
Quality control can effectively improve the quality of surface meteorological observations. To ensure 
the stability and effectiveness of a quality control model under different terrain and climate conditions, it 
is necessary to structure a quality control model with strong generalization ability. Algorithms such as the 
Random Forest algorithm provide such generalization ability. However, machine learning algorithms 
are slower than traditional mathematical models. Therefore, a Random Forest quality control algorithm 
based on the principal component analysis (PCA-RF) is proposed in this paper. Fifteen target stations 
under different climatic and geomorphological conditions were selected and tested using observations 
collected four times daily at neighboring stations from 2005-2014. The results show that using PCA to 
analyze the elemental composition and select elements with high correlation factors, as well as applying 
the Random Forest algorithm, can effectively reduce the run time and keep the accuracy of the model. The 
training sample dependence, model prediction accuracy and error detection rate of the PCA-RF model 
are superior to those of the Spatial Regression method. Therefore, the PCA-RF method is a better quality 
control model for the spatial quality control of multiple elements of surface air temperature observations.
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El control de calidad puede mejorar efectivamente la calidad de las observaciones meteorológicas. Para asegurar 
la estabilidad y efectividad de un modelo de control de calidad bajo condiciones diferentes de terreno y climáticas es 
necesario estructurar un esquema con una fuerte habilidad de generalización. Algoritmos como el método de bosques 
aleatorios (del inglés Random Forest) cumplen con estas condiciones. Sin embargo, los algoritmos de maquinas de 
aprendizaje son más lentos que los modelos matemáticos tradicionales. En este artículo se propone un algoritmo de 
control de calidad tipo bosques aleatorios basado en el Análisis de Componentes Principales (PCA-RF). Se seleccionaron 
15 estaciones objetivo bajo diferentes condiciones climáticas y geomorfológicas y se evaluaron con observaciones 
realizadas cuatro veces por día en estaciones vecinas desde 2005 hasta 2014. Los resultados muestran que usando 
PCA para analizar la composición elemental y seleccionar elementos con factores de correlación alta, al igual que la 
aplicación del algoritmo Random Forest, se puede reducir efectivamente el tiempo de ejecución y mantener la exactitud 
del modelo. La dependencia de la muestra de prueba, la exactitud del modelo de predicción y la tasa de detección de error 
del modelo PCA-RF son superiores a aquellos del método de Regresión Espacial. Por lo tanto, el método PCA-RF es un 
mejor modelo para el control de calidad de elementos múltiples en las observaciones superficiales de aire y temperatura.

RESUMEN
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1. Introduction

Meteorological observations are important for identifying and 
understanding variations and changes in regional and global climate 
(Feng et al., 2004). These observations are also essential to a wide 
range of meteorological applications, such as climate monitoring, 
weather forecasting and the evaluation of numerical weather prediction 
(NWP) models (He et al., 2016; Ingleby and Lorenc, 1993). Therefore, 
it is of particular importance to improve the accuracy of meteorological 
observations, especially surface observations (Barnes, 1964; Gandin, 
1988). On the one hand, surface meteorological observations have a long-
term history in China. On the contrary, surface meteorological observations 
can more accurately represent the atmospheric characteristics of the near-
surface compared to other meteorological observations (Xu et al., 2013; 
Hu et al., 2002; Mi et al., 2014). However, surface observation stations 
are easily affected by the gross error and random error during the data 
acquisition process. Thus, the primary task and purpose of quality control 
(QC) are to identify the gross error and large random error associated with 
large numbers of observations (Shi-wei et al., 2009).

In surface meteorological observations, air temperature is one of 
the most important elements because it has a considerable impact on 
human activity (Cheng et al., 2016). Hence, a variety of QC methods 
has been recently proposed for surface air temperature observations. 
The QC methods include the extreme range check (Reek et al., 1992; 
Kubecka, 2001; Allen et al., 1998; Forsythe et al., 1995), internal 
consistency check (Baker, 1992), time consistency check (Shafer et al., 
2000; Lanzante, 1996), and spatial consistency check methodologies. 
QC research has focused on spatial consistency check, which is used for 
multi-station QC. The spatial QC method predicts the value at the target 
station based on the values at neighboring stations, and it can evaluate the 
reliability of observations. The inverse distance weighting (Wade, 1987) 
method (IDW) uses the proportions of the inverse distances between 
multiple neighboring stations and the target stations as weights, and it 
requires the terrain features and distribution of neighboring stations. The 
Bayesian QC method (Lorenc and Hammon, 1988) uses the probability 
of observations as a gross error. In 2007, Hubbard et al. (2007) proposed 
the spatial regression test method (SRT). SRT calculates weights based 
on the standard error between the target station and neighboring stations, 
and it is less influenced by terrain and the distribution of neighboring 
stations compared to the IDW method. Based on the SRT method, Xu et 
al. (2014) proposed the probabilistic spatial-temporal method (SRT-PS). 
This method considers the uncertainty in temperature observations and 
eliminates the associated effect on temperature fluctuations.  

The most widely used traditional methods discussed above are the 
IDW method and SRT method, and the SRT method is considered superior 
to the IDW method (Hubbard and You, 2005). Thus, the SRT method is 
for comparison with the Random Forest quality control algorithm based 
on the principal component analysis (PCA-RF) method proposed in this 
paper. The PCA-RF method is used to reconstruct the training samples by 
extracting high correlation factors from meteorological elements using 
PCA. Therefore, the efficiency and accuracy of RF model are improved. 
The specific objectives of this paper are as follows: (1) to compare the 
evaluation indexes of the RF and SRT methods using training samples over 
different periods (Ridzuan et al., 2017). (2) To set different correlation 
factor thresholds and compare the evaluation indexes and run times of 
the PCA-RF QC model based on these different thresholds. And (3) to 
compare the detection rates of the SRT and PCA-RF methods and evaluate 
the predictive performances of the QC models.

2. Data

China is a large country with an area of approximately 9.6 million 
km2. About 98% of the land area stretches between the latitudes of 20° 
N and 50° N. Thus; the country extends from the subtropical zones in the 
south to the temperate zones (including warm temperate and cool temperate) 
in the north (Yang et al., 2013; Jiang et al., 2016). With recent global 
climate warming, the national annual average temperature increased by 
approximately 1.1 degrees Celsius, with high temperatures in north and low 
temperatures in the south. Additionally, the magnitude of the temperature 
increase in winter was larger than that in summer (Asis et al., 2017)

- Moreover, other climate factors exhibited fluctuations in 
different regions (Zheng et al., 2010, CHENG et al., 2009). Therefore, 
it is more meaningful in spatial QC to consider different climates and 
geomorphological regionalization.

In this paper, data were collected from January 1, 2005, to December 
31, 2014, four times daily (02:00, 08:00, 14:00 and 20:00 Beijing time 
(CST)) in different climate regions in China. The data include six types 
of meteorological elements: ground surface temperature (GST), pressure 
(PRE), relative humidity (RH), temperature (TEM), wind direction (WD) 
and wind speed (WS). These data were obtained from the China National 
Meteorological Center and had undergone basic QC; thus, the accuracy 
of the data is acceptable. Missing data, changes in station locations and 
changes in precipitation measurement instruments during the observation 
period can influence the homogeneity of datasets (Irannezhad et al., 
2016). Small percentages of missing data at some stations can influence 
an analysis, but PCA can reduce the effect of missing data to a certain 
degree. Zheng et al. (2010) suggested dividing China into 12 temperature 
zones, including a humid region, a semi-humid region, a semi-arid region 
and an arid region. Li et al. (2013) discussed the specific steps and 
methods associated with dividing China into six major categories. In this 
paper, 15 stations with different climates and topographies are selected; 
however, stations 59948, 59985 and 59287 (in the mid-tropic, equatorial 
tropic and south subtropical areas) are not selected because they do not 
have sufficient numbers of neighboring stations (Rahim et al., 2017) 

- The target stations are shown in Figure 1, and the selection of 
target stations accounted for the distribution of climate zones and 
geomorphologic regionalization. Neighboring stations are selected based 
on the distance between the target station and neighboring stations, where 
the radius of the neighboring stations is not more than 100 km. The 
number of neighboring stations is 5-10, as shown in Table 1. However, 
stations 55472 and 54823 have a limited number of neighboring stations or 
significant gaps in data.

Table 1. The number of neighboring stations for 15 target stations.
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Figure 1. The distribution of target stations based on geomorphological 
regionalization in China.

To test the feasibility of the PCA-RF method, artificial error is added 
randomly to the observations at the target station. A comparative analysis is 
performed using observations with artificial random error and the predicted 
values of the PRF method. Hubbard et al. (2005) presented a method of 
adding false error to data. A random number q with a mean of zero and a range 
of ± 3,5  was selected and added to the observations (Hubbard et al., 2007): 

 
      (1)

Where E and s denote the error magnitude and standard deviation, 
respectively, of temperature observations at the target station. Additionally, x 
is the location of mistake value insertion. 

3. Method

3.1. Random Forest algorithm
Random Forest (RF) is an ensemble learning method for classification 

and regression that constructs some randomized decision trees during the 
training phase and make predictions by averaging the results (Scornet et 
al., 2015). In ensemble learning, each decision tree is a weak classifier, and 
some weak classifiers are combined into a strong classifier. This approach 
is much easier than looking for a strong classifier directly. RF generates 
many regression trees to improve the prediction performance of the model, 
and each split in the tree is determined using a randomized subset of 
variables/factors at each node (Rahmati et al., 2016). The outcome is the 
average of the results of all the trees (Cutler et al., 2007). 

3.2. Principal Component Analysis algorithm
Principal Component Analysis (PCA) is a method for analyzing a 

positive semi-definite Hermitian matrix. The goal of PCA is to identify 
the most urgent basis by using a new base to filter out the noise and 
reveal hidden structures (Shlens, 2014). Notably, PCA is used to analyze 
the covariance matrix of sampled random vectors (Lloyd et al., 2014). 
High-dimensional data are mapped into a new coordinate system and 
transformed to low-dimensional data that can partly represent the original 
data. In this manner, PCA can significantly reduce the run time of 
algorithms, especially in big data processing.

3.3. PCA-RF algorithm
Combined with the above concepts, the PCA-RF algorithm is 

proposed in this paper. The concrete steps in the algorithm are divided as 
follows (Asis et al., 2017)

Step 1: The PCA method is used to analyze the multiple element 
observations in space. Assuming that n represents the number of samples,  
m represents the number of features, and X n,m  represents the feature set, the 
average value of the ith feature iy  is calculated using (2).

      (2)

The standard error Si of the ith feature is calculated using (3).

      (3)

Then, through standardization, (4) is obtained.

      (4)

Finally, the correlation matrix of feature sample Rm,m is obtained, 
as shown in (5). 

      (5)

An optimal feature sample is established by extracting the matrix with 
high correlation factors.

Step 2: The RF algorithm is used to train and test the optimal feature 
samples, and the PCA-RF model produces a predictive value esty .

Step 3: The predicted values esty  and observed values obsy  are tested 
for a given threshold, as shown in (6):

 
      (6)

Where f is the QC parameter and ∂ is the standard error between 
observed values and predicted values at the target station. If the 
conditions of (6) cannot be met, the data are considered incorrect (or 
associated with error). If the conditions of (6) are met, the data are 
considered correct values (Ridzuan et al., 2017).

3.3. Evaluation of model performance
To analyze different forecasting models with different conditions, the 

root means square error (RMSE) and mean absolute error (MAE) were 
selected as evaluation metrics. RMSE is the square root of the ratio of the 
square of the predicted value and the real value, and MAE can accurately 
reflect the size of the prediction error. Their formulas are as follows.

 

      (7)
    
  
      
    
      (8)

4. Results and Discussion

The estimates using PCA-RF were evaluated against the 
measurements at 15 target stations, and selected observations are shown 
in Figure 1 and Table 1 (You et al., 2017). In the analysis of sample 
dependence, observations over different periods were selected to predict 
observations of daily mean temperature, and the training samples were 
the six meteorological elements observed four times daily in the 1, 3, 5, 7 
and 9 years before 2014. The testing samples were the six meteorological 
factors founded four times daily in 2014. In the analysis of the correlation 
factor, the same observations were used as the training samples and 
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testing samples at different correlation factor thresholds (>0, >0.5, >0.8, 
>0.9, >0.95). In the analysis of the detection rates of the PCA-RF and SRT 
methods, the evaluation indexes (MAE and RMSE) and two types of error 
(type I and type II) were used to compare the performances of PCA-RF 
and SRT, and observation selection was the same as that utilized in the 
correlation factor analysis.

Observations over different periods were selected to analyze the 
sample dependence based on RF and SRT, and the results are shown in 
Figure 2. In general, as the number of training samples increased, the error 
in the testing samples decreased. As shown in Figure 2, the error trends 
at 15 target stations exhibited this pattern. Regardless of the observation 

period (one year, three years, five years, seven years or nine years), the 
MAE and RMSE values of the RF method are smaller than those of the 
SRT method, and the fluctuations in training samples are smaller. Hence, 
the RF method performed better than SRT method based on the sample 
dependence. Although the error associated with the training samples for 
seven years of observations is less than that associated with the training 
samples for nine years of observations at target station 57494, the training 
samples based on nine years of observations exhibited less error in general. 
Therefore, the training sample based on nine years of observations was 
used in the following analysis.

Figure 2. Evaluation indexes of the RF and SRT methods over different observation periods.

Moreover, Figure 2 shows that stations 54823, 56951, 57245 and 58606 have relatively small evaluation index values because the neighboring stations around 
these target stations are relatively dense (You et al., 2017).

- Additionally, the main reason for the performance difference 
between the SRT method and RF method is the sparse distribution of 
neighboring stations or low spatial correlation between values. The RF 
method has relatively less error at the target stations compared to the large 
error of the SRT method, such as at stations 51477, 56684 and 57245. This 
result suggests that the RF method is superior to the SRT method.

To investigate the performance of the PCA-RF method under 
different thresholds of the correlation factor, the evaluation index values 
and run time of the model obtained for seven cases (no, >0, >0.5, >0.8, 
0.9, 0.95, alone) are shown in Figure 3, where “no” means that the RF 
model does not perform PCA and “alone” means that modeling is only 
based on temperature observations at neighboring stations. Additionally, 
the unit of “Time” (run time of the model) is 100 seconds. Figure 3 shows 
that the evaluation index (MAE and RMSE) values increased slightly as 
the correlation factor threshold increased. Moreover, the run time of the 
model decreased as the correlation factor threshold increased. The results 

show that the choice of correlation factor determines the run time of model 
and affects the size of the type error. A correlation factor threshold of 0.5 
was chosen as the optimal value to construct the QC model. Compared 
to the other correlation factor thresholds, the correlation factor threshold 
of 0.5 produced the shortest run time of the model, and the model error 
is relatively small. On the one hand, although the model error is reduced 
without PCA, the run time of the model increases considerably, as PCA 
effectively reduces the run time of the model. On the other hand, although 
the run time of the quality control model with only temperature elements 
is short, the error is larger than the error when six elements are considered 
in the spatial QC model. In summary, the accuracy and run time of the 
QC model can be improved by choosing a correlation factor threshold of 
0.5. Thus, the RF model performed better than the SRT approach based 
on the evaluation indexes and error detection rate analysis.
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Figure 3. Evaluation indexes and run time of the model for the 15 target stations under different thresholds of the correlation factor.

The error detection rate is the ultimate criteria for a QC model. The error detection rate is related to the size of the QC parameter, and the choice 

of QC parameter is related to the two types of error. In type I error, the 
real value is treated as an incorrect value. In type II error, an incorrect 
value is treated as the true value. In the realm of QC, the intersection 
of the two types of error is chosen as the optimal QC parameter. The 
optimal QC parameters for the PCA-RF and SRT methods obtained based 
on the intersection of the two types of error are listed in Table 2, in which 

the 15 target stations are numbered 1 to 15 according to the order of 
their previous names. The corresponding error detection rate is shown 
in Figure 4. Table 2 and Figure 4 illustrate that the error detection rate 
of the PCA-RF method is superior to the error detection rate of the SRT 
method. Thus, the PCA-RF method is more stable and efficient based on 
the target stations with different terrain and climate characteristics.
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Table 2. The optimal quality control parameters of the PCA-RF 
and SRT methods.

Figure 4. The detection rates of the PCA-RF and SRT methods at 
15 target stations.

5. Conclusions

This paper studies a spatial QC model of six meteorological 
elements and temperature observations using the PCA-RF model, and the 
results are compared to those of the SRT method. The performance of 
QC has a considerable effect on the selection of the correlation factor 
threshold and the density of neighboring stations around the target station. 
The simulation results show that the PCA-RF method is less dependent 
on training samples than is the SRT method, and it performed better at 
target stations with sparse neighboring stations or low spatial correlation. 
The run time of the model can be reduced effectively by choosing the 
appropriate correlation factor at the expense of a small increase in the 
error. The PCA-RF method is more stable and has a higher error detection 
rate compared to the stability and detection rate of the SRT method.

In the next study, time series will be combined with the PCA-RF 
method, and the error detection rate of the PCA-RF QC model may be 
improved by eliminating the influence of noisy time series. The physical 
connection between multiple elements at neighboring stations must be 
taken into account to improve the performance of the model through the 
establishment of a new sample set based on physical connections.
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