining linearity (y = 
ax + b), coefficient a was close to 1 and coefficient b close to 0 indicated that 
there was a good relationship between the observed and the predicted geoid 
undulation values. In addition, as can be seen from Figure 7, the determination 
coefficient (R2) between the observed and predicted values of DS#4 during the 
testing phase was 0.98575.

MLR results

The results calculated according to the regression equations for geoid 
undulation are given below for the five different datasets.

N (DS#1) = 594.174 – 12.028j – 1.891l (13)

N (DS#2) = 593.165 – 12.013j – 1.881l (14)

N (DS#3) = 586.129 – 11.866j – 1.855l (15)

N (DS#4) = 642.606 – 13.672j – 1.423l (16)

N (DS#5) = 594.498 – 11.987j – 1.941l (17)

The geoid undulation (N) was defined as the dependent variable and 
latitude (j) and longitude (l) were regarded as the independent variables. 
The results of the statistical evaluation criteria for the MLR geoid undulation 
prediction are presented in Table 4.

Table 4. MLR training and testing phase results

Phase Dataset RMSE (m) MAE (m) NSE

Training

DS#1 0.432 0.346 0.90959

DS#2 0.448 0.356 0.90175

DS#3 0.449 0.356 0.90038

DS#4 0.436 0.341 0.90753

DS#5 0.436 0.346 0.90685

Testing

DS#1 0.466 0.351 0.88358

DS#2 0.402 0.310 0.91627

DS#3 0.397 0.312 0.92260

DS#4 0.557 0.446 0.83850

DS#5 0.455 0.340 0.89569

Figure 7. Comparison of the geoid undulation values predicted by GRNN and 
those observed at the testing phase

According to Table 4, the lowest and highest RMSE values in the training 
stage were obtained with DS#1 and DS#3, respectively. The lowest MAE value 
was determined with DS#4 and the highest with DS#3. The highest NSE value 
at the training stage was determined in DS#1. At the testing stage, the lowest 
and highest RMSE values were determined with DS#3 and DS#4, respectively. 
In addition, the lowest and highest MAE values were determined in DS#2 and 
DS#4, respectively. The lowest and highest NSE values were calculated for 
DS#4 and DS#3. In order to illustrate the success of the MLR, the predicted 
geoid undulation values and those observed at the testing stage for each dataset 
(DS#1, DS#2, DS#3, DS#4, and DS#5) are shown in Figure 8.

Results of interpolation methods 

The differences between the predicted and the observed geoid undulation 
values at the test points for the interpolation methods were computed to 
determine the RMSE, MAE, and NSE for the five different datasets (DS#1, 
DS#2, DS#3, DS#4, and DS#5), and are given in Table 5.
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Table 5. Statistical findings for the interpolation methods

Dataset (DS#1) (DS#2)

Interpolation methods RMSE (m) MAE (m) NSE RMSE (m) MAE (m) NSE

Krig 0.298 0.140 0.95226 0.239 0.127 0.97038

IDP 0.320 0.179 0.94504 0.275 0.180 0.96082

TLI 0.301 0.149 0.95130 0.248 0.133 0.96814

MCS 0.301 0.151 0.95146 0.251 0.140 0.96740

NN 0.298 0.143 0.95232 0.237 0.128 0.97077

NRN 0.341 0.235 0.93746 0.291 0.219 0.95601

LP 0.296 0.159 0.95317 0.230 0.135 0.97260

RBF 0.322 0.167 0.94438 0.268 0.151 0.96270

PR 0.477 0.363 0.87820 0.411 0.311 0.91242

MS 0.443 0.223 0.89477 0.306 0.172 0.95134

Dataset (DS#3) (DS#4)

Interpolation methods RMSE (m) MAE (m) NSE RMSE (m) MAE (m) NSE

Krig 1.406 1.020 0.02753 0.243 0.131 0.96927

IDP 1.380 0.993 0.06381 0.255 0.166 0.96604

TLI 1.407 1.012 0.02653 0.240 0.131 0.97014

MCS 1.416 1.026 0.01322 0.250 0.138 0.96759

NN 1.411 1.024 0.02063 0.240 0.131 0.97007

NRN 1.427 1.045 -0.00203 0.332 0.230 0.94248

LP 1.421 1.043 0.00655 0.228 0.140 0.97287

RBF 1.404 1.026 0.03100 0.261 0.146 0.96455

PR 1.432 1.039 -0.00800 0.461 0.378 0.88948

MS 1.421 1.053 0.00677 0.291 0.170 0.95587

Dataset (DS#5)

Interpolation methods RMSE (m) MAE (m) NSE

Krig 0.143 0.095 0.98961

IDP 0.207 0.164 0.97842

TLI 0.159 0.102 0.98729

MCS 0.178 0.110 0.98409

NN 0.142 0.097 0.98986

NRN 0.275 0.217 0.96196

LP 0.171 0.130 0.98532

RBF 0.188 0.122 0.98214

PR 0.462 0.345 0.89245

MS 0.404 0.206 0.91746
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Figure 8. Comparison of the geoid undulation values predicted by MLR and those 
observed at the testing phase It can be seen from Figure 8 that the a and b values 
of the predictions made using different datasets yielded close results. Moreover, 

the figure shows that the determination coefficient (R2) between the observed and 
predicted values of DS#3 during the testing phase was 0.92360.

According to Table 5, in terms of the resulting RMSE and NSE values, 
the best performance in the testing phase was obtained for the NN in DS#5. 
However, the highest RMSE value was found in DS#3 with the PR. In addition, 
the lowest MAE value was found in DS#5 using the krig method and the 
highest in DS#3 with the MS. The NSE value in DS#3 was very low with all 
methods. To demonstrate a comparison of the methods in terms of accuracy, 
Figure 9 gives the observed geoid undulation values with the values calculated 
for DS#5 using the interpolation methods. 
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As can be seen in Figure 9, the a value obtained with the DS#5 using the 
NN gave a result closer to 1 than the other datasets. Likewise, using the NN, 
the b value obtained with the DS#5 yielded a result closer to 0 than the other 
datasets. In the testing phase, the highest R2 among the observed and predicted 
values was obtained by the NN interpolation method in the DS#5.

Comparison of methods used in geoid undulation prediction (using k-fold 
cross-validation)

In order to evaluate the general performance of all the methods using 
the k-fold cross-validation, it was necessary to calculate the averages of the 
statistical criteria values (RMSE, MAE, NSE, and R2). In other words, the 
average value was found for each performance criterion result given in Tables 
2, 3, 4, and 5. According to the 5-fold cross-validation method based on the 
average performance values of the statistical criteria, in general, all interpolation 
methods except PR gave similar results (RMSE, 0.466 m - 0.648 m; MAE, 
0.303 m - 0.487 m; NSE, 0.71291 - 0.78283; R2, 0.75789 - 0.82706). The 
performance of the PR method was weaker than for the other methods. Table 
6 shows the average values for the RMSE, MAE, NSE, and R2 obtained from 
RBFNN, GRNN, MLR, and PR.

Table 6. Average values for the RMSE, MAE, NSE, and R2 (5-fold)

Method Phase RMSE (m) MAE (m) NSE R2

RBFNN
Training 0.030 0.018 0.99598 0.99875

Testing 0.558 0.400 0.82036 0.85108

GRNN
Training 0.029 0.010 0.99881 0.99951

Testing 0.185 0.137 0.98229 0.98249

MLR
Training 0.440 0.307 0.90522 0.90522

Testing 0.455 0.352 0.89176 0.90080

PR Testing 0.648 0.487 0.71291 0.75789

As can be seen from Table 6, on average, the GRNN outperformed all 
methods investigated for training and testing phases. The best NSE and R2 
values (0.99881 and 0.99951) and the lowest RMSE and MAE values (0.029 m 
and 0.010 m) were found in the GRNN training phase. The GRNN also yielded 
the lowest RMSE and MAE values (0.185 m and 0.137 m) with the highest 
NSE and R2 values (0.98229 and 0.98249) for the testing phase. It is clear that 
the highest RMSE and MAE, and the lowest NSE and R2 values were obtained 
with the PR during the testing phase. The results of the interpolation methods 
used with DS#3 negatively affected the performance with the other four datasets 
and reduced the accuracy (see Table 5). The RBFNN yielded poor overall 
results when compared to the interpolation methods. Among the methods used 
in this study, the MLR was ranked second-highest for accuracy. Considering the 
overall prediction accuracy of the different methods, the GRNN is the one to be 
recommended for predicting geoid undulation.

Conclusion

In this study, two different ANN methods (RBFNN and GRNN), the MLR, 
and ten different interpolation methods were comprehensively investigated and 
analyzed in order to compare their performances in geoid undulation prediction. 
The k-fold cross-validation method was used to obtain a better generalization. 
The evaluation of the performance of the datasets using cross-validation can be 
carried out in two ways: (1) by accepting that the method with the minimum 
error is the most appropriate one or (2) by considering that the method with 
the minimum average of results for all the datasets is the most appropriate 
one. When the methods used with each dataset were compared, the test results 
using the NN in DS#5 were the most successful. However, the lowest RMSE, 
MAE, NSE, and R2 values were obtained with the DS#3 using the ten different 
interpolation methods. In the calculation performed with the same dataset, the 
most successful method after the NN method was the GRNN, whereas the 
RBFNN and MLR gave nearly the same results. The GRNN was the most 
successful method in the evaluation carried out by averaging the RMSE, MAE, 
NSE, and R2 values produced using the five different datasets. In this study, the 
analysis of the results of two different performance evaluations for the GRNN 
demonstrated that the method could be successfully applied and was capable of 
yielding results equally as accurate as or better than those of the RBFNN, MLR, 
or interpolation methods used for prediction. Another conclusion that can be 
drawn from this study is that incorrect point distribution and dataset division 
can negatively affect the performance of interpolation methods when used in 
geoid undulation calculation. Therefore, it was recognized that the use of the 
k-fold cross-validation in geoid undulation calculations could expose incorrect 
data distribution. It was also shown that the use of the k-fold cross-validation 
method may give more accurate results for large amounts of data as well as for 
a sparse number of data. Using the same dataset, the k-fold cross-validation 
method could also be used to test the effects of other ANN methods and 
compare them to the results of this study. Moreover, additional studies could 
analyze geoid undulation prediction using a different dataset with the methods 
used in this study. It is hoped that the present study will thus contribute to the 
field and lead to future research on geoid undulation modeling.
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