
Seismic event characterization is often accomplished using algorithms based only on information received at 
seismological stations located closest to the particular event, while ignoring historical data received at those stations. 
These historical data are stored and unseen at this stage. This characterization process can delay the emergency 
response, costing valuable time in the mitigation of the adverse effects on the affected population. Seismological 
stations have recorded data during many events that have been characterized by classical methods, and these data 
can be used as previous “knowledge” to train such stations to recognize patterns. This knowledge can be used to 
make faster characterizations using only one three-component broadband station by applying bio-inspired algorithms 
or recently developed stochastic methods, such as kernel methods. We trained a Support Vector Machine (SVM) 
algorithm with seismograph data recorded by INGEOMINAS’s National Seismological Network at a three-
component station located near Bogota, Colombia. As input model descriptors, we used the following: (1) the integral 
of the Fourier transform/power spectrum for each component, divided into 7 windows of 2 seconds and beginning at 
the P onset time, and (2) the ratio between the calculated logarithm of magnitude (Mb) and epicentral distance. We 
used 986 events with magnitudes greater than 3 recorded from late 2003 to 2008.
The algorithm classifies events with magnitude-distance ratios (a measure of the severity of possible damage caused 
by an earthquake) greater than a background value. This value can be used to estimate the magnitude based on a 
known epicentral distance, which is calculated from the difference between P and S onset times. This rapid (< 20 
seconds) magnitude estimate can be used for rapid response strategies.
The results obtained in this work confirm that many hypocentral parameters and a rapid location of a seismic event 
can be obtained using a few seconds of signal registered at a single station. A cascade scheme of SVMs or other 
appropriate algorithms can be used to completely classify an event in a very short time with acceptable accuracy 
using data from only one station.

Los algoritmos de determinación de parámetros hipocentrales empleados en la actualidad, se basan específicamente 
en la información recibida en las estaciones de monitoreo mas cercanas al epicentro y no tienen en cuenta la 
valiosa información histórica registrada a lo largo del tiempo en dichas estaciones. Es por esto que los procesos de 
caracterización toman varios minutos, tiempo precioso que podría ser de gran utilidad en la generación de alertas 
tempranas que permitan una oportuna reacción ante el evento. El registro de información, a lo largo el tiempo, de 
sismos ocurridos en los alrededores de la estación, puede ser empleada para dotarla de algún grado de experiencia 
que le permita, mediante detección y clasificación de patrones, realizar una caracterización previa mucho mas rápida, 
mediante el empleo de técnicas modernas las cuales pueden ser algoritmos bio-inspirados o métodos estocásticos mas 
recientes conocidos como métodos Kernel. En el presente trabajo se emplea un método conocido como Maquinas 
de Soporte Vectorial (MSV), entrenando dicho algoritmo con información de la relación del área bajo la curva de 
la potencia de la transformada de Fourier de las  componentes N-S, E-W y Vertical, calculada para  5 ventanas de 2 
segundos, desde la onda p, de 123 sismos de magnitud superior a 3, desde 2004 hasta 2008, alrededor de la estación 
El Rosal, de la Red Sismológica Nacional de Ingeominas. El Algoritmo clasifica sismos que superen un umbral 
predeterminado de la relación entre el Logaritmo de la magnitud y la distancia, que refleja, de alguna manera, la 
intensidad del sismo. Con la obtención de este parámetro será posible conocer la magnitud del evento, debido a que la 
distancia puede ser calculada, con base en picado de la onda S, y de esta manera establecer una aproximación rápida 
de la magnitud en un tiempo aproximado de 20 segundos después del evento. Los resultados obtenidos permiten 
confirmar que con poco tiempo se señal en una sola estación sismológica es posible obtener información confiable 
para ser empleada en alertas tempranas.
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1  Introduction

Seismic activity is a natural phenomenon with enormous and 
uncontrollable power, and damage in populated areas can impede appropriate 
responses when earthquakes occur.

Recent developments have allowed efficient and alternative solutions 
inspired by natural and biological processes that have been converted to 
stochastic models and have been used in seismology with acceptable results.

When an earthquake is detected, seismologists determine its main features, 
such as magnitude, hypocenter coordinates, fault mechanisms, etc., to help 
authorities respond appropriately and allow scientists to study the Earth internal 
structures. Seismometers are distributed across an area of interest, many with 
three-component broadband sensors that detect, at the same point, movement 
in three mutual, orthogonal directions (North-South, East-West and up-down). 
These stations transmit information in near real time to seismological centers.

The traditional characterization of earthquakes takes a few minutes, 
depending on the degree of automatization, network density and the number 
of stations involved in the process. Earthquakes usually must be detected by 
at least five stations, and features such as compressive (P) and shear (S) wave 
arrival times are determined by expert analysis or an automatic algorithm. 
Subsequently, the hypocenter coordinates can be calculated. In Colombia, 
an institute called INGEOMINAS can obtain seismic event localization in 
approximately 8 minutes due largely to the low-density network. In some 
seismological centers with many stations, this time can be reduced by half 
because earthquake energy requires additional time to arrive at stations farther 
away from the hypocenter. However, we are mostly interested in earthquakes 
occurring near population centers, where seismic energy can arrive in tenths of 
a second, making warning impossible.

Long processing times are associated with conventional methods that 
are based on information related only to the particular event and that ignore 
valuable previously collected historical information.

Therefore, new alternatives must be explored to reduce the processing 
time and allow rapid generation of warnings. The main purpose of this study is 
to use historical information from only one station to detect patterns correlated 
with known event features available from very accurate, traditional processing.

2  Problem definition

Colombia has a central seismological network, managed by 
INGEOMINAS, and local networks located in certain cities, such as 
Armenia (Quindio) and Cali (Valle). It is important to develop a system 
based on these valuable resources to discover patterns that will allow more 
rapid seismic early warnings. Recent developments in Computational 
Intelligence (CI) techniques allow this goal to be achieved by solving 
certain seismological problems in near real time. 

The automatic detection and discrimination of different events recorded 
with a seismometer, including seismic and non-seismic signals, using CI have 
been achieved using Artificial Neural Networks (ANNs) in many cases around 
the world. ANNs use a probe that is an excellent pattern recognition tool. ANNs 
were created to reproduce the mechanisms of human reasoning and allow 
discrimination of signals to simulate the brain processing of the operator. It is an 
efficient processing strategy for solving seismic signal discrimination problems, 
in which multiple hypotheses must be controlled in parallel, the number of input 
parameters is large and a well-defined solution is not always well known. 

The onset time determination is usually the first step to locating the 
hypocenter of an event. The first arrival of a P wave can be compressive or 
tensile, which is key to determining the focal mechanism. Interactions between 
body waves and changes in the mechanical properties of rocks at strata 
interfaces generate diffraction and reflection phenomena, generating new body 
waves. These new onsets can provide clues to the distribution of strata in the 
subsurface, and these clues can then be used as seismic tomography data to 
determine the Earth’s internal structure. The automatic detection of P waves 
can be accomplished using comparison algorithms, such as the one reported 
by Allen 1978, who developed an application to determine P wave onset by 

comparing discrete signal parameters. The P onset is present where the short-term 
average (STA) of the signal increases abruptly with respect to the long-term average 
(LTA). Later, Allen 1982 established that technological development will lead to 
more efficient S wave detection through the use of a signal-in-frequency domain.  
Baer and Kradolfer, 1987, developed an improved methodology based on signal 
processing. The complexity of the S wave onset requires alternative methods to 
achieve better solutions. Cichowicz, 1993, developed an algorithm that identifies 
the S wave onset using three-component seismometers in local networks.

Recently, a neural network approach has been proposed to solve this 
problem because many simultaneous parameters can be included and the 
approach is easy to implement and flexible. It is also not necessary to be 
proficient with the interactions of the analyzed variables.  Wang and Teng, 
1997, applied a Back Propagation Neural Network (BPNN). Dai and McBeth, 
1997, implemented a BPNN to identify and detect P and S waves from three-
component recordings of local earthquake data. Two years later, Zhao and 
Takano, 1999, used BPNNs for P wave detection by combining three BPNN 
detectors (long, mid and short term). Aldersons, 2004, developed a system 
(MannekenPix) that automatically detects the phase of a wave.  This program 
is based on a weighting mechanism calibrated with reference detections and 
weights provided by the user; in other words, it is a learning process that uses 
examples and statistical techniques to separate groups by criteria similitude. 
This approach is a linear combination of predictors to maximize differences 
among groups, while minimizing differences within groups. Di Stefano et al. 
2005 applied this algorithm to achieve precise phase detection using Pg, Pn 
and their polarities. These authors demonstrate that such data are suitable for 
high-precision earthquake location, focal mechanism determination and high-
resolution seismic tomography.  

Once signal spectral characterization is complete and arrival times for P 
and S signals are determined, it is possible to generate the subsurface structure. 
This issue has been resolved using Computational Intelligence techniques, 
such as Genetic Algorithms (GAs) and Simulated Annealing (SA). A good 
subsurface structural model is an important step for calculating the focal 
parameters of seismic events. The high model combination rates obtained 
with GA can perform a very wide exploration of the solution’s space, and this 
computation alternative is preferred when solving this kind of problem.  

Bhattacharyya et al. 1999, analyzed regional seismograms using a GA to 
determine crustal structure in a four-layered crustal model of the eastern Great 
Basin and western Colorado plateau, in which the optimizing variables were 
thickness and P-wave velocity. The resulting model agreed well with results 
reported in several geological publications.  

Chang et al. 2004, implemented a GA and modeled crustal structure in 
southern Korea using teleseismic P-wave receiver function data and Rayleigh–
wave phase velocity measurements. The genotype describes the distribution of 
wave velocities and is determined using 40 1-km-thick layers. Lawrence and 
Wiens, 2004, combined the inversion of body wave receiver functions and 
Rayleigh wave phase velocities using a Niching Genetic Algorithm (NGA). 
Using non-unique inversion models, it is possible to explore many solutions to 
problems associated with the determination of focal parameters. Pezeshk and 
Zarrabi, 2005, developed an inversion procedure for spectral analysis of surface 
waves (SASW) using a Genetic Algorithm. 

Kim et al. 2006, proposed a method for determining hypocentral 
parameters for local earthquakes in 1-D using Genetic Algorithms and two-
point ray tracing, which calculates seismic ray trajectories that cross a known 
velocity structure. In this case, the velocity structure is not known, but the arrival 
times at different stations are available. With GA, it is possible to explore many 
subsurface velocity distributions, and a comparison between the calculated and 
observed arrival times can be a useful fitness selection function. Assimaki and 
Steidl, 2007, used a hybrid algorithm that combined a genetic algorithm with a 
local least-squares fit operator for inversion of weak and strong motion among 
an array of data obtained during the Mw 7.0 Sanriku-Minami earthquake. This 
combination accelerates the convergence of the GA by improving the parental 
population with the local hill-climbing operator. 

Many of the processes mentioned above can be described by 
Computational Intelligence tools, which must be designed, or trained, for 
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particular geological, environmental and structural settings. Additionally, these 
techniques can be applied to function in near real time by processing information 
at the seismological center or directly in the sensor using electronic devices 
with embedded models. These devices are faster and can transmit processed 
information via parallel link, requiring fewer resources for transmission.

However, these processing tasks only use information transmitted from 
current seismic activity registered by the nearest stations. The processing takes 
approximately 5 to 10 minutes, which does not allow for early warnings and alerts. 
More stations can be used to determine seismic source magnitude and location, but 
more time is needed for processing; thus, less time is be available for reaction.

The generation of early warnings depends on extracting the most 
accurate and reliable magnitude and location values using the fastest signal 
time. New data-driven pattern analysis models (e.g., kernel methods) with solid 
statistical foundations have been applied to classification and regression issues. 
These pattern analysis models apply historical data available in seismological 
databases to determine signal features (descriptors) and relationships between 
signal features and previously processed results. The descriptors and their 
relationships with previously processed results can be used to “train” certain 
simple algorithms, which can be used to process new data more rapidly.

Here, we present the first results obtained from a single three-component 
seismic station with our rapid and accurate characterization of a seismic event 
using only a few seconds of signal following the P wave onset. This station is 
near the source, where energy does not saturate the data, and uses Support Vector 
Machine models to obtain a Magnitude-Distance ratio from 14 seconds of signal.

3  Data set description

The data set used in this research was obtained from INGEOMINAS’s 
National Seismological Network. We have waveform files and calculated 
data from approximately 45,000 registered seismic events from 1993 to mid-
2008. We selected 130 of the events registered at the “EL ROSAL” station that 
had magnitudes (Mb) greater than 2.1 and epicentral distances less than 120 
kilometers. This station has digital, three-component broadband seismometers 
and is located near Bogota, which is vulnerable to medium- or high-magnitude 
events. This research is proposed as a first step to developing a reliable early 
warning system for the city. Only events registered after late 2003 were used 
because the three-component station data were not available prior to this time. 
The location of selected events is presented in Fig. 1, in which symbol size is 
proportional to event magnitude.

4  Methodology

One of the most important steps in Kernel Method Processing is to 
determine the best “descriptors” to be used as input variables for the model. 
These descriptors are the key to obtaining good correlations with desired 
output, and the selection of descriptors depends on the type of information 
available for processing. In this case, we have time signals, which have certain 
characteristic features that can be described by signal transformations, such as 
Fourier transform and others.

• Fourier transform was applied to each of the three components of 
the signal, starting at the P wave onset. 

• This transform was divided into 2-second windows (80 samples). 
• The integral of the squared frequency spectrum was calculated for 

each window, which generated one value for a given two-second partition. 
• Finally, the ratios between the values of each component calculated 

in the step above are the input descriptors of the model and are calculated as 
follows:

                          (1)

                     (2)

                     (3)
where x, y and z are the values of the squared Fourier Transform integral 

at each x, y, and z component registered at the seismological station.
These descriptors are used in our classification model as input variables. 

An output value is needed to separate the two classes that represent, in some 
way, the severity of a given earthquake’s effects at the station site. The effects 
of an earthquake at any place depend directly on magnitude and inversely on 
epicentral distance. A ratio between the logarithm of magnitude and epicentral 
distance is proposed here as a classifier based upon the following equation:

,
where M is body wave magnitude and D is epicentral distance, based 

on reports processed by INGEOMINAS for each seismic event. The physical 
context of this classifier variable is related to the energy that an earthquake has 
when it reaches the seismic station; very near events with low magnitudes are 
perceived to be similar to distant events with high magnitudes. Higher classifier 
values are obtained for high-magnitude earthquakes occurring close to the 
station. To achieve a balance between the number of events over and under a 
background limit, a value of 0.5 was determined to be the classification limit.

With calculated descriptors and the information available for the clas-
sification variable, an SVM was trained to find the optimal separator hyper-
plane that discriminates the events corresponding to classes A and B.

Appendix I includes the events used in the model and the calculated 
severity values from known magnitudes and distances, as well as the pre-
dicted SVM model. 

5  Classifier evaluation

A machine learning classifier performance depends entirely on the data 
used for training, validation and testing. Therefore, the method’s evaluation 
must consider answers to certain questions about the data, such as ‘Do we have 
enough training data to represent the model?’; ‘Do we have balanced training 
data for each considered class?’; ‘What is the effect of re-using data in the 
training sets?’; etc.

To answer these questions, the algorithms and data used in this research 
were evaluated using 10-Fold Cross Validation techniques, and the results are 
summarized below.

[Complexity C=0.1]  

Predicted
Real A B

A 9 32
B 0 98
   [Complexity C=1]  

Predicted
Real A B

A 20 12
B 4 94
[Complexity C=10]  

Predicted
Real A B

A 22 10
B 3 95

Table 1: Confusion matrix.
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% correctly classified instances 87.69%
% incorrectly classified instances 12.31%

Mean Absolute Error 0.12
Mean Square Root Error 0.35

Relative Mean Absolute Error 32.95
Relative Mean Square Root Error 81.39

Table 2: SVM Classifier with Quadratic Kernel results.  

A B
True Positives 62.5% 95.9%

False Negatives 4.0% 37.5%
Precision 0.830 0.887

Recall 0.625 0.959
Mean-F 0.714 0.922

ROC Curve Area 0.792 0.792

Table 3: Estimated error of the SVM Quadratic Kernel Classifier.

Table 1 shows the results from the determination algorithm of the meta 
parameters, which determine the curve ROC that was used to evaluate the 
value of C for which the classification model has the best results. Figure 2 
shows the curve ROC for multiple values of C, achieving the best value as a 
compromise between hits and false alarms. Similar curves were generated to 
locate other parameters, such as the degree of polynomial function used for 
mapping vectors in the feature space. Using this approach, the quadratic kernel 
was selected as the best mapping function for this problem and dataset. Figure 
2 shows the relationship between the numbers of hits and false alarms, which 
are determined using the following equations:

Figure 2: ROC curve for C estimation.

 

Wrongly classified events that exceeded the background limit of C, 
known as “false negatives”, are cases where no alarm was generated but a 
moderate event was imminent. This unique situation indicates that there is a 
local condition that must be analyzed carefully to determine the area’s unique 
pattern (Figure 3). To increase accuracy and obtain better results, it is necessary 
to explore other descriptors.

Figure 4 plots the values of the confusion matrix. There is a very good 
correlation for a severity threshold of 0.5. This result can be used as an initial 
early warning parameter.

Figure 3: Wrongly classified events (red points). 

Figure 4: Plotted confusion matrix.

6  Results

Results obtained in this study using the classification methods described 
above are presented in Tables 2 and 3. Class B events were classified with high 
accuracy, but Class A events were wrongly classified in 31% of the cases.

Future work will focus on the identification of new descriptors to 
better characterize the input signal using a priori knowledge. It is possible to 
implement new strategies using Bagging, which combines many algorithms.

The described algorithm proposes a new classification method for early 
warning purposes only.

7  Conclusions

• The structure of the input data is important for classifier behavior 
and determining relationships within the model. One of main challenges 
in this work was selecting the best signal descriptors and determining the 
relationships between them. 

• With a small signal interval processing from only one 
seismological station, it will be possible to estimate parameters such as 
magnitude and distance, which will allow the rapid classification of a 
seismic event based only on the effects at this station. 

• Previous determinations of hypocentral parameters ignore 
historical data from previous seismic events and instead use only information 
recorded during current earthquakes. The proposed method uses historical 
data to calculate a relationship between magnitude and distance and allows 
rapid warning generation times. 

• The results suggest that it is possible to use the proposed method 
to calculate other hypocentral parameters, such as hypocenter location, 
azimuth, distance and others. 
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• Improvements to the technique can be accomplished by including 
a priori information in descriptors calculated from signals and spectral 
characteristics. These techniques have been used previously as input in 
some artificial intelligence approaches and resulted in better accuracy and 
faster processing times.

• The adjustment results obtained using this approach cannot be 
compared with conventional strategies because they do not use the same 
information. This approach is based on a single station, whereas others are 
based on multiple stations (no fewer than 5). 

• Early detection systems must consider combined strategies to 
optimize the identification of descriptors that can be used more efficiently 
in these types of approaches.

 References

Allen, R. V. (1978). Automatic earthquake recognition and timing from single 
traces, Bulletin of the Seismological Society of America. 68, 1521-1532.

Allen, R. V. (1982). Automatic phase pickers: Their present use and future prospects, 
Bulletin of the Seismological Society of America. 72, S225-S242.

Assimaki, D. and  Steidl, J. (2007). Inverse analysis of weak and strong 
motion downhole array data from the Mw7.0 Sanriku-Minami 
earthquake, Soil Dynamics and Earthquake engineering. 27, 73-92. 

Baer, M. and Kradolfer, U. (1987). An automatic phase picker for local 
and teleseismic events, Bulletin of the Seismological Society of 
America. 77, 1437-1445. 

Bhattacharyya, J.,  Sheehan, A. F.,  Tiampo, K. and  Rundle, J. (1999). 
Using a Genetic algorithm to model broadband regional waveforms 
for crustal structure in the western United States, Bulletin of the 
Seismological Society of America. 89, 202-214. 

Chang, S.,  Baag, C. and  Langston, C. A. (2004). Joint Analysis of Teleseismic 
Receiver Functions and Surface Wave Dispersion using the Genetic 
Algorithm, Bulletin of the Seismological Society of America. 94, 691-704.  

Cichowicz, A. (1993). An Automatic S-Phase Picker, Bulletin of the 
Seismological Society of America. 86, 180-189. 

Dai, H. and MacBeth, C. (1997). Application of back-propagation neural 
networks to identification of seismic arrival types, Physics of the 
Earth and Planetary Interiors. 101, 177-188. 

Del Pezzo, E.,  Espossito, A.,  Giudiceprieto, F., Marinaro, M., Martini, 
M. and Scarpetta, S. (2003). Discrimination of Earthquakes and 
Underwater Explosions Using Neural Networks, Bulletin of the 
Seismological Society of America. 93, 215-223.  

Di Stefano, R., Aldersons, F., Kissling, E., Baccheshi, P. and Chiarabba, 
C. (2005). Automatic seismic phase picking and consistent 
observation error assessment: application to the Italian seismicity, 
Geophysical Journal International. 165, 121-134.  

Dowla, F. U.,  Taylor, S. R. and  Anderson, R. W. (1990). Seismic 
discrimination with artificial Neural Networks: Preliminary results 
with regional spectral data, Bulletin of the Seismological Society of 
America. 80, 1346-1373.  

Dysart, P. S. and  Pully, J. J. (1990). Regional seismic event classification 
at the NORESS array: Seismological measurements and the use of 
trained Neural Networks, Bulletin of the Seismological Society of 
America. 80, 1910-1933.  

Fedorenko, Y. V., Husebye, E. S. and Ruud, B. O. (1999). Explosion site 
recognition; neural net discriminator using single three-component 
stations, Physics of the Earth and Planetary Interiors. 113, 131-142.  

Kim, W., Hahm, I., Ahn, S. J. and Lim, D. H. (2006). Determining 
hypocentral parameters for local earthquakes in 1-D using a genetic 
algorithm, Geophysical Journal International. 166, 590-600.  

Lan, J., Nahavandi, S., Lan, T. and Yin, Y. (2005). Recognition of moving 
ground targets by measuring and processing seismic signal, 
Measurement. 37. 189-199.  

Lawrence, J. F. and  Wiens, D. A. (2004). Combined Receiver-Function and 
Surface Wave Phase-Velocity Inversion Using a Niching Genetic 
Algorithm: Application to Patagonia, Bulletin of the Seismological 
Society of America. 94, 977-987.  

Muller, S., Garda, P., Muller, J. D., an Cansi, Y. (1999). Seismic events 
discrimination by neuro-fuzzy merging of signal and catalogue 
features, Physics and Chemistry of The Earth. 24, 201-206.  

Pezeshk, S. and  Zarrabi, M. (2005). A New Inversion Procedure for Spectral 
Analysis of Surface Waves Using a Genetic Algorithm, Bulletin of 
the Seismological Society of America. 95, 1801-1808.  

Romeo, G., Mele, F. and Morelli, A. (1995). Neural networks and discrimination 
of seismic signals, Computers & Geosciences. 21, 279-288.  

Tiira, T. (1996). Discrimination of nuclear explosions and earthquakes from 
teleseismic distances with a local network of short period seismic 
stations using artificial neural networks, Physics of the Earth and 
Planetary Interiors. 97, 247-268.  

Tiira, T. (1999). Detecting teleseismic events using artificial neural 
networks, Computers & Geosciences. 25, 929-938.  

Wang, J. and  Teng,  T. (1995). Artificial Neural Network-based seismic detector, 
Bulletin of the Seismological Society of America. 85, 308-319.  

Wang, J. and Teng, T.  (1997). Identification and picking of S phase using 
an artificial Neural Network, Bulletin of the Seismological Society 
of America. 85, 1140-1149.  

Yamanaka, H. and  Ishida, H. (1996). Application of Genetic Algorithms 
to an inversion of surface-wave dispersion data, Bulletin of the 
Seismological Society of America. 86, 436-444.  

Zadeh, M. A. and Nassery, P. (1999). Application of quadratic neural 
networks to seismic signal classification, Physics of the Earth and 
Planetary Interiors. 113, 103-110.  

Zhao, Y. and Takano, K. (1999). An artificial Neural Network approach for 
broadband seismic phase picking. Bulletin of the Seismological 
Society of America. 89. 670-680.  

Zhou, R.,  Tajima, F., and  Stoffa, P. L. (1995). Application of Genetic 
Algorithms to constrain near-source velocity structure for the 
1989 Sichuan earthquakes. Bulletin of the Seismological Society 
of America. 85. 590-605.  



122 Luis H. Ochoa, Luis F. Niño, Carlos A.Vargas

Figure 1: Selected earthquakes.

Appendix I: List of used events and parameters.

DATE TIME LAT LON DIST MAG DEPTH HYPO 
DIST

Log Mag 
Dist Hipo

CLASSIFICATION

REAL (0.5) PREDICTED

07/11/2002 22:22 4.008 -74.15 96 2.2 0 96.0 0.36 B B

13/11/2002 23:23 5.775 -73.906 112 2.5 115 160.5 0.25 B B

08/01/2003 09:09 4.492 -74.898 75 2.2 6 75.2 0.46 B B

14/04/2003 22:22 4.658 -74.535 32 2.5 3.1 32.1 1.24 A A

29/04/2003 01:01 4.05 -74.11 92 2.9 2.6 92.0 0.50 A B

08/06/2003 10:10 5.258 -73.649 88 2.4 156.2 179.3 0.21 B B

12/06/2003 11:11 4.636 -74.647 43 2.8 22.9 48.7 0.92 A A

20/06/2003 01:01 4.684 -74.785 54 2.7 21.9 58.3 0.74 A A

28/06/2003 23:23 5.59 -74.352 81 2.2 100.3 128.9 0.27 B B

01/07/2003 21:21 4.159 -75.146 119 2.8 0 119.0 0.38 B B

20/08/2003 23:23 5.519 -73.858 90 2.4 136 163.1 0.23 B B

01/09/2003 11:11 5.543 -74.389 76 2.6 104.3 129.1 0.32 B B

19/10/2003 02:02 5.618 -73.915 96 2.8 117.3 151.6 0.30 B B

20/10/2003 11:11 5.778 -74.675 109 2.2 6.8 109.2 0.31 B B

31/10/2003 00:00 5.213 -73.714 79 2.8 155.5 174.4 0.26 B B

03/11/2003 20:20 5.704 -74.413 94 2.2 0 94.0 0.36 B B

09/11/2003 14:14 5.375 -74.927 88 2.2 8.2 88.4 0.39 B B

20/12/2003 19:19 5.219 -74.546 47 3.8 2.2 47.1 1.23 A A

26/12/2003 12:12 5.779 -73.873 114 2.9 129.4 172.5 0.27 B A

02/01/2004 09:09 5.74 -74.311 98 2.5 1 98.0 0.41 B B

12/01/2004 17:17 5.589 -73.874 96 2.3 134 164.8 0.22 B B

24/01/2004 07:07 5.805 -73.878 116 2.8 122 168.3 0.27 B A

01/02/2004 10:10 5.431 -73.741 91 2.7 142.3 168.9 0.26 B B

10/03/2004 07:07 4.54 -75.06 88 2.3 26 91.8 0.39 B B

24/03/2004 01:01 5.868 -74.003 118 2.4 138.8 182.2 0.21 B B
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01/04/2004 15:15 5.443 -73.781 89 2.2 140.6 166.4 0.21 B B

04/04/2004 16:16 4.347 -73.853 77 3.2 4 77.1 0.66 A B

17/04/2004 20:20 5.577 -73.884 94 2.6 135.2 164.7 0.25 B B

19/04/2004 00:00 4.579 -74.776 58 2.5 0 58.0 0.69 A A

24/04/2004 13:13 5.315 -73.774 80 2.6 140 161.2 0.26 B B

16/05/2004 01:01 5.629 -73.893 98 2.4 135.7 167.4 0.23 B B

25/05/2004 17:17 4.678 -74.679 43 2.6 14 45.2 0.92 A A

24/06/2004 23:23 4.686 -74.807 56 3.2 21.7 60.1 0.84 A A

28/06/2004 12:12 5.435 -73.769 89 2.7 140.7 166.5 0.26 B B

24/07/2004 22:22 5.215 -74.552 47 2.4 3.2 47.1 0.81 A A

22/08/2004 02:02 5.067 -74.761 53 2.5 13.6 54.7 0.73 A A

22/08/2004 17:17 5.596 -73.856 97 2.5 124 157.4 0.25 B B

26/08/2004 04:04 5.628 -73.986 93 2.3 111.9 145.5 0.25 B B

27/09/2004 14:14 5.785 -73.924 112 2.2 102 151.5 0.23 B B

07/10/2004 23:23 5.605 -74.381 83 2.2 96.4 127.2 0.27 B B

21/11/2004 14:14 5.361 -73.725 87 2.9 147.8 171.5 0.27 B B

22/11/2004 10:10 4.583 -75.138 95 3.1 0 95.0 0.52 A A

19/12/2004 14:14 4.053 -74.039 95 2.3 0 95.0 0.38 B B

01/01/2005 15:15 5.013 -74.844 60 2.4 18.3 62.7 0.61 A A

21/01/2005 07:07 5.419 -73.742 90 2.3 148 173.2 0.21 B B

23/01/2005 07:07 5.241 -73.686 83 2.3 153.1 174.2 0.21 B B

08/02/2005 09:09 5.367 -74.91 86 2.4 7.8 86.4 0.44 B B

11/02/2005 22:22 5.278 -73.777 77 2.4 155.4 173.4 0.22 B B

06/04/2005 19:19 5.791 -74.028 109 2.3 1.8 109.0 0.33 B B

16/04/2005 05:05 5.453 -73.817 87 2.2 134.4 160.1 0.21 B B

04/05/2005 12:12 5.291 -73.736 82 2.7 146 167.5 0.26 B B

26/05/2005 09:09 4.681 -74.863 62 2.9 22.2 65.9 0.70 A A

30/06/2005 03:03 5.326 -73.756 82 2.4 143.5 165.3 0.23 B B

10/07/2005 03:03 4.415 -75.05 94 2.3 8.7 94.4 0.38 B B

16/07/2005 12:12 5.594 -73.891 95 2.2 122 154.6 0.22 B B

16/07/2005 02:02 5.92 -74.499 119 2.2 28.7 122.4 0.28 B B

29/07/2005 22:22 5.632 -74.61 91 3 4 91.1 0.52 A A

05/08/2005 01:01 5.716 -74.38 95 2.2 58.7 111.7 0.31 B B

15/08/2005 18:18 5.608 -73.867 98 2.3 131.7 164.2 0.22 B B

19/08/2005 23:23 5.304 -73.751 81 2.4 150.5 170.9 0.22 B B

09/10/2005 04:04 5.325 -73.721 85 2.3 146.8 169.6 0.21 B B

15/10/2005 01:01 5.749 -73.973 106 2.2 101.5 146.8 0.23 B B

23/10/2005 13:13 5.744 -73.906 109 2.8 100.9 148.5 0.30 B B

12/11/2005 09:09 5.289 -73.751 80 2.2 144 164.7 0.21 B B

17/11/2005 03:03 4.728 -74.708 44 2.4 8.7 44.9 0.85 A A

21/11/2005 00:00 5.325 -73.761 82 2.2 150.1 171.0 0.20 B B

02/01/2006 00:00 5.45 -74.159 68 3.5 48 83.2 0.65 A B

07/02/2006 03:03 5.321 -73.76 81 2.7 143.6 164.9 0.26 B B

27/03/2006 02:02 5.286 -73.813 74 2.2 151.6 168.7 0.20 B B

04/06/2006 06:06 5.6 -73.869 97 2.2 131.5 163.4 0.21 B B

17/06/2006 05:05 5.287 -73.724 82 2.4 148.3 169.5 0.22 B B

20/06/2006 18:18 4.177 -74.54 79 2.6 0 79.0 0.53 A B

21/06/2006 03:03 5.435 -73.802 87 2.3 138 163.1 0.22 B B

10/07/2006 07:07 5.284 -73.738 81 3.4 155.7 175.5 0.30 B B

06/08/2006 04:04 5.615 -74.045 90 2.3 107.3 140.0 0.26 B B

16/08/2006 04:04 5.301 -73.754 81 2.3 155.2 175.1 0.21 B B

06/09/2006 00:00 5.641 -73.88 100 2.4 132 165.6 0.23 B B

06/09/2006 09:09 5.299 -73.735 82 2.4 149.5 170.5 0.22 B B
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18/09/2006 17:17 5.312 -73.745 82 2.5 154.9 175.3 0.23 B B

06/10/2006 03:03 5.281 -73.713 83 2.5 151.4 172.7 0.23 B B

23/10/2006 22:22 5.289 -73.709 84 3.4 148.9 171.0 0.31 B B

01/11/2006 12:12 5.206 -74.013 52 3.9 126.5 136.8 0.43 B B

07/11/2006 07:07 5.274 -73.708 83 3.5 151.8 173.0 0.31 B B

12/12/2006 07:07 5.09 -74.781 56 2.8 22 60.2 0.74 A A

18/01/2007 19:19 5.591 -74.086 86 2.5 103.3 134.4 0.30 B B

27/01/2007 05:05 5.515 -74.078 78 2.7 112.2 136.6 0.32 B B

31/03/2007 01:01 5.69 -73.865 106 2.4 131.7 169.1 0.22 B B

12/04/2007 16:16 5.485 -73.82 90 2.4 144.5 170.2 0.22 B B

16/04/2007 07:07 4.582 -74.754 56 3 28.3 62.7 0.76 A A

03/05/2007 07:07 5.737 -73.902 108 2.2 98.5 146.2 0.23 B B

19/05/2007 07:07 4.526 -75.309 115 2.6 0 115.0 0.36 B B

29/06/2007 17:17 5.303 -73.705 85 2.2 148.3 170.9 0.20 B B

10/07/2007 17:17 5.272 -73.664 87 2.4 153.6 176.5 0.22 B B

14/07/2007 10:10 5.238 -73.701 82 2.3 143.2 165.0 0.22 B B

16/10/2007 10:10 5.293 -73.669 88 2.5 142.7 167.7 0.24 B B

12/11/2007 09:09 5.459 -73.803 89 2.7 133.4 160.4 0.27 B B

17/11/2007 21:21 5.771 -74.26 102 2.9 62 119.4 0.39 B B

02/12/2007 11:11 4.696 -73.647 77.8 2.6 15.7 79.4 0.52 A B

17/12/2007 09:09 5.263 -73.673 85.7 3.1 150 172.8 0.28 B B

29/12/2007 06:06 5.265 -73.717 81.6 3.3 152 172.5 0.30 B B

11/01/2008 02:02 5.305 -73.739 82 2.3 146.3 167.7 0.22 B B

13/01/2008 04:04 5.244 -73.649 87 3 151.4 174.6 0.27 B B

14/03/2008 16:16 4.88 -74.821 55 3.8 4 55.1 1.05 A A

07/04/2008 04:04 5.345 -73.785 81 2.2 136.3 158.6 0.22 B B

13/04/2008 02:02 5.622 -73.941 95 2.2 110.2 145.5 0.24 B B

24/05/2008 19:19 4.422 -73.83 73 4.5 6.3 73.3 0.89 A A

24/05/2008 21:21 4.409 -73.762 80 3.4 2.9 80.1 0.66 A A

24/05/2008 19:19 4.395 -73.82 76 3.6 4 76.1 0.73 A B

24/05/2008 21:21 4.452 -73.766 77 2.9 0 77.0 0.60 A B

24/05/2008 17:17 4.453 -73.83 71 2.9 0 71.0 0.65 A B

24/05/2008 21:21 4.512 -73.657 84 2.5 22.8 87.0 0.46 B A

24/05/2008 23:23 4.58 -73.726 74 2.4 17.6 76.1 0.50 B B

24/05/2008 19:19 4.431 -73.797 76 2.3 4 76.1 0.48 B B

25/05/2008 11:11 4.452 -73.799 74 2.8 12 75.0 0.60 A A

25/05/2008 17:17 4.475 -73.729 79 2.6 15.9 80.6 0.51 A A

25/05/2008 00:00 4.483 -73.825 70 2.9 0 70.0 0.66 A B

25/05/2008 02:02 4.406 -73.698 86 2.5 0 86.0 0.46 B B

25/05/2008 06:06 4.439 -73.76 78 2.2 10.8 78.7 0.43 B B

26/05/2008 01:01 4.461 -73.775 75 2.3 3.4 75.1 0.48 B B

30/05/2008 19:19 4.439 -73.767 78 2.3 0 78.0 0.46 B B

02/06/2008 12:12 5.634 -74.382 86 2.9 89.6 124.2 0.37 B B

03/06/2008 02:02 4.446 -73.762 78 3.4 12.4 79.0 0.67 A A

07/06/2008 20:20 4.432 -73.83 73 2.6 0 73.0 0.57 A B

11/06/2008 18:18 5.399 -73.7 92 2.5 141.8 169.0 0.24 B B

02/07/2008 14:14 5.315 -73.747 82 2.2 149.4 170.4 0.20 B B

07/07/2008 05:05 4.429 -73.824 73 2.2 0 73.0 0.47 B B

09/08/2008 12:12 5.297 -73.741 82 2.7 142.5 164.4 0.26 B B

15/08/2008 01:01 5.311 -73.765 80 2.2 143.7 164.5 0.21 B B

02/09/2008 18:18 5.42 -73.757 89 2.3 139 165.1 0.22 B B

03/09/2008 02:02 5.517 -74.052 79 3.8 120.8 144.3 0.40 B B


