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The purpose of this study is to solve the problem of an unsatisfactory image representation of monitoring sampling 
points in high-resolution remote sensing due to the complexity of geological ecology. Firstly, three algorithms used 
in remote sensing technology were introduced, that is, extraction algorithm of monitoring sampling point (selective 
search algorithm), discriminant algorithm (support vector machine), and BING algorithm. Then, the BING algorithm 
was improved. Finally, the superiority of the improved BING algorithm was verified through the experimental data 
set. The results showed that the selective search algorithm could generate more candidate windows in remote sensing 
images and had better adaptability. The improved algorithm had a higher quality of candidate windows extracted from 
remote sensing images. Although the IBING algorithm could significantly improve the extraction speed of remote 
sensing, the detection time of each image became larger. Such testing times were still acceptable. Therefore, in this 
research, the allocation algorithm of geological and ecological high-resolution remote sensing monitoring sampling 
points was optimized, which had a good guiding significance for the application of remote sensing technology in 
environmental and geological research.

ABSTRACT

Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points

Algoritmo de asignación óptima de puntos de muestreo de monitoreo de detección remota geológica y ecológica de alta resolución

ISSN 1794-6190 e-ISSN 2339-3459         
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El propósito de este estudio es resolver el problema de la representación de imagen insatisfactoria de los puntos de 
muestreo de monitoreo en la teledetección de alta resolución debido a la complejidad de la ecología geológica. En 
primer lugar, se introdujeron tres algoritmos utilizados en la tecnología de detección remota, a saber, el algoritmo 
de extracción del punto de muestreo de monitoreo (algoritmo de búsqueda selectiva), el algoritmo discriminante 
(máquina de vectores de soporte) y el algoritmo BING. Luego de esto el algoritmo BING fue mejorado. Finalmente, la 
superioridad del algoritmo BING mejorado se verificó con base en un conjunto de datos experimentales. Los resultados 
mostraron que el algoritmo de búsqueda selectiva podía generar un mayor número de ventanas candidatas en la imagen 
de teledetección y tenía una mejor adaptabilidad. El algoritmo mejorado tenía mayor calidad de ventanas candidatas 
extraídas de imágenes de teledetección. Aunque el algoritmo IBING podría mejorar en gran medida la velocidad  
de extracción de la teledetección, el tiempo de detección de cada imagen se hizo mayor. Estos tiempos de prueba aún 
eran aceptables. Por lo tanto, en esta investigación se optimizó el algoritmo de asignación de puntos de muestreo de 
monitoreo de detección remota geológica y ecológica de alta resolución, que tenía una alta importancia orientadora 
para la aplicación de la tecnología de detección remota en la investigación geológica y ecológica.
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Introduction

The existing remote sensing technology has many advantages, such as 
wide coverage, fast updating speed and large amount of information. The above 
advantages enable remote sensing technology to acquire large range of data in a 
relatively short time, so remote sensing technology is widely used. At present, it 
is most widely used in environmental and geological fields, which can monitor 
soil erosion, environmental protection, vegetation cover and land use (Gorji 
et al., 217). Remote sensing technology can be divided into broad sense and 
narrow sense. In the broad sense, it refers to the use of remote non-contact 
means to capture the information of monitoring research objects. In a narrow 
sense, the specific meaning refers to the technology that uses existing space 
technologies (satellites or aircraft) as a carrier platform and carries relevant 
sensors to perceive or observe some characteristics of the research target and 
analyze its characteristics (Gao et al., 2017).

In remote sensing image technology, target detection sampling point is 
one of the difficulties in remote sensing monitoring for geological ecological 
monitoring system. With the development of science and technology, the 
operating time and spatial resolution of remote sensing technology have been 
continuously improved, and the information of research objects collected by 
remote sensing images has become richer (Lengyel et al., 2017). At present, 
the application of target detection technology based on remote sensing image is 
more and more extensive. High-resolution optical remote sensing images can 
obtain more shape and texture information of ground objects, have stronger 
discrimination ability to ground objects, and can more intuitively display the 
surface conditions. However, due to the complexity of geology and ecology, 
it is difficult to extract images and express effects when monitoring sampling 
points. Therefore, these problems of target detection based on high resolution 
optical remote sensing image need to be solved. Most of the target detection 
technologies of remote sensing images are infrared remote sensing, synthetic 
aperture radar or medium-low resolution remote sensing images. These 
traditional detection technologies can’t effectively adapt to the complexity 
of high-resolution optical remote sensing images and the diversity of targets 
(Silva et al., 2017). And as the spatial resolution of remote sensing gets higher 
and higher, the image gets closer and closer to the natural image. However, 
the target detection technology of natural image (such as artificial intelligence 
algorithm) has developed rapidly in recent years. The combination of artificial 
intelligence algorithm and image target detection will further improve remote 
sensing technology. Therefore, it is of practical significance to explore  
more effective target detection algorithms based on high-resolution optical 
remote sensing images.

To sum up, in this research, the configuration algorithm of high-resolu-
tion remote sensing detection technology was optimized by studying high-
resolution remote sensing target detection technology. It is hoped that the effect 
of high-resolution remote sensing target detection can be improved.

Methods

Monitoring sampling point extraction algorithm

Selective Search algorithm firstly divides the pixels of the same object 
with similar features (such as color, texture and scale) in the image into super 
pixels, and obtains the initial small area set. Then, the similarity definition 
and merge strategy definition of pixels are carried out to merge super pixels 
and form a hierarchical structure, which can generate candidate windows. In 
order to obtain better robustness, Selective Search algorithm adopts multiple 
color spaces and multiple similarity calculation strategies for better robustness 
(Sürme et al., 2017).

BING algorithm is simple and efficient in the extraction of candidate 
windows, which is very suitable for the extraction of candidate windows. 
BING algorithm is a classifier with two stages. First, the first stage is to scan 
the images waiting to be detected according to different scales of sliding. Then 
the subgraph of the candidate window is unified to 8*8, and finally the linear 
scoring model needs to be used for scoring. The linear scoring model can be 
expressed as equations (1), (2), and (3).

w R 64      (1)

S w gl l= ( ),      (2)

l i x y= ( ), ,      (3)

Among them, l represents the window position; i represents the window 
scale; (x, y) indicates the coordinates of the upper left corner; Sl represents filter 
score; and gl represents the window feature vector.

In the BING algorithm, the w linear model is trained by SVM in the first 
stage, the normal pattern gradient features of the real target window are taken as 
positive samples, and the paradigm gradient feature of the randomly sampled 
background window is taken as a negative sample.

The second stage is to solve the problem that different scales contain 
different possibilities of targets. It needs to train a scoring calibrator for each 
scale window. The candidate window score extracted in the first stage is 
corrected, as shown in equation (4).

l i l iv s t= • +      (4)

Among them, vi and Sl represent the calibration coefficients of i learning 
at different scales.

In order to speed up the process of image extraction and scoring, the 
BING algorithm uses a binary approximation method. The two-valued basis 
vector is used to approximate the linear model, as shown in equation (5).

w j jj

Nw
≈ β α

=∑ 1
    (5)

Among them, Nw represents the number of base vectors; j represents a 
base vector; and j indicates the coefficient.

j can be represented by another binary vector and its complement form, 
as shown in equation (6).

α α −αj j j= + +      (6)

Among them, α ∈j
+ { }0 1 64, . 

Equation (6) can perform the fast bitwise and bit count operation of the 
score of the binarized feature b, which can be expressed by equation (7).

w b b bj jj

Nw
, ,( ) ( )( )+

=∑≈ β α −2
1

   (7)

BING algorithm expresses NG eigenvalue through equation (8):

g bl
B k

k lk

Ng
≈ −2

1 ,=∑     (8)

Through the above changes, the score of whether the final image window 
contains the target can be approximated as equation 9:

s w g b bl l j
B k

k

N
j k lj

N gw
= ( ) ( )( )=

+
= ∑∑, , ,≈ β α −−2 2

21
 (9)

Among them, 2 2B k
j k lb b− α −+( )( ), ,  can perform CPU atomic 

operations, which improves the speed of BING algorithm.

Discriminant algorithm

Support Vector Machine (SVM) is adopted in the general discriminant 
algorithms of remote sensing image technology. The basic idea of support 
vector machine is shown in figure 1.

The algorithm derivation process of SVR is as follows (Ellis & Coppins, 
2017).

First, the training set sample pairs were given:T x y i li i= ( ) = …{ }, , , , ,1 2
, x Ri

d , y Ri  . In the high-dimensional eigenspace, the linear regression 
function is established.
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f x a a x x b

a a K x x b

i i
i

l

i j

i i i j
i

l
  (16)

The principle diagram of support vector regression machine is shown in 
figure 2.
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Figure 2. Schematic graph of SVR

Improved BING algorithm

Because the BING algorithm was easy to miss the fuzzy monitoring 
samples, in this research, the candidate region extraction algorithm was 
improved. Firstly, different weak feature channels were extracted from 
each training sample, and a scoring model was developed for each weak  
feature channel. Then the score of a scoring model was trained by each  
weak feature channel as the score of candidate window. Because the integration 
part adopted a simple linear weighting method, the accuracy of each model 
determined the weight of the model.

Thus, the corresponding scoring model for each window was obtained, as 
shown in equation (17) and (18).

s w gkl k kl= ( ),     (17)

l I x y= ( ), ,      (18)

Among them, wk is the parameter of scoring model k; Skl represents the 
score of window l by the scoring model; and gkl indicates the feature value k at 
window 1. 

Therefore, the final window score in the first stage is expressed by 
equation (19).

G sk kln
= ∑      (19)

Among them, k is the weight of the eigenvalue of the scoring model.
After correction according to the scoring model of the second stage, the 

window score is shown in equation (20).

O a S v tl k kl i in
= ∗ +∑     (20)

In BING algorithm, NG feature graph is calculated for test sample 
points, and then binary approximation window NG feature and scoring model 

f x w x b( ) = ( ) +     (10)

Among them, w is weight vector; (x) represents the nonlinear mapping 
function; and representative bias.

The C-linear insensitive loss function is defined as equation (11).

L f x y
y f x

y f x y f x
( )( ) =

( )
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Among them, f(x) is the predicted value, y is the corresponding real 
value, and  is the insensitive coefficient to control the fitting accuracy. 

Secondly, relaxation variables, that is, i and j, are introduced. According 
to SRM criterion, the minimization objective function is constructed, as shown 
in equation 12.
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2

2w C i i
i l

l

+ +( )
=
∑      (12)

s t

y w x b

y w x b i l

i i i

i i

i i

. . , , , ,

,

*

− Φ − ≤ε ξ

− Φ ≤ε ξ

ξ ≥ ξ ≥

( ) +

+ ( ) + + = …



 1 2

0 0







  (13)

Among them, C > 0 is the penalty factor, and represents the punishment 
intensity for samples with an error greater than 1 during training. 

Lagrange equation is introduced into equation (13) to obtain dual 
optimization problem, as shown in equation (14) and (15):
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Among them, K x x x xi j i j,( ) = ( ) ( )   is a kernel function. The 
commonly used kernel functions are polynomial kernel function, radial basis 
kernel function and Sigmoid kernel function. And the radial basis kernel 
function was selected in this research.

Fourthly, ai and ai
* can be solved from equation (15), and then w* and  b

* 
can be obtained, the regression function is shown in equation (16).
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Figure 1. The basic idea of SVR
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parameters are used. Such a process is to only use CPU atomic operation. NG 
feature graph calculates the gradient amplitude of each pixel by collecting the 
edge intensity information in the original graph. However, because the logic 
of the NG feature map is relatively simple, the influence of noise on it is 
particularly prominent.

Based on the shortcomings of BING algorithm mentioned above, Sobel 
feature graph with better edge information capture effect was adopted in this 
research to replace NG feature graph with weak edge information. Moreover, 
the Local Binary Pattern (LBP) feature graph and Difference of Gaussian 
(DoG) feature graph were introduced into the Sobel diagram. The meaning 
expressions of Sobel feature graphs are shown in equations (21)~(23):

G Ax =
+
+
+

















⊗






1 0 1
2 0 2
1 0 1

    (21)

G Ay =
+ + +
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1 2 1

0 0 0
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   (22)

G G Gx y= +2 2     (23)

Among them, A represents the original graph matrix; Gx is the gradient of 
the horizontal direction of the image; Gy is the gradient for the vertical direction 
of the image; and G is the gradient magnitude of the feature graph matrix.

As can be concluded from equation (21), Sobel feature diagram adopts the  
grayscale diagram of the original image of 3*3 Sobel operator convolution.  
The approximate gradients of the horizontal and vertical directions are 
calculated respectively, and then the sum of the squares of the approximate 
gradients of the horizontal and vertical directions is carried out to obtain the 
corresponding gradient amplitude of each pixel.

LBP feature map is a texture feature proposed by Yavad and Congalton 
(2017) to describe images. With the development of technology, it is widely 
used in human classification and pedestrian detection. The calculation process 
of LBP code is shown in figure 3.

DoG feature map is obtained by subtracting two fuzzy images of different 
degrees from the original image. The two-dimensional Gaussian kernel function 
is defined as follows:

G x y x y
σ

πσ
−

σ1

1

2 21
2

2 2

1
2, exp( ) = +







   (24)

g x y G x y f x y1 1
, , ,( ) = ( )∗ ( )    (25)

g x y G x y f x y2 2
, , ,( ) = ( )∗ ( )    (26)

The DOG feature map can be obtained by subtracting the two images, as 
shown in equation (27).

g x y g x y G x y f x y G x y f x y1 2 1 2
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That is, DOG can be expressed by equation (28):
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Among them, 
1
 and 2 represent gaussian kernel parameters. When 

DoG images are applied in different scenarios, the proportions of two gaussian 
kernel parameters are also different. For example, when DoG is used for image 
enhancement,  1 2 1 4: := . In this study, the purpose of DoG was image 
enhancement, so 1 0 5= . , and 2 2 0= .  were adopted.

Results and discussion

Analysis of the results of the Selective search algorithm

In this research, the applicability of Selective search algorithm in remote 
sensing image to target extraction of monitoring sampling points and the 
superiority of improved BING algorithm were mainly verified. The data sample 
set was divided into training set and test set, and the ratio of training set to  
test set was 2:8,

This experiment was tested in fast mode, and only two different color 
spaces and two similarity functions were used. In remote sensing images, 
the size of target collection points was determined by the spatial resolution 
of images. Therefore, in this research, unreasonable candidate windows were 
filtered when selective search algorithm results were obtained, as shown 
in figure 4. According to figure 4, with the increase of pixel size of remote 
sensing image, the number of candidate windows generated by Selective search 
algorithm was also increasing. In addition, when there was no constraint, the 
average number of candidate windows generated by selective search algorithm 
under different pixel sizes was greater than the average number of candi- 
date windows generated by selective search algorithm after filtering 
unreasonable windows. Moreover, when there was no constraint, the maximum 
number of candidate windows generated by Selective search algorithm 
under different pixel sizes was larger than that generated by Selective search 
algorithm after filtering unreasonable windows. Studies showed that selective 
search algorithm could generate about 2000 candidate windows on average in 
natural images (Fan et al., 2017). In this experiment, the adopted remote sensing 
images could generate 3000 candidate windows on average. By comparison, 
selective search algorithm could generate more candidate windows in remote 
sensing image. Table 1 shows the running time of selective search algorithm in 

Figure 3. Calculation process of LBP code
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remote sensing images of different sizes. As can be observed from table 1, with 
the increase of pixel of remote sensing image, the running time of the algorithm 
had been increasing. When the pixel size was 1500*1500, it took 30s to get a 
candidate window of image in remote sensing image, which indicated that this 
algorithm did not occupy an advantage in remote sensing pixel size.

Figure 4. The average number of candidates extracted by Selective 
algorithm for remote sensing images of different scales

Table 1. The average running time of Selective algorithm for candidate 
extraction of remote sensing images in different scales

Remote sensing 
image scale / pixel 500*500 800*800 1000*1000 1500*1500

Average 
processing time / s 2.7 7.6 14.3 29.8

Comparison and analysis of the effects of BING algorithm  
and IBING algorithm

Figure 5 is the candidate effect diagram of extraction on high-resolution 
remote sensing images by BING algorithm and IBING algorithm. As can be 
concluded from figure 5, when the number of candidate windows was the 
same, the DR/MABO value of IBING algorithm was 97.37%, while the DR/
MABO value of BING algorithm was 95.13%. Therefore, the extraction effect 
of IBING algorithm was better than that of BING algorithm. Similarly, the 
MABO value of IBING algorithm was 65.36%, while the DR/MABO value 
of BING algorithm was 63.21%, indicating that the quality of candidate boxes 
extracted from remote sensing images by the improved algorithm was higher.

Figure 6 shows the extraction effect diagram when the number of 
candidate areas is 1000~10000. It can be observed that as the number  
of candidate regions increased, both the DR and MABO indicators tended to 
rise and then stabilize. When the number of candidate areas was less than 5000, 
the index was rising, and when the number was greater than 5000, it did not 
change. This indicated that the number of targets in large-format remote sensing 
images was relatively large, and the range of possible positions of targets 
increased significantly, so more candidate windows were needed to achieve a 
certain detection rate.

Comparison and analysis of average detection time between BING algo-
rithm and IBING algorithm

Figure 7 shows the average detection time of BING algorithm and IBNG 
algorithm on different data sets. As can be observed from the figure, under the 
BING algorithm, the detection time increased with the increase of size, but  
the maximum time did not exceed 1s. However, the increase of IBING algorithm 
was obvious, which increased from 0.18s to 0.64s. This showed that although 

IBING algorithm could greatly improve the extraction speed of remote sensing, 
the detection time of each image was increased, and such detection time was 
acceptable.

Figure 7. Average detection time of BING algorithm and IBNG algorithm 
on different data sets

Figure 5. Candidate renderings extracted from high-resolution remote 
sensing images by BING algorithm and IBING algorithm

Figure 6. Extraction effect in 1000~10000 candidate areas
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Conclusion

In this research, the algorithm was optimized for high-resolution 
remote sensing detection sampling points under geological ecology. The three 
algorithms involved in traditional remote sensing technology are Selective search 
algorithm, SVM algorithm and BING algorithm respectively. In this paper, the 
BING algorithm was improved to obtain the IBING algorithm. According to 
different data sets, the Selective search algorithm in remote sensing image was 
verified for the applicability of target extraction of monitoring sampling points, 
and the improved BING algorithm was also verified. The results showed that 
selective search algorithm could generate more candidate windows in remote 
sensing image and had better adaptability. The improved algorithm had higher 
quality of candidate boxes extracted from remote sensing images. Although the 
IBING algorithm could greatly improve the extraction speed of remote sensing, 
the detection time for each image became larger. And such detection time was 
also acceptable.

The algorithm optimization of high-resolution remote sensing monitoring 
sampling points in geological ecology was carried out, and the superiority of the 
algorithm was verified through experiments, which promoted the application of 
high-resolution remote sensing technology in geological ecology.
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